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of Hsp90–Ligand Complex 
Leads to immune Activation
Yasuaki Tamura*, Akihiro Yoneda, Norio Takei and Kaori Sawada

Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for Innovation and Business 
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Although heat shock proteins (HSPs) primarily play a pivotal role in the maintenance of 
cellular homeostasis while reducing extracellular as well as intracellular stresses, their role 
in immunologically relevant scenarios, including activation of innate immunity as danger 
signals, antitumor immunity, and autoimmune diseases, is now gaining much attention. 
The most prominent feature of HSPs is that they function both in their own and as an 
HSP–ligand complex. We here show as a unique feature of extracellular HSPs that they 
target chaperoned molecules into a particular endosomal compartment of dendritic cells, 
thereby inducing innate and adaptive immune responses via spatiotemporal regulation.

Keywords: heat shock protein, danger signal, cross-presentation, dendritic cell, toll-like receptor, autoimmune 
disease

iNTRODUCTiON

Heat shock proteins (HSPs) are known to act as molecular chaperones within cells. They are primarily 
considered to be intracellular proteins that have protective functions under cellular stress conditions. 
Recently, the existence of extracellular HSPs has been shown, and much attention has been paid to 
their role in stimulation of innate and adaptive immunity. Extracellular HSPs have been shown to 
activate innate immune responses through toll-like receptors (TLRs) and scavenger receptors (SRs) 
expressed on antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages (1). 
Moreover, it has been demonstrated that extracellular HSPs augmented the ability of their associated 
molecules to activate immune responses by efficient targeting to antigen-presenting cells (2).

It is well known that immunization with an HSP–peptide complex is able to elicit peptide-specific 
T cell responses (2–6). However, the behavior of an HSP–peptide complex after uptake by APCs has 
not been completely elucidated. Presentation of an exogenous antigen to CD8+ T cells is called cross-
presentation (7). Cross-presentation is a process by which APCs, including DCs, uptake pathogens 
and dying cellular fragments and present proteolytic fragments derived from these antigens in the 
context of MHC class I molecules (8). This process is a fundamental mechanism of the induction 
of antitumor immune responses. However, it is not known how antigens are taken up and where 
are they destined to go and encounter MHC class I molecules. We have uncovered intracellular 
pathways that link the antigen internalization pathways and their processing as well as loading 
on MHC class I molecules (9–12). Antigenic peptides chaperoned by extracellular Hsp90 or the 
Hsp70 family member ORP150 are targeted to static early endosomes and processed by endosomal 
peptidases, followed by loading onto MHC class I. By contrast, HSP-chaperoned proteins that are 
required for proteasomal degradation enter both the endosomal pathway and proteasome–TAP-
dependent pathway (11). Moreover, it is thought that HSP receptor-expressing APCs play a key 
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role in the targeting of an HSP–antigen complex into these cross- 
presentation pathways (13, 14). To begin with, we will describe 
the  history and development of HSP in tumor immunology. 
Then, we will discuss the emerging roles of extracellular HSPs in 
the regulation of innate immunity and adaptive immunity with 
focus on how spatiotemporal regulation of HSP–ligand complexes 
within antigen-presenting cells affects immune responses.

HSPs iN CANCeR iMMUNOBiOLOGY: 
ORCHeSTRATiON OF iNNATe iMMUNiTY 
AND ADAPTive iMMUNiTY

