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Background: To extract more information, the properties of infectious disease data, 
including hidden relationships, could be considered. Here, blood leukocyte data were 
explored to elucidate whether hidden information, if uncovered, could forecast mortality.

Methods: Three sets of individuals (n = 132) were investigated, from whom blood leuko-
cyte profiles and microbial tests were conducted (i) cross-sectional analyses performed 
at admission (before bacteriological tests were completed) from two groups of hospital 
patients, randomly selected at different time periods, who met septic criteria [confirmed 
infection and at least three systemic inflammatory response syndrome (SIRS) criteria] but 
lacked chronic conditions (study I, n = 36; and study II, n = 69); (ii) a similar group, tested 
over 3 days (n = 7); and (iii) non-infected, SIRS-negative individuals, tested once (n = 20). 
The data were analyzed by (i) a method that creates complex data combinations, which, 
based on graphic patterns, partitions the data into subsets and (ii) an approach that 
does not partition the data. Admission data from SIRS+/infection+ patients were related 
to 30-day, in-hospital mortality.

Results: The non-partitioning approach was not informative: in both study I and study 
II, the leukocyte data intervals of non-survivors and survivors overlapped. In contrast, 
the combinatorial method distinguished two subsets that, later, showed twofold 
(or larger) differences in mortality. While the two subsets did not differ in gender, age, 
microbial species, or antimicrobial resistance, they revealed different immune profiles. 
Non-infected, SIRS-negative individuals did not express the high-mortality profile. 
Longitudinal data from septic patients displayed the pattern associated with the  highest 
mortality within the first 24  h post-admission. Suggesting inflammation coexisted 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00217&domain=pdf&date_stamp=2016-06-10
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00217
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:alrivas@unm.edu
http://dx.doi.org/10.3389/fimmu.2016.00217
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00217/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00217/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00217/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00217/abstract
http://loop.frontiersin.org/people/42742/overview
http://loop.frontiersin.org/people/202640/overview
http://loop.frontiersin.org/people/341461/overview
http://loop.frontiersin.org/people/85569/overview
http://loop.frontiersin.org/people/351512/overview
http://loop.frontiersin.org/people/109565/overview
http://loop.frontiersin.org/people/55834/overview
http://loop.frontiersin.org/people/351058/overview
http://loop.frontiersin.org/people/40199/overview
http://loop.frontiersin.org/people/265207/overview


2

Chatzipanagiotou et al. Complexity of Immunomicrobial Interactions

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 217

INtRodUCtIoN

Awareness on the properties of immunological data may improve 
the study of infectious diseases. Here, infectious disease data-
related properties are reviewed, and their desirable and undesir-
able consequences are considered in the process of developing a 
method meant to explore host–microbial interactions, which is 
subsequently pilot-tested.

Infectious disease data may exhibit at least five properties (i) 
circularity, (ii) ambiguity, (iii) hidden relationships, (iv) dynam-
ics, and (v) complexity. Such features are associated with or may 
be influenced by compositional, interdependent, and non-linear 
relationships (1–15).

When antimicrobial immunological data are collected over 
time and analyzed in three-dimensional (3D) space, circularity 
is observed (1). Because circular data have no beginning and no 
end, classic statistics do not apply to such data (2–4).

Infectious disease data can be ambiguous: numerically 
similar data points may express different biological conditions. For 
instance, when lymphocyte (L), monocyte (M), or neutrophil (N) 
counts are analyzed, the same count can be generated by different 
percents (and vice versa), e.g., a count = 100 cells can consist of 
60% N, 20% M, and 20% L (a healthy person), or 90% N, 5% M, 
and 5% L (a person with an inflammatory disorder).

Ambiguity may also be the result of temporal changes (dynam-
ics) and/or hidden relationships (5). The analysis of complexity 
may uncover information usually unobserved (6–8).

Complexity involves four features (i) emergence, (ii) irreduc-
ibility, (iii) unpredictability, and (iv) autonomy (9–14). Emergence 
(or novelty) refers to patterns only detected when a complex 
(system-level) data structure is assembled. “Emergent” patterns 
may be alternative expressions of hidden relationships (5). Due to 
irreducibility and unpredictability, emergence cannot be reduced 
to or explained by any one variable, i.e., no “simple” and/or iso-
lated variable can discriminate. Autonomy is associated with non-
linearity: because causes and effects are not coupled, emergence 
(the effect) is numerically autonomous from the cause(s) (14).

Leukocyte data also exhibit compositional features. 
“Composition” is the term used since 1986 to describe systems 
characterized by three or more interacting classes –such as 
the three predominating cell types of the immune system 

(L,  M,  and  N). Compositional data are not well described by 
counts (15). While percents and ratios have been proposed (16), 
they are not appropriate to analyze leukocyte data because the 
same ratio can be generated by different percents (and vice versa); 
e.g., an L/M ratio = 2 is generated both when L = 8%, M = 4%, 
and N  =  88% (acute or recent inflammation) and also when 
L = 28%, M = 14%, and N = 58% (no inflammation).

