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Neutrophils are arguably the most important white blood cell for defense against bac-
terial and fungal infections. These leukocytes are produced in high numbers on a daily 
basis in humans and are recruited rapidly to injured/infected tissues. Phagocytosis and 
subsequent intraphagosomal killing and digestion of microbes have historically been the 
accepted means by which neutrophils carry out their role in innate host defense. Indeed, 
neutrophils contain and produce numerous cytotoxic molecules, including antimicrobial 
peptides, proteases, and reactive oxygen species, that are highly effective at killing the 
vast majority of ingested microbes. On the other hand, it is these characteristics – high 
numbers and toxicity – that endow neutrophils with the potential to injure and destroy 
host tissues. This potential is borne out by many inflammatory processes and diseases. 
Therefore, it is not surprising that host mechanisms exist to control virtually all steps in 
the neutrophil activation process and to prevent unintended neutrophil activation and/
or lysis during the resolution of inflammatory responses or during steady-state turnover. 
The notion that neutrophil extracellular traps (NETs) form by cytolysis as a standard host 
defense mechanism seems inconsistent with these aforementioned neutrophil “contain-
ment” processes. It is with this caveat in mind that we provide perspective on the role of 
NETs in human host defense and disease.
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PRODUCTION OF NEUTROPHILS

Neutrophils are an essential component of the human innate immune response to bacterial and 
fungal infections. These leukocytes are among the first to be recruited to sites of inflammation and/
or infection, and they are the most numerous white blood cell in humans. Under normal steady-
state conditions, neutrophils develop from mitotic precursor cells (myeloblasts, promyelocytes, and 
myelocytes) in bone marrow for several days (~7.5 days) and then mature for 6–7 days as post-mitotic 
cells (metamyelocytes, band cells, and ultimately mature neutrophils) (1). Approximately 60% of 
the total nucleated cells in normal human bone marrow are granulocytes or granulocyte precursors 
(1). Cartwright et al. estimated the total granulocyte pool in bone marrow to be 1.86 × 1010 cells/
kg body weight, of which 0.69 × 1010 cells/kg are mature neutrophils (2). A subsequent study by 
Dancey et  al., which used a different method to label bone marrow granulocytes, reported the 
total number of bone marrow neutrophils as 0.77  ×  1010  cells/kg body weight (3). With either 
method, it is clear that there is remarkable production of neutrophils in humans during steady-state 
conditions. Moreover, the production of granulocytes can be increased dramatically during severe 
infection – this process is known as emergency granulopoiesis (4).

The vast majority of granulocytes released from bone marrow into circulation are neutrophils 
(~95%), and these cells remain in circulation for a relatively short time (~12–18  h) (5). More 
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recently, Pillay et al reported that the human neutrophil life 
span in circulation is 5.4  days (6), although other interpreta-
tions of these data have been proposed (7, 8). Consistent with 
high production of neutrophils in bone marrow, neutrophils 
comprise ~60% of leukocytes in human blood. Athens and col-
leagues reported that the total blood granulocyte pool comprises 
circulating and marginal granulocytes, which collectively are 
estimated as 6.5 × 108 cells/kg body weight in total (3.2 × 108 
and 3.3 × 108 cells/kg body weight for circulating and marginal 
granulocyte pools, respectively) (5). Several early landmark 
studies reported blood neutrophil turnover rate in humans as 
0.87–1.63 × 109 cells/kg/day (2, 3, 9). Thus, the estimated granu-
locyte turnover rate in humans is enormous – on the order of 
0.5 – 1 × 1011 cells/day in a healthy adult (3, 5).

The continuous removal and replacement of neutrophils is 
critical for maintenance of immune system homeostasis and, 
importantly, the prevention of unintended damage to host tissues 
(10). Inasmuch as neutrophils contain and produce numerous 
cytotoxic molecules, which are highly effective at killing and 
degrading phagocytosed microbes, multiple (and redundant) 
mechanisms exist to prevent or limit host exposure to such 
molecules.