HSPs as Tumor Antigens
Heat shock proteins are generally considered to be intracellular 
chaperones that are essential for maintaining cellular homeosta-
sis. From an immunological point of view, much attention has 
been paid to emerging roles of extracellular HSPs as endogenous 
immunomodulators for innate and adaptive immune responses. 
Pioneering studies by Srivastava and colleagues first demon-
strated tumor-specific antigenicity to Gp96, Hsp70, and Hsp90, 
a function associated with their ability to chaperone antigenic 
peptides and to activate antitumor cytotoxic T lymphocyte 
(CTL) responses (3, 4, 15). Immunization with tumor-derived 
HSPs initiates antitumor CTL responses via cross-presentation 
of their chaperoned peptides to MHC class I molecules (16, 17). 
By contrast, HSPs isolated from normal tissues are not effective, 
indicating that HSP-chaperoned peptides but not HSPs per  se 
represent the tumor antigens recognized by antitumor CTLs (5). 
Immunization with high molecular weight stress proteins, such 
as Hsp110 and Grp170 (ORP150), also induced tumor-specific 
immune responses (10, 18, 19). Importantly, since HSP–peptide 
complexes act as exogenous antigens, they must be cross-
presented after internalization by APCs to induce CTL responses. 
Therefore, focus was placed on elucidation of mechanisms 
including the pathway for cross-presentation as described later 
and identification of HSP-specific receptors.

Role of HSPs and Their Receptors in 
Activation of innate immunity
Binder et  al. first identified LDL receptor-related protein 1 
(LRP1), also known as CD91, as a receptor responsible for 
cross-presentation of Gp96 expressed on APCs (20). Further 
examination revealed that CD91 was the common receptor for 
extracellular HSPs, including Gp96, Hsp70, Hsp90, and calreti-
culin (21). Some other receptors for HSP were subsequently 
identified. In summary, HSP receptors are divided into two 
groups: TLRs and SRs (1). TLR2 and TLR4 have been shown to 
function as receptors for Hsp60, Hsp70, and Gp96, leading to 
NF-κB activation. On the other hand, it has been demonstrated 
that Hsp70 can interact with at least four SRs: LRP1/CD91 (20), 
lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) 
(22), SR expressed by endothelial cells-1 (SREC-1) (23), faciclin, 
EGF-like, laminin-type EGF-like and link domain-containing 
SR-1 (FEEL-1) (23). Hsp70 can be bound at high affinity by these 
receptors and internalized, resulting in cross-presentation of the 

chaperoned antigen. Both Hsp90 and Hsp60 can also bind to 
LOX-1. Gp96, Hsp90, and calreticulin show significant binding 
affinity to SREC-1 and are internalized by these receptors (24).

Role of HSPs in Activation of innate 
immunity
Matzinger proposed that the host releases endogenous signals 
(danger signals) that are derived from stressed or damaged cells, 
leading to the stimulation of immunity (the so-called danger 
theory) (25). Rock’s group expanded this research area (26). 
As danger signals, danger-associated molecule patterns (DAMPs), 
such as uric acid (27, 28) and pathogen-associated molecular 
 patterns (PAMPs), such as LPS (26), have been identified.

During the course of identification of HSP receptors, in addi-
tion to their role in adaptive immunity, it has been reported that 
extracellular HSPs act as potent activators of innate immunity, 
indicating HSPs act as danger signals. Hsp60, Hsp70, Hsp90, 
and Gp96 have been demonstrated to stimulate TLR4 to pro-
duce inflammatory cytokines, including TNF-α and IL-12 (29). 
As described previously, many HSPs bind to TLR4 and stimulate 
production of TNF-α, IL-1β, and IL-6 via the NF-κB pathway.

immunogenicity of Secreted HSP
How do intracellular HSPs act as extracellular proteins? Various 
mechanisms have been proposed for the release of HSPs into 
extracellular milieu, including passive release such as that by 
cell necrosis caused by exposure to hypoxia, severe trauma and 
lytic virus infection, and active release mechanisms, Asea et al. 
demonstrated that IFN-γ and IL-10 induce the active release of 
constitutively expressed Hsc73 as well as Hsp72 from tumors (30). 
Moreover, Asea et al. showed that Hsp72 is also secreted in the 
form of exoxomes (31, 32). Mambula et al. showed that a prostatic 
cancer cell line secreted Hsp72 via an endolysosomal pathway 
(33). It would be interesting to know whether these secreted HSPs 
show antitumor immunogenicity.