To uncover hidden relationships –that is, to prevent ambiguity 
and detect “emergence” –the literature predicts that discrimina-
tion increases when the levels of complexity increase (17, 18). To 
increase and detect complexity, data combinations may be con-
sidered. Because the immune system is inherently combinatorial, 
approaches that measure combinations (interactions that involve 
two or more elements) have been proposed since 2000 (19, 20). 
Because lymphocytes and monocytes interact, at least, in antigen 
recognition processes (21, 22), they could be measured as interac-
tions, e.g., using the L–M (or M–L) ratio. Because, over time, the 
same element can perform different functions –e.g., monocytes 
both promote and destroy neutrophils (23)–, dynamics should 
also be measured.

In addition, dichotomization should be avoided when interac-
tions are assessed. The “cost of dichotomization” is the phrase used, 
since 1984, to describe the consequences of a numerical cutoff 
imposed on continuous data (e.g., leukocyte counts or percents). 
When a discontinuous (discrete) label is assigned to observations 
located above/below the cutoff (e.g., “infected”/“non-infected”), 
a substantial number of false (-positive and -negative) results will 
occur (24).

Therefore, some practices originated in non-biological fields 
(where biological complexity is not observed but data inde-
pendence and linearity may be found) are not justified to study 
infectious disease data, which include non-linearly distributed 
data from interdependent leukocytes that, through interactions, 
perform different functions at different times (25–27).

Because linear classifiers, logistic regressions, as well as deci-
sion tree-based methods dichotomize, it is not surprising that 
such approaches are poorly predictive: when such approaches 
are analyzed in terms of “area under the curve” (AUC), they 
show values <75% (28, 29). Dichotomization-, AUC-based 
evaluations also share an assumption rarely observed in infec-
tions: their predictions are only valid when disease prevalence 

with immunosuppression, one high-mortality sub-subset displayed high neutrophil/
lymphocyte ratio values and low lymphocyte percents. A second high-mortality subset 
showed monocyte-mediated deficiencies. Numerous within- and between-subset 
comparisons revealed statistically significantly different immune profiles.

Conclusion: While the analysis of non-partitioned data can result in information loss, 
complex (combinatorial) data structures can uncover hidden patterns, which guide 
data partitioning into subsets that differ in mortality rates and immune profiles. Such 
information can facilitate diagnostics, monitoring of disease dynamics, and evaluation of 
subset-specific, patient-specific therapies.
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is 50% (30). Because leukocyte–microbial data interactions can 
include many levels of complexity and/or reveal data ambiguity, 
only methods that address such problems are desirable (31, 32). 
However, methods that depend on population metrics (those 
that utilize confidence intervals) cannot be used in personalized 
medicine –where patients may differ from the “average patient” 
(33, 34).

In contrast, approaches that do not assume the whole can be 
reduced to or predicted from any part (non-reductionist meth-
ods) may be adequate to explore infections, especially if they 
implement data partitioning and foster personalized practices. 
Such methods could unveil the information potentially embed-
ded in infectious disease-related data (6, 19, 20, 35).

Here, a method that generates leukocyte data combinations 
(interactions) and investigates several levels of complexity was 
evaluated in infections. Two questions were asked (i) can blood 
leukocyte data possess hidden information? and (ii) if usually 
unobserved patterns are elicited, can complex data structures, 
derived from blood cells, forecast mortality?

MAteRIALs ANd Methods

Individuals
Two random samples of infected patients admitted to Greek 
hospitals in 2014, at different time frames, were analyzed. They 
had no history of chronic diseases but met at least three systemic 
inflammatory response syndrome (SIRS) criteria (36): body 
temperature >38°C, heart rate >90  beats/minute, tachypnea 
or hyperventilation (>20 breaths/minute or PACO2 < 32 mm Hg 
at sea level), and white blood cell count ≥12,000 or ≤4000/μl. 
Such criteria characterize sepsis (36). Blood samples were taken 
at admission from 36 (study I) and 69 (study II) patients aged 
31–87, and 30-day, in-hospital mortality was determined. In 
addition, 7 individuals meeting the same criteria were tested up 
to three times, daily, from the time of their admission; and 20 
non-infected, SIRS-negative individuals were tested once. This 
study  –conceived after patients died or were discharged–  was 
approved by the Scientific Committee of the Thriasio Hospital, 
Magoula, Greece (protocol 57/16-02-2015) and the University 
of New Mexico, United States (protocol 13-463-T-HSC). Patient 
records were de-identified prior to analysis.