REGULATION OF NEUTROPHIL 
TURNOVER

Neutrophils traverse the vasculature in large numbers as an 
efficient means of readily disseminating to distal sites of host 
infection. Neutrophils are rapidly recruited to sites of infection 
by host and pathogen-derived molecules and have enormous 
pro-inflammatory capacity. The high rate of granulopoiesis 
frequently results in production of a superfluous number of 
neutrophils, and apoptosis is the predominant mechanism 
that regulates neutrophil turnover to maintain immune system 
homeostasis. In addition, neutrophils undergo apoptosis as a 
mechanism to limit pro-inflammatory capacity and to resolve 
infection. Neutrophil apoptosis is a highly regulated process 
mediated by several molecular mechanisms including intrinsic 
(intracellular) and extrinsic (extracellular) signaling pathways 
that lead to activation of caspase-3, and these pathways have 
been reviewed extensively (11–13). Constitutive (or spontane-
ous) neutrophil apoptosis is an example of the intrinsic pathway 
and governs removal of senescent cells, although the precise 
mechanism that triggers this process is incompletely defined. 
The intrinsic pathway is generally associated with cellular stress 
and mitochondrial damage and is mediated by members of the 
BCL-2 family of proteins. Extrinsic apoptosis is initiated by 
ligation of death receptors that bind FAS ligand, tumor necrosis 
factor (TNF)-α, or TNF-related apoptosis inducing ligand 
(TRAIL), and is largely at play within the context of complex 
inflammatory milieu.

Neutrophil apoptosis is a non-inflammatory process charac-
terized by membrane blebbing, cell shrinkage, loss of cytoplasmic 
granules, cytoplasmic vacuolation, and nuclear chromatin con-
densation. Apoptosis is accompanied by DNA fragmentation into 
nucleosome-length fragments, exposure of phosphatidylserine 
on outer leaflets of the plasma membrane, and neutrophil outer 

cell membrane integrity is maintained throughout the process 
(14). Moreover, spontaneous neutrophil apoptosis is associ-
ated with diminished capacity for chemotaxis, degranulation, 
reactive oxygen species (ROS) production, and phagocytosis 
(14). Importantly, apoptotic neutrophils are safely removed by 
macrophages through a process known as efferocytosis (15–17). 
Macrophage recognition of apoptotic neutrophils is facilitated by 
receptors for phosphatidylserine, αvβ3 integrin, and CD36 (18). 
Following recognition, macrophages phagocytose apoptotic 
neutrophils, and the process does not stimulate release of pro-
inflammatory mediators (19).

Neutrophil lifespan is highly variable and can be influenced 
by many external factors capable of either prolonging survival 
or inducing apoptosis. A diversity of pro-inflammatory media-
tors, such as granulocyte-macrophage colony-stimulating factor 
(GM-CSF), interferon (IFN)-γ, interleukin 1β, C5a, and LPS, 
are known to delay neutrophil apoptosis (20, 21). Enhanced 
neutrophil survival presumably increases neutrophil numbers 
during early stages of inflammation and promotes clearance of 
bacterial pathogens from infected tissue. The process of phago-
cytosis significantly accelerates the rate of apoptosis in human 
neutrophils (22–24), and the increase occurs irrespective of any 
delay in cell fate imparted by cytokines or bacteria-derived fac-
tors (25). Effete neutrophils containing dead or partially digested 
microbes are cleared from infection sites by efferocytosis. Given 
that neutrophil apoptosis is accelerated by phagocytosis and 
apoptotic cells are at increased risk for necrotic lysis and/or leak-
age of cytotoxic molecules, efficient macrophage cell clearance 
is critical to prevent excessive damage to host tissue. Thus, the 
ability of pathogens to alter neutrophil fate by either promoting 
rapid lysis to eliminate neutrophils or interfering with efferocy-
tosis is a plausible virulence strategy that can exacerbate acute 
inflammation. Indeed, bacterial pathogens such as Streptococcus 
pyogenes can additionally alter neutrophil apoptosis in a manner 
that ultimately results in rapid cell lysis (26) – a feature consistent 
with the ability of S. pyogenes to present clinically with necrotic 
lesions and gross inflammation (27). Moreover, it is known that 
some Staphylococcus aureus strains have the ability to promote 
rapid neutrophil lysis after phagocytosis (26, 28), and recent evi-
dence indicates that the process occurs by programmed necrosis 
or necroptosis (29). Necroptosis is a pro-inflammatory form of 
cell death dependent on receptor interacting protein-1 kinase 
and leads to necrotic cell lysis. Thus, neutrophil apoptosis and 
efficient clearance by macrophages is essential for maintenance 
of host health, and pathogen-mediated deviations from this 
normal process that result in neutrophil lysis  –  irrespective of 
mechanism – contribute to pathogenesis.