Taking advantage of the ability of an HSP to target a chaperoned 
antigen peptide to APCs and elicit cross-presentation, immu-
notherapy using secretable forms of HSP has been developed. 
Yamazaki et al. demonstrated that Gp96 secreted from tumor cells 
carries an antigenic peptide and induces peptide-specific CTL 
responses (34). We also showed that tumor-derived secretable BiP 
elicits antigen-specific tumor immunity (35). This secreted BiP is 
taken up by DCs and a BiP-chaperoned antigenic peptide is cross-
presented in association with MHC class I molecules, leading to 
CTL responses. Thus, this strategy allows tumor cells to produce 
their own cellular vaccine. Moreover, this strategy may be supe-
rior to a peptide vaccine strategy because single peptide-based 
cancer vaccines have a disadvantage. Namely, vaccination with 
a single peptide induces a certain HLA-restricted CTL response, 
thereby allowing tumor cells to escape from CTL recognition. 
By contrast, since a broad-spectrum antigenic peptide repertoire 
is associated with HSPs, induction of CTLs against multiple 
antigens is expected. Furthermore, a secreted HSP-based cancer 
vaccine is applicable for all patients, regardless of HLA restric-
tion. Thus, gene modification of HSPs for secretion may provide 
a unique therapeutic approach for cancer immunotherapy.
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FiGURe 1 | extracellular Hsp90/ORP150 targets chaperoned 
molecules into static early endosome. Hsp90/ORP150–ligand complexes 
are preferentially targeted and retained in static early endosome (Rab5+ and 
EEA1+) but not in dynamic early endosome (Rab5+ and EEA1−).
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HSPs NAviGATe THe ASSOCiATeD 
ANTiGeN iNTO STATiC eARLY 
eNDOSOMeS iN ANTiGeN-PReSeNTiNG 
CeLLS FOR CROSS-PReSeNTATiON

As described above, immunization with purified tumor-derived 
HSPs or HSPs complexed with an antigen peptide/protein in vitro 
elicits tumor- or antigen-specific CD8+ T cell responses (4–6, 17, 
35, 36). Importantly, Hsp70- and Gp96-antigenic peptide com-
plexes facilitate antigen presentation in association with MHC 
class I molecules through a cross-presentation pathway (37–39). 
Cross-presentation is a prerequisite antigen-presentation path-
way for the induction of CTL responses against viral infection 
and tumors. However, the precise mechanism for introduction of 
an exogenous antigen into a cross-presentation pathway remains 
unclear. Exogenous antigens can be processed through at least 
two distinct pathways (10, 11): one is a transporter-associated 
antigen-presenting (TAP)-dependent pathway, which is a classical 
MHC class I loading pathway, and the other is post-Golgi loading 
of MHC class I in endocytic compartments (endosome-recycling 
pathway). Cytosolic Hsp90 has been shown to translocate extra-
cellular antigens from endosome to cytosol for TAP-dependent 
cross-presentation (40). In the latter pathway, internalized 
exogenous antigens are processed by endosomal peptidases, such 
as a cathepsin S, and thereafter are loaded in endocytic compart-
ments onto MHC class I molecules that are recycled from plasma 
membranes (8, 41, 42).