Laboratory Methods
Human white blood cell counts and percentages, C-reactive 
protein (CRP), and conventional blood culture followed by 
susceptibility testing of the isolated microorganisms were 
performed. General blood examination was conducted with 
an automated hematology analyzer (Coulter LH 780 Analyzer, 
Beckman Coulter International SA, Nyon, Switzerland). Serum 
CPR was measured with an automated system (BN ProSpec 
System, Siemens AG, Erlangen, Germany). Blood cultures were 
performed with the automated Bactec 9249 instrument (Becton 
Dickinson, NJ, USA). The pathogens isolated from blood were 
identified and tested for their antimicrobial susceptibility with 
the automated microbiology system Phoenix 100 (Becton 
Dickinson, NJ, USA).

Leukocyte data structures of several 
Complexity Levels
A three-step method partitioned infectious disease data into 
subsets. It consisted of (i) expansion (a step that augments the 
number of data structures available for analysis, so that hidden 
patterns, if present, may be detected), (ii) pattern recognition [a 
step that removes non-informative structures but keeps those 
that display distinct patterns (e.g., data inflections) and, based on 
such patterns, partitions the data into subsets], and (iii) statistical 
analysis of immune profiles (a step that analyzes leukocyte data, 
within- and between-subsets).

To implement the first step, dimensionless indicators 
(DIs) were utilized (5, 37–39). The first step was performed 
with a proprietary algorithm that creates DIs (5, 37). DIs are 
the result of any combination of counts, percentages, ratios, 
or products derived from the primary variables, i.e., data on 
lymphocytes (L), macrophages/monocytes (M), and/or neu-
trophils (N). For instance, based on leukocyte percentages, a 
single number can summarize numerous relationships, e.g., 
those resulting from calculating [(M/L × N/M)/(N/L × L/M)] 
over [(M + L/N) × (L + N/M)/(N + M)/L × (M/N)]. Because 
the resulting number includes all cell types but is not limited 
to any known biological variable or dimension, the number is 
dimensionless. While each DI received an identifier (e.g., AAA), 
DIs had no biological definition.

Dimensionless indicators were used to build and measure 
many levels of complexity. For instance, in the DI described 
above, one level of complexity (level I) is measured by each ratio 
of the first element or “numerator” (M/L, N/M, N/L, and L/M). 
Two more interactions (of level II complexity) are captured by 
each product (M/L × N/M, N/L × L/M). Complexity level III is 
explored by the composite ratio of the numerator, which includes 
two products [(M/L × N/M)/(N/L × L/M)]. Because the second 
element (“denominator”) has the same structure, the number 
of interactions doubles. An additional interaction (complexity 
level IV) is generated when the numerator and the denominator 
are simultaneously analyzed. When three DIs are assessed in 3D 
space, the number of interactions increases three times and, in 
addition, one more interaction (level V complexity) is produced 
by the overall 3D relationship. Therefore, in this example, each 
3D plot can measure at least (4 × 2 + 1 × 2 + 1 × 3 + 1) 58 inter-
actions, which cover five levels of complexity. However, because 
some elements include more than one cell type (e.g., M  +  L), 
the actual number of interactions and levels of complexity could 
be higher.

After data subsets were identified in the second step, DIs were 
not used anymore. Instead, in the third step, input leukocyte 
data were analyzed statistically. Statistical analyses were also 
conducted in the second step: when the exact point where 3D 
inflections occurred was unclear, an open-ended series of statisti-
cal tests was conducted, both before and after specific data points 
were assigned to different subsets. This process identified subsets 
that revealed the narrowest interval and were orthogonal to one 
another, detecting data subsets likely to differ at statistically sig-
nificant levels when, later, leukocyte profiles were investigated. 
Together, this design (i) did not depend on numerical cutoffs 
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FIGURe 1 | Non-partitioning-based (non-combinatorial) analysis of leukocyte and biomarker data. The outcomes reported within 30 days after SIRS+, 
infected individuals were admitted were not differentiated by input (blood leukocyte) data collected at admission. Both counts (A,B), percentages (C,d), and ratios 
of leukocyte cell types (e,F) as well as CRP concentrations (G,h) did not distinguish survivors from non-survivors: data overlapping was observed in both studies 
(blue boxes).
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(data partitioning was based on graphic patterns), (ii) did not 
focus on any one variable, but interactions, (iii) analyzed not one 
but several data structures, and (iv) conducted statistical tests 
after (not before) data subsets were distinguished.

When subsets differed statistically in immune profiles and 
mortality, internal validity was supported. When different 
populations showed similar patterns, external validity was 
likely.
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FIGURe 2 | elimination of non-informative patterns. The combinatorial and three-dimensional (3D) method was not always informative: many plots did not 
show distinct patterns (A,B), even when a single (one data point-wide) line of observations was detected (C,d).