CONTROL OF NEUTROPHIL ACTIVATION

The extraordinary ability of neutrophils to protect the host 
against a wide array of pathogens necessitates that these cells 
utilize highly toxic and damaging weapons to target pathogen 
incapacitation and/or destruction. Given the potential for 
collateral host tissue damage, it is essential that neutrophil 
activation is finely tuned to result in the appropriate level of 
response for any given situation. Indeed, neutrophils utilize a 
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variety of mechanisms to control activation and subsequent 
delivery of these toxic components. One of the first approaches 
to controlling activation seems to be a very tight control of 
activation initiation. Resting neutrophils are maintained in 
the blood in an essentially dormant state, expressing very few, 
if any, adhesion molecules and receptors for activating ligands 
(30). However, these cells seem to be exquisitely sensitive to 
the presence of a danger signal or mechanical perturbation 
and can immediately increase their responsiveness through the 
mobilization of secretory vesicles, leading to surface expression 
of adhesion molecules, chemoattractant receptors, and other 
functional proteins involved in neutrophil mobilization without 
releasing potentially harmful inflammatory molecules (31). This 
reversible process is known as priming and transforms these 
cells into a state of heightened sensitivity and ability to gener-
ate a maximal host defense response (32). Indeed, the level of 
neutrophil priming has been linked to the severity of disease and 
disease outcome, and several studies have suggested that prim-
ing may be a good indicator of clinical disease activity (33, 34). 
On the other hand, absence of an infection or inflammatory 
stimulus would result in reversal of the primed condition back 
to a quiescent state, again demonstrating exquisite control of the 
neutrophil and its state of activation.

The selective mobilization of secretory granules during prim-
ing illustrates a second key mechanism utilized by neutrophils to 
regulate the inflammatory response. Neutrophils, also known as 
granulocytes, contain a number of cytoplasmic granules/vesicles 
that act as readily mobilizable reservoirs of potent enzymes and 
toxic molecules, which are selectively mobilized based on a hier-
archy that is not completely understood but seems to control the 
level and types of enzymes released to meet the needs of the host 
defense situation (31). For example, gelatinase granules require 
a higher neutrophil activation threshold for exocytosis than do 
secretory vesicles, an even higher threshold is required for mobi-
lization of specific granules, whereas the highest mobilization 
threshold seems to be for azurophil granules (31). Thus, selective 
compartmentalization of toxic and potentially host-damaging 
enzymes allows neutrophils to adjust their response to the level 
needed to address the insult by not inflict excessive damage 
to host tissues. Selective mobilization of granules also results 
in appropriate changes in the array of neutrophil cell-surface 
molecules and, thereby, modulates the way in which neutrophil 
interact with their environment.

As discussed above, neutrophil activation leads to the dif-
ferential release of cytoplasmic granules, which participate in 
various host defense processes. Neutrophil activation is also 
characterized by the production of ROS via the activation of a 
multiprotein enzyme complex, known as the NADPH oxidase. 
This process, also known as the respiratory burst, results in the 
initial generation of superoxide anion ( )O2

⋅− ; however, subsequent 
biochemical and enzymatic events can convert O2

⋅−  into more 
potent microbicidal products, including hydrogen peroxide 
(H2O2), a required substrate for the myeloperoxidase-halide 
system that generates hypochlorous acid (HOCl), hydroxyl radi-
cal (HO⋅), and other reactive oxygen and nitrogen species (35). 
While the NADPH oxidase system is essential for host defense, its 
products can also damage host tissues and, when inappropriately 

regulated, contribute to inflammatory disease (36). Thus, this 
system is also highly regulated through compartmentalization to 
avoid inappropriate activation and excessive host tissue damage. 
For example, the NADPH oxidase is composed of cytosolic and 
membrane-bound proteins that must assemble with each other 
through a complex sequence of signaling events, posttranslational 
modifications, and protein:protein binding interactions to finally 
achieve an active complex. Optimally