Recently, Calderwood’s group and we showed that Hsp90 also 
acted as an excellent navigator for chaperoned antigens to enter 
the cross-presentation pathway in a murine system (9, 11, 43). 
Furthermore, we showed that Hsp90–peptide complex-mediated 
and Hsp70 family member ORP150–peptide complex-mediated 
cross-presentation was independent of TAP and was sensitive 
to membrane recycling inhibitor primaquine, indicating that 
sorting of peptides onto MHC class I occurs via an endosome-
recycling pathway (10). We further demonstrated that the 
Hsp90–cancer antigen peptide complex was efficiently cross-
presented by human monocyte-derived dendritic cells (Mo-DCs) 
and stimulated peptide-specific CTLs (12). More importantly, we 
showed that translocation of Hsp90–Ag complex into the “static” 
early endosome after endocytosis was crucial for efficient cross-
presentation. Lakadamyali et  al. (44) demonstrated that early 
endosomes are comprised of two distinct populations: one is a 
population of dynamic early endosome that are highly mobile on 
microtubules and mature rapidly toward the late endosome, and 
the other is a population of static early endosomes that mature 
much more slowly. Cargos destined for degradation, including 
LDL, EGF, and influenza virus, are internalized and targeted to 
Rab5+, EEA1− dynamic early endosomes, followed by trafficking to 
Rab7+-late endosomes. By contrast, the recycling ligand transfer-
rin is delivered to Rab5+, EEA1+-static early endosomes, followed 
by translocation to Rab11+-recycling endosomes. Burgdorf et al. 
clearly showed that a mannose receptor translocated OVA specifi-
cally into an EEA1+, Rab5+-static early endosomal compartment 
for subsequent cross-presentation (45). By contrast, pinocytosis 
conveyed OVA to lysosomes for MHC class II presentation. 

In addition, OVA endocytosed by a SR did not colocalize with 
EEA1 but colocalized with LAMP-1 in lysosomes, resulting in a 
presentation in the context of MHC class II molecules. We showed 
that the Hsp90/ORP150–peptide complex is targeted into Rab5+, 
EEA1+-early endosomes after internalization by human Mo-DCs, 
suggesting that preferential delivery to the “static” endosome 
is required for cross-presentation of Hsp90/ORP150–peptide 
complexes (10, 12). By contrast, LDL protein was targeted to 
the EEA1−, Rab5+, and LAMP-1+-dynamic early endosome–late 
endosome/lysosome pathway, leading to degradation. These 
findings suggested that Hsp90/ORP150 navigated the chaperoned 
antigen peptide into the static early endosome-recycling pathway, 
preventing extensive degradation of the peptide, followed by 
transfer of the peptide onto recycling MHC class I molecules 
within the recycling endosome. Taken together, our findings 
indicate that the role of Hsp90/ORP150 in cross-presentation is to 
shuttle the associated antigen into static early endosomes within 
DCs. Thus, Hsp90/ORP150 is a promising natural immunoac-
tivator for a cancer vaccine due to its excellent ability to target 
human DCs and to induce specific CTLs (Figure 1).

Hsp90-MeDiATeD SPATiOTeMPORAL 
ReGULATiON iN iNNATe iMMUNiTY

In contrast to the idea that HSP itself acts as an endogenous danger 
signal, we have shown that HSP empowers the chaperoned innate 
ligands to activate an innate immune response via spatiotemporal 
regulation (46). Unmethylated single-stranded DNA containing a 
cytosine–phosphate–guanine (CpG) motif is recognized by TLR9, 
which is expressed primarily by plasmacytoid DCs (pDCs) and 
B cells, resulting in a large amount of IFN-α production (47, 48). 
Two classes of synthetic CpG-DNA have been classified: CpG-A, 
which stimulates to produce IFN-α by pDCs, and CpG-B, which 
does not. Instead, CpG-B stimulates IL-6 and TNF-α production 
by pDCs. It has been shown that the manner of internalization 
and the retention time in endosomes of these CpG-DNAs were 
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FiGURe 2 | extracellular self-DNA stimulates pDC to produce iFN-α 
when chaperoned by Hsp90 via spatiotemporal regulation. Hsp90–self-
DNA complex found in SLE patient’s serum is targeted to pDCs and retained 
for longer periods within early static endosome via action of Hsp90, leading 
to production of IFN-α.
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different. CpG-A forms large multimeric aggregates with a 
diameter ~50 μm. By contrast, CpG-B is monomeric and does 
not form such high order structure. The retention of the CpG/
TLR9 complex in endosomes is the primary determinant of TLR9 
signaling. The multimeric CpG-A retains for longer periods 
of time in the early endosomes, whereas monomeric CpG-B 
rapidly translocates from early endosomes to late endosomes or 
lysosomes of pDCs (49, 50). The prolonged retention of CpG-A 
provides extended activation of TLR9 signaling, which leads to 
robust IFN-α production by pDCs.