FIGURe 3 | three-dimensional (combinatorial and partitioning-
oriented) analysis of dimensionless indicators derived from leukocyte 
data (structure I). The large number of combinations the alternative method 
can generate increased the likelihood of finding some informative plots. Both 
study I (A) and II (B) displayed a single (one data point-wide) line of 
observations, which consisted of two segments perpendicular to one 
another. Such graphic data structure improves detection because data points 
can only occur along the line.
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statistical Analysis
The subset corresponding to each data point was determined by 
linking the identification number of each data point to the spatial 
patterns observed in 3D plots. Because DIs were hypothetical 
and showed non-linear relationships, they were biologically 
uninterpretable and statistically intractable (14). However, after 
data partitioning revealed orthogonality, statistical tests were 
justified (40), and leukocyte data were interpretable. Analyses of 
medians (Mann–Whitney test) or proportions (Chi-square test), 
as well as 3D plots, were conducted or created with a commercial 
package (Minitab Inc., State College, PA, USA). Tables S1–S7 in 
Supplementary Material report the data and statistical test results. 
The footnotes of Tables S1 and S2 in Supplementary Material 
describe a procedure that enables readers to reproduce the main 
findings.

ResULts

The analysis of separate variables (or variables that did not 
measure highly complex interactions) failed to discriminate: 
when data from septic patients were analyzed, blood leukocyte 
counts, percents, or ratios did not distinguish survivors from 
non-survivors (Figures 1A–F). CRP data also overlapped across 
categories (Figures 1G,H).

When 3D plots were utilized, not all plots were informative 
(Figures  2A,B). Even plots that showed perpendicular data 
inflections did not predict, based on admission data, outcomes 
observed 30 days later (Figures 2A–D).

Yet, some complex, 3D data structures showed a single 
(one data point-wide) line of observations, which revealed two 
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FIGURe 4 | Mortality rates of perpendicular data segments. Both study 
I (A) and II (B) displayed mortality rates at least twice higher in the subset 
located on the right side of the plot than in the left subset (66.6% in both 
studies vs. 33.3 or 23.1%, in study I or II, respectively). Such differences 
approached or achieved statistical significance [P = 0.057 (study I) or 
P ≤ 0.01 (study II), Chi-square test]. When the same data structure was 
utilized to analyze 20 non-infected, SIRS-negative individuals, the high-
mortality subset was not observed (C), even though the scale of the critical 
axis (BAU) was 1000 times smaller than the scale used in (A,B); i.e., the 
scale facilitated the detection of any pattern, if present.
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data segments perpendicular to one another (Figures  3A,B). 
Therefore, at admission (before microbiological test results 
were completed), graphic patterns identified two data subsets. 
When, 2  days later, microbiological test results were avail-
able, neither bacterial species nor antibiotic susceptibility 
patterns explained the observed subsets (Figures S1 and S2 in 
Supplementary Material). In contrast, 30-day mortality was 
at least twice higher in the subset located at the right side of 
the plot (Figures  4A,B). While SIRS-negative, non-infected 
subjects differed in several aspects (Figure S3 in Supplementary 
Material), data from such individuals did not show the high-
mortality pattern (Figure 4C).

Neither age nor gender explained mortality (Figures  5A,B; 
Figure S4 in Supplementary Material). While the median age 
was higher in the high-mortality subset, the distribution of 
age values overlapped between the survivor and non-survivor 
groups, preventing an age-based differentiation of the two subsets 
(Figures 5C,D).

Different shapes –that also revealed a perpendicular data inflec-
tion –were seen when both SIRS+, infected groups were assessed 
with two partially different data structures (Figures  6A,B). 
Regardless of the data structure used, mortality was higher in 
the subset located at the right side of the plot [P < 0.001, Chi-
square test (n =  105), Table 1]. The high-mortality subset was 
not observed when non-infected, SIRS-negative individuals were 
analyzed (Figure 6C).

Some plots detected three subsets in each SIRS+/infection+ 
study, which differed up to three times in fatalities (Figures 7A,B). 
Longitudinal analysis of seven SIRS+/infected patients also 
showed perpendicular data subsets, which, within 24 h, helped 
differentiate patients (Figures  7C,D). Three data subsets were 
also displayed by a third set of indicators (Figures 8A–C).