Based on the finding that Hsp90 can target and retain chap-
eroned ligands within static early endosomes, we showed that 
human pDCs pulsed with an Hsp90–CpG-A DNA complex 
produce a larger amount of IFN-α than that in the case of 
CpG-A alone (46). Moreover, unlike human DCs, since murine 
conventional DCs (cDCs) express both TLR7 and TLR9 (49–51), 
the Hsp90-chaperoned CpG-A was retained within static early 
endosomes for longer periods (more than 2 h) in murine cDCs, 
thereby leading to sustained activation of murine cDCs and 
eliciting TLR9 signaling for IFN-α production. The observed 
IFN-α production was TLR9-dependent because cDCs isolated 
from TLR9 knockout mice did not produce IFN-α. By contrast, 
CpG-A alone was trafficked to late endosomes and lysosomes 
within cDCs. Interestingly, not only CpG-A but also CpG-B 
when chaperoned by Hsp90 could stimulate TLR9 signaling 
via targeting and longer retention of CpG-B within static early 
endosomes, resulting in the production of IFN-α. Thus, extracel-
lular Hsp90 has the extraordinary ability to directly associated 
CpGs into static early endosomes, leading to IFN-α production 
(52). Thus, the use of extracellular HSPs may augment the effect 
of a cancer vaccine in combination with CpG. More importantly, 
extracellular HSPs might play a pivotal role in the pathogenesis 
of nucleic acid-mediated autoimmune diseases, such as systemic 
lupus erythematosus (SLE).

eXTRACeLLULAR Hsp90–SeLF-DNA 
COMPLeX BReAKS iNNATe TOLeRANCe 
viA SPATiOTeMPORAL ReGULATiON

Viral/bacterial DNA sequences contain multiple CpG nucleotides 
that bind and activate TLR9. By contrast, pDCs normally do not 
respond to self-DNA because mammalian self-DNA contains 
fewer such motifs, which are most likely masked by methylation 
(47, 48, 53). Moreover, it has been suggested that self-DNA fails 
to access the TLR9-containing endolysosomal compartments 
and is thereby unable to stimulate TLR9 (54). One of the mecha-
nisms is that DNase easily and rapidly breaks down extracellular 
DNA, thereby preventing self-DNA localization into endocytic 
compartments. The importance of this mechanism for inhibiting 
autoimmune responses has been shown by the fact that mice 
deficient in DNase II develop SLE-like syndrome (55). Recent evi-
dence, however, suggests that self-DNA has the potential to trig-
ger TLR9 when self-DNA is engaged TLR9 appropriately (56, 57). 
Mammalian DNA in the form of chromatin-containing immune 
complexes could stimulate TLR9 in association with B-cell recep-
tors in an in vitro study (58, 59). Breakdown of innate tolerance to 

self-nucleic acids occurs when tissue injury or necrosis causes the 
release of some endogenous molecules, including antimicrobial 
peptides, such as LL37 (60) and nuclear protein HMGB-1, which 
help to promote stabilization and delivery of associated innate 
ligands, including nucleic acids, into early endosomes (61). These 
molecules have been shown to play a critical role in the initiation 
of autoimmune diseases through the production of IFN-α.

As described above, since Hsp90 can bind DNA (62), we 
examined whether Hsp90 targets self-DNA into static early 
endosomes, resulting in IFN-α production by human pDCs 
(46). Upon Hsp90-mediated enforced endosomal translocation 
as well as longer retention, human self-DNA could activate 
DCs via TLR9 to produce IFN-α. Thus, Hsp90 regulates 
TLR9-mediated responses through spatiotemporal regulation 
of Hsp90-chaperoned ligand complexes (Figure  2). Therefore, 
targeting TLR9 and modulating TLR9 signaling using Hs90 
inhibitors or siRNA to Hsp90 have emerged as important strate-
gies for the treatment of self-nucleic acid-related autoimmune 
diseases, including SLE. In the following section, we will discuss 
the emerging topic for the role of extracellular and intracellular 
Hsp90 in the pathogenesis of SLE.

ROLe OF Hsp90 iN SLe

extracellular Hsp90 Plays a Pivotal Role in 
the Pathological Condition of SLe
Systemic lupus erythematosus is a prototype of autoimmune dis-
ease characterized by the production of autoantibodies specific 
for self-nuclear antigens, such as dsDNA and RNA-containing 
antigens, including Sm and RNP (63, 64). Recently, it has been 
demonstrated that a prominent feature of SLE is increased 
expression of type I IFN-regulated genes in blood cells, which 
is often associated with increase of IFN-α in the serum (65–67). 
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FiGURe 3 | Hsp90 associates with toll-like receptors 7/9 and mediates self-nucleic acid recognition in plasmacytoid DCs. Hsp90 has a spatial 
interaction with TLR7/9 and chaperones them from the ER to the early static endosome.
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Moreover, it has been shown that elevated IFN-α in SLE patient’s 
serum accelerates the disease severity of SLE and is associated 
with disease activity (68–71).

Plasmacytoid DCs are major producers of IFN-α (72), and 
are decreased in number in the blood but are abundant in skin 
and lymph nodes (67). In SLE patients, immune complexes 
consisting of autoantibodies bound to self-DNA and RNA can 
stimulate production of IFN-α through TLR9 and TLR7 after 
uptake via Fc receptors (73). The pathogenic role of IFN-α in 
SLE is mediated partly by its ability to induce immune activa-
tion, including a positive feedback loop that induces plasma 
cell maturation and increases autoantibody production (74). 
The role of IFN-α in this disease has now been confirmed in 
lupus-prone mouse models (75, 76).

Previous studies have demonstrated the presence of autoan-
tibodies to Hsp90 (77, 78) and showed enhanced expression of 
Hsp90 in peripheral blood mononuclear cells of patients with 
active SLE (79, 80), suggesting a role of Hsp90 in SLE. In addi-
tion, Hsp90 has been shown to localize both in the cytoplasm 
and nucleus (81). Under stressful conditions, cytosolic Hsp90 
translocates to the nucleus (82). This suggests that Hsp90 
may bind self-DNA within the nucleus. When cells undergo 
necrosis, self-DNA associated with endogenous Hsp90 can be 
released into the extracellular milieu and might trigger IFN-α 
production by pDCs. In fact, we found that serum levels of 
Hsp90 were significantly increased in patients with active SLE 
compared with the levels in patients with inactive SLE or other 
autoimmune diseases (83). Serum Hsp90α levels increased with 
increase in SLEDAI score. Moreover, serum Hsp90α in patients 
with SLE was significantly decreased after treatment. Of interest, 
extracellular self-Hsp90 found in SLE sera could stimulate IFN-α 
production by pDCs. We also found that extracellular self-Hsp90 
associated with self-DNA or an anti-DNA antibody–self-DNA 
complex (Figure 2). This Hsp90–self-DNA complex or Hsp90–
anti-DNA autoantibody–self-DNA complex might be efficiently 

endocytosed and targeted to early endosomes via the action of 
Hsp90, leading to the robust IFN-α production observed in SLE 
sera (46). Moreover, immunodepletion of extracellular Hsp90 
from SLE serum decreased IFN-α production by pDCs (83), 
indicating that depletion of Hsp90 might induce remission and 
prevent end-organ damage. Thus, control of deregulated pDC 
activation and IFN-α production provides an alternative treat-
ment strategy for SLE.

Collectively, extracellular Hsp90 plays a crucial role in the 
disease activity of SLE and that Hsp90 inhibitors have promise 
for the treatment of IFN-α-mediated autoimmune diseases 
including SLE.