Based on the three (“left,” “vertical,” and “right”) subsets 
identified in Figures  7A,B, subset-specific immune response 
profiles were analyzed (Figures 9A,B and 10A,B). Within-subset 
differences were observed in the “vertical” and “right” subsets. 
For instance, “right” survivors and non-survivors displayed 
non-overlapping lymphocyte and neutrophil distributions 
(Figures  9A,B). Between-subset differences were found in the 
“left” and “right” data groups, which displayed similar mortality 
rates (ranging between 22.8 and 36%, Figures 7A,B), but dissimi-
lar (and non-overlapping) neutrophil and monocyte percentages 
(Figures 9A,B).

Mortality was not always predicted by numerical data. For 
instance, low lymphocyte percentages were found both among 
survivors (“right” subset) and among non-survivors (“vertical” 
subset, Figures  9A,B). Discrimination was not data structure-
specific: similar findings were observed when a different data 
structure was investigated (Figures 10A,B).

Additional within- and between-subset differences were noticed 
when ratios that included data from two or three cell types were 
evaluated. For instance, “vertical” non-survivors exhibited the 
highest neutrophil/lymphocyte (N/L) values among all subsets. 
In contrast, “right” non-survivors displayed lower N/L, lower 
monocyte/neutrophil (M/N), and lower monocyte/lymphocyte 
(M/L) values than “right” survivors (Figures 11A,B).

Similar patterns were observed in the longitudinal study of 
septic patients. While no discrimination was achieved when 
either information on days or indicators that captured one 
level of interactions [M/L, neutrophil/mononuclear cell (N/
MC) ratios, Figures  12A–F] was assessed, the analysis of two-
level interactions [(M/L)/(N/MC)] showed non-overlapping 
data distributions (Figure  12F). Therefore, the profile shown 
by one “left” and two “right” patients –identified in Figures 7C 
and 8C –was at least partially characterized by either (i) a rather 
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FIGURe 5 | three-dimensional analysis of age data. The age of SIRS+, infected individuals did not explain the mortality rates described in Figure 4. Both study 
I (A) and II (B) included >65-year-old individuals in the left (low-mortality) subset and <50-year-old individuals in the right (high-mortality) subset. While the median 
age [large, blue circles (C,d)] was 7–15 years higher in the right subset, any age-based cutoff would result in a large number of errors because the age intervals of 
survivors and non-survivors overlapped (C,d).

7

Chatzipanagiotou et al. Complexity of Immunomicrobial Interactions

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 217

late inflammatory profile [low levels of neutrophils/mononuclear 
cells (low N/MC values), and/or high M/L values, in the “left” 
patient] or (ii) the opposite profile, revealed by two “right” 
patients.

While the data (reported in Tables S1–S4 in Supplementary 
Material) were not informative prior to data partitioning, after 
data partitioning, many within- and between-subset comparisons 
achieved statistical significance (Tables S4–S8 in Supplementary 
Material). Therefore, the hypothesis that hidden information may 
be embedded in blood cell data was supported.

dIsCUssIoN ANd CoNCLUsIoN

Infectious disease-related research, including associated syn-
dromes (such as sepsis), may benefit from methods that assess 
immunological complexity (41). Accordingly, a method meant to 
estimate complexity was developed and tested. Because it did not 
assume that the whole can be reduced to or predicted from any 
part, the combinatorial approach was a non-reductionist method. 
In contrast, the analysis shown in Figures  1A–H reflected a 
reductionist approach  –it assumed that the analysis of isolated 

parts could predict or separate outcomes (6, 19, 20). While the 
reductionist, non-partitioning approach failed to discriminate, 
the non-reductionist, combinatorial method identified and 
partitioned data subsets that differed in mortality.

While previous blood cell count-based studies have failed 
to predict mortality (29, 42), earlier studies had assumed that 
lymphocytes, neutrophils, or monocytes act independently and, 
accordingly, such cell types had been analyzed separately. In 
contrast, the combinatorial method assessed all the observations 
of all cell types, together.

Hidden data interactions were demonstrated and septic 
patients were grouped according to their immune profiles. In 
addition, several problematic properties of infectious disease data 
were prevented, including those associated with ambiguity and 
compositions. For example, discrimination was achieved without 
depending on the white blood cell count (one of the four SIRS 
criteria), which may be affected by the features of compositional 
data (15, 36).