Hsp90 Chaperones TLR7/9 to Sense  
Self-Nucleic Acids
The localization of TLR7/9 is unique, because they reside in the 
ER at the quiescent stage and traffic to endosomes only upon 
ligand recognition (60). The underlying mechanism for adequate 
transportation of these TLRs has been investigated. Recently, 
Unc93B1, a multitransmembrane ER-resident protein, has been 
shown to associate with and deliver TLR7/9 from the ER to 
endosomes, where TLR7/9 recognize their ligands (84). In addi-
tion, gp96, an ER-resident HSP, has been shown to be a master 
immune chaperone for both cell surface and intracellular TLRs, 
including TLR1, 2, 4, 5, 7, and 9 (85). Furthermore, ER luminal 
protein PRAT4A (also known as CNPY3) also translocates TLR1, 
2, 4, 5, 7, and 9 to either cell surfaces or endolysosomes (86). 
Recently, it has been shown that gp96 cooperates with PRAT4A 
for the trafficking of theses TLRs (87).

We showed that endogenous Hsp90 also had a crucial role on 
the production of IFN-α in response to CpG-A by human pDCs 
using the Hsp90 inhibitor 17-AAG (83). The 17-AAG treat-
ment dramatically inhibited the production of IFN-α. Further 
studies revealed that Hsp90 interacted with TLR7/9 and, more 
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importantly, that Hsp90 chaperoned TLR7/9 from the ER to 
the early endosome (Figure 3). Inhibition of Hsp90 by 17-AAG 
resulted in disruption of the interaction of Hsp90 with TLR7/9, 
leading to inhibition of IRF7 phosphorylation and nuclear locali-
zation, which impaired the production of IFN-α. Thus, Hsp90 
is a cytosolic chaperone for TLR7 and TLR9 and is essential for 
TLR7/9-mediated innate immune responses (83).

Possible Therapeutic Use of an Hs90 
inhibitor in SLe
The involvement of IFN-α in the pathogenesis of SLE indicates 
the possibility of therapeutically targeting either IFN-α or the 
mechanisms leading to IFN-α production. We examined the effect 
of Hsp90 inhibitor in SLE-prone MRL/lpr mice (83). Treatment 
with the Hsp90 inhibitor 17-DMAG significantly ameliorated 
disease activity as well as histopathological findings in diseased 
mice. The dramatic decrease in severity of SLE seemed to be due 
to simultaneous blocking of TLR7 and TLR9 signaling by the 
Hsp90 inhibitor. Shimp et al. also showed that administration of 
17-DMAG ameliorated SLE symptoms (88). Interestingly, simi-
lar to patients with SLE, serum Hsp90 in SLE-developed mice 
was clearly decreased in the 17-DMAG-treated group compared 
with that in the untreated group. Thus, our results indicate that 
both intracellular Hsp90 and extracellular Hsp90 play a crucial 
role in the pathogenesis of SLE and that Hsp90 inhibitors have 
promise for the treatment of IFN-α-mediated autoimmune 
diseases including SLE.

FUTURe PROSPeCTS OF HSPs iN 
iMMUNOLOGY

Our understanding of the mechanisms by which extracellular 
HSPs play pivotal roles in the regulation of innate immunity 
and adaptive immunity has been progressing at a very fast pace. 
We here focus on the extraordinary ability of Hsp90/ORP150 
to target chaperoned molecules into static early endosomes 
after being taken up by DCs. Several receptors specific for HSPs 
expressed on DCs have been identified (21, 43). However, it has 
been unclear whether these receptors contribute to the sorting of 
HSP-chaperoned molecules into static endosomes. Moreover, it 
should be clarified whether HSPs other than Hsp90/ORP150 act 
in a fashion similar to Hsp90/ORP150. By clarifying these issues, 
HSPs will open innovative therapeutic opportunities in cancer 
and autoimmune diseases.
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