While counts, percentages, and simple ratios were not 
informative per  se, when integrated into data structures that 
captured several levels of complexity, new or more information 
was retrieved. Because some complex data structures revealed 
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FIGURe 6 | Assessment of redundancy (structure II). When all 105 
SIRS+, infection+ individuals were assessed, two (“left” and “right”) 
perpendicular subsets were observed, which differed in mortality rates: it was 
26.1% in the left subset and 54.2% in the right subset (P < 0.004, 
Chi-square test, table 1). For clarity, the X and Y axes are scaled down, and 
three data points are not plotted (A). To prevent errors and improve the 
chances of extracting more information from the same data, an additional 
data structure was investigated, which also showed two data subsets 
orthogonal to one another (B). In contrast, SIRS-negative, non-infected 
individuals did not present the high-mortality pattern, even though the scale 
of the Y axis (BAU) was 1000 times smaller than the scale used when SIRS+, 
infection+ individuals were tested (C).
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a single (one data point-wide) line of observation, personalized 
applications were fostered: when any pair of observations –col-
lected over time, from the same individual –are analyzed on a 
single line, they will exhibit a movement (temporal data direc-
tionality), indicating whether the later observation approaches 
the disease-negative or -positive pole of the data. Such structure 
prevents data ambiguity because a single line of data point elimi-
nates noise (data variability) from all dimensions, except along 
the line, while the information reported along the line facilitates 
(i) monitoring of disease progression (dynamics) and (ii) evalu-
ation of therapies (1, 43).

By detecting data subsets according to graphic patterns, infer-
ences were made without assumptions, and dichotomization was 
avoided (24). In agreement with reports that have indicated no 
single biomarker is likely to be diagnostic in personalized medi-
cine (44), analyses that included a single biomarker (CRP) were 
not informative (Figures 1G,H).

Inferences were based on visualizations that reflected both 
interactions and dynamics. Here, “interactions” were operation-
ally defined as patterns generated when three variables intersect 
in 3D space: when one variable increases or decreases in a larger 
magnitude than the remaining variables, a distinct pattern 
emerges, e.g., a data inflection, which can be used to separate 
data subsets (45). Such inflections or bifurcations can reveal a 
common feature of infections: dynamics. Because homeostatic 
(feedback and feedforward) processes also occur in infections, 
they can be used to provide new diagnostic and prognostic 
information (1, 46).

While some feedback phases may change rapidly and reveal 
non-linearity (46), the subsets they generate may be perpendicu-
lar to one another, as documented here. Thus, infection-related 
feedback processes may generate a biological equivalent of 
what, in mathematics, is created by a log-transformation: data, 
inherently non-linear, can be treated as linear and, consequently, 
after data subsets perpendicular to one another are observed, 
statistical analyses can be conducted. When similar data subsets 
are observed in different populations, the hypothesis of a random 
event is not defensible –instead, a well-conserved pattern is likely. 
In such a case, the “transformation” of non-linear immunological 
data into perpendicular data subsets is not the result of an equa-
tion but produced by a well-conserved biological process.

The combinatorial approach also provided explanatory infor-
mation, of immunological nature, which may support diagnostics 
and therapy selection (47). Clinicians working in sepsis need new 
diagnostics: current diagnostic criteria have shown very poor 
(less than 50%) sensitivity values (48, 49). Clinicians could benefit 
from earlier evaluations of diagnostic and therapeutic decisions. 
As shown here, the dynamics of seven septic patients differed over 
3 days: two patients revealed a “right” pattern as early as day 2 
and (at least) one patient displayed the “left” pattern by day 3 

tABLe 1 | Mortality rate per subset.

Population outcome Left subset Right subset Pearson 
Chi-square 

test

Both studies 
(n = 105)

Survivor 34 27
Non-survivor 12 32
Subtotal 46 59
Mortality (%) 26.1% (12/46) 54.2% (32/59) P < 0.004

Study I 
(n = 36)

Survivor 16 4
Non-survivor 8 8
Subtotal 24 12
Mortality (%) 33.3% (8/24) 66.6% (8/12) P = 0.057

Study II 
(n = 69)

Survivor 30 10
Non-survivor 9 20
Subtotal 39 30
Mortality (%) 23.1% (9/39) 66.6% (20/30) P < 0.001
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(Figures 7C and 8C). While other factors, not explored (such as 
the role of empirical antibiotic treatments), prevent to elucidate 
whether the two “right” patients experienced a better or worse 
disease progression and/or responsiveness to treatment than the 
remaining patients, Figure 12F demonstrates that the combinato-
rial approach can monitor disease dynamics earlier (1 day before 
in vitro tests are completed), based on in vivo, temporal data that 
assess not only immunological but also antibiotic–microbial 
relationships.

The future of therapy, in sepsis, has been indicated to depend 
on the identification of immune phases or profiles (50–52). Sepsis 
seems to be a systemic response to infections, which is associated 
with organ dysfunction (53). Supporting earlier reports, findings 
revealed dissimilar immune profiles among subsets that also dif-
fered in mortality rates (54).

“Vertical” non-survivors displayed an excessive inflammatory 
response as well as low lymphocyte percentages. When the 3D 

patterns exhibited by Figures 7A,B were considered, individuals 
classified within the “vertical” subset displayed higher N% and 
lower L% than those of the “left” subset (Figures 9A,B). “Vertical” 
non-survivors showed the highest neutrophil/lymphocyte (N/L) 
values of all subsets and also higher monocyte/lymphocyte (M/L) 
values than those of the “right” subset (Figures 11A,B), that is, 
the “vertical” non-survivor profile was consistent with enhanced 
lymphocyte apoptosis and delayed monocyte apoptosis; i.e., an 
immunopathology that may result in protracted inflammation 
and immunosuppression (55–61).

“Right” non-survivors –unlike the “vertical” ones –exhibited a 
profile that did not support the hypothesis of mortality induced 
by low lymphocyte values and excessive inflammation. Instead, 
“right” non-survivors displayed higher L% than “right” survivors 
(Figures 9A,B and 10A,B). “Right” non-survivors did not seem 
to prevent neutrophil recruitment: they showed higher N% 
than “left” non-survivors (Figures  9A,B and 10A,B). Because 

FIGURe 7 | study-specific, subset-specific assessment of mortality. When the second data structure was analyzed in each study, three spatial patterns 
were observed, both in study I (A) and II (B), which showed differences in mortality. When an additional group of seven septic (SIRS+, infection+) individuals 
was tested over time, three patients were distinguished at day 2 or 3, who displayed (i) a “right” pattern [observable at day 2, two patients (red oval)] or (ii) a “left” 
pattern [detected at day 3, one patient (purple square) (C)]. When time was not considered, spatial patterns identified three subsets, classified as “left,” 
“vertical,” and “right” (d).
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“right” non-survivors expressed lower (if not the lowest) M% 
than observed in all other subsets, a monocyte-related deficiency 
could be associated, in this subset, with mortality. Homeostatic 
failures associated with macrophage deficiencies include (i) the 
limited expression of macrophage-antigen 1 (Mac-1) and (ii) 
decreased expression of CD11b in dendritic cells (55, 62, 63). 
Such disruptions can alter trans-membrane permeability and 
complement fixation functions, without preventing neutrophil 
release. Furthermore, the “right” subset documented that low 
lymphocyte values do not characterize all septic cases (51): 
“right” survivors displayed significantly lower lymphocyte 
percentages than “left” survivors (Figures  9A,B and Table S7 
in Supplementary Material).

“Left” survivors and non-survivors displayed the highest mono-
nuclear cell/neutrophil (MC/N) values observed in this report, 

differing markedly from the remaining subsets (Figures 11A,B). 
Unlike other subsets (which revealed several within-subset 
 differences), “left” survivors and non-survivors did not show 
obvious differences.

The “left” pattern supported three inferences (i) the theory that 
sepsis may be composed of four stages (sepsis, severe sepsis, septic 
shock, and refractory septic shock) may be clinically factual, but 
not scientifically informative; (ii) the proposition that the type 
of infection determines the outcome of sepsis may not always 
occur; and (iii) mortality, in the “left” subset, was not explained 
by the interactions investigated here. Because high MC/N values 
are typical of late or recurrent inflammations  –and they were 
observed at admission, in the “left” subset –four-stage, clinical-
based classifications may miss a late or recurrent process (62).

The “left” profile did not support the hypothesis that the type 
of infection determines the outcome of sepsis (43). Instead, the 
opposite view may occur: the immune profile (considered in its 
broadest meaning, i.e., including homeostatic perspectives) may 
influence the speed and outcome of antimicrobial responses. In 

FIGURe 8 | study-specific, sub-specific assessment of mortality 
(structure III). At least three profiles were distinguished when a third data 
structure was explored (A,B). Mortality differed up to five times across 
subsets. Longitudinal data of septic patients displayed similar patterns, 
distinguishing at least three individuals [red oval, purple square (C)].

FIGURe 9 | Validation of subsets detected by structure II. The immune 
profiles of subsets detected in Figures 7A,B were investigated. Both study I 
(A) and study I (B) showed non-randomly distributed leukocyte profiles, both 
within- and between-subsets. For instance, in both populations, within-
subset differences were observed in the “right” subset, where the lymphocyte 
and neutrophil percentages did not overlap between survivors and 
non-survivors [blue horizontal lines (A,B)]. Between-subset differences were 
also observed, e.g., “left” subset survivors displayed higher L%, higher M%, 
and lower N% than survivors classified within the remaining subsets [red 
horizontal lines (A,B)]. Horizontal lines show some data subsets that did not 
overlap.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


11

Chatzipanagiotou et al. Complexity of Immunomicrobial Interactions

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 217

FIGURe 10 | Validation of subsets detected by structure III. The 
immune profiles of subsets detected in Figures 8A,B were investigated. 
Discrimination was repeatable, even when a different data structure was 
utilized. While patterns differed slightly [study I (n = 36) showed four subsets, 
and one pattern (“vertical”) was only composed of one outcome (non-
survivors) (A)], study II (n = 69) detected three subsets, with two outcomes 
per subset (B). The “left” and “right” subsets of both studies reproduced the 
information observed in Figure 8: while the “left” subset did not show 
within-subset differences, the lymphocyte and neutrophil percentage intervals 
of the “right” subset did not overlap. The “vertical” subset of study II seemed 
to correspond to both the “vertical” and “lower left” subsets of study I. 
Horizontal lines show some data subsets that did not overlap.

FIGURe 11 | Assessment of immune functions. Based on the subsets 
detected in Figures 7A,B, interactions involving two or three cell types were 
investigated. Both study I (A) and study II (B) conveyed similar information. 
Both survivors and non-survivors of the “left” subset displayed the lowest 
neutrophil/lymphocyte (N/L) and highest mononuclear cell/neutrophil (MC/N) 
values. The “right” subset showed the lowest monocyte/neutrophil (M/N) and 
monocyte/lympohocyte (M/L) values, as well as within-subset differences 
were not observed in the remaining subsets: “right” non-survivors revealed 
lower N/L, M/N, and M/L and higher MC/N values than “right” survivors. The 
“vertical” non-survivors showed the highest N/L and the lowest MC/N values 
of all non-survivors. Together with the information shown in Figures 9A,B, 
these patterns support three hypotheses (i) the “right” subset experienced a 
monocyte-mediated immunosuppression; (ii) the “vertical” subset expressed 
excessive inflammation, together with low lymphocyte percentages; and (iii) 
mortality was not due, in the “left” subset, to any of the three disorders 
observed in the other subsets.

support of the immune-mediated disease hypothesis, Candida 
sp. and Pseudomonas sp. (opportunistic microbes) infected two 
individuals classified within the “left” profile (Tables S1 and S2 
in Supplementary Material). Because sepsis can occur without 
apoptosis or necrosis, disorders not typically viewed as inflam-
matory (e.g., mitochondrial dysfunctions that affect intracellular 
junctions) cannot be ruled out in the “left” profile, even in the 
absence of cellular deficits or altered responses (64).

Together, findings supported the view that at least two types 
of immunosuppression may be found in sepsis: coexisting and 
not coexisting with excessive inflammation. Two types of immu-
nosuppression have been previously reported in sepsis (65).

Available at admission, this information could support therapy 
selection. While cytokines that boost the immune response 
(e.g., granulocyte–macrophage colony-stimulating factor and 
interleukin-3) may be of interest when the “right subset” profile 
is observed (52, 66), they may be inadequate in “vertical” immu-
nosuppressions, which coexist with inflammation.

In sum, methods that assess immune complexity appeared 
to distinguish some sepsis-related sub-syndromes, in real time. 
Because diagnostic expediency was prioritized, the variables 
utilized did not cover all biological scales, e.g., cytokines were 
not investigated. Future studies could assess subcellular variables, 
as recently described (37).

Offering an alternative to the white blood cell count (a metric 
prone to ambiguity), complexity-oriented analyses detected 
and differentiated immunosuppressions. Such analyses can 
identify patients that differ in mortality risks and help conduct 
repeated evaluations of diagnosis and therapies. Because 
immunosuppression matters in infections and also in cancer 
and transplantation (67, 68), combinatorial analyses may have 
broad applications.
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Two major messages result from this study. The first message 
refers to Oslerian medicine, that is, to define disease based on 
clinicopathological correlations derived from organs that express 
most signs and symptoms  –even when disease does not start 
in such organs. The Oslerian paradigm confuses consequences 
with causes, resulting in late assessments that ignore patho-
genesis (69). When this paradigm is applied with problematic 
practices  –such as numerical cutoffs–  and/or assumes that a 
single biomarker, alone, may capture complex and dynamic 
interactions, information loss and errors may follow.

The second message is that even leukocyte counts, percents, 
or simple ratios can be informative when composite metrics 
are used to explore complexity. While clinical descriptions may 
not be adequate to monitor disease progression and/or select 

FIGURe 12 | Assessment of disease dynamics. The combinatorial approach also measured disease dynamics, expressed as temporal interactions that included 
antibiotic–microbial–immunological relationships. Temporal information (days after admission) was not informative when either one or two levels of interactions were 
measured [N/MC, M/L, and (M/L)/(N/MC) (A–C)]. One-level interactions also failed to discriminate when the spatial patterns shown by Figure 7d were considered 
(d,e). In contrast, non-overlapping data distributions were observed when both spatial profiles and two-level interactions were assessed, confirming the expectation 
that discrimination increases when two or more levels of complexity are investigated (F). Horizontal lines denote non-overlapping data distributions (F).

therapies, immunomicrobial complexity may provide explana-
tory information, earlier.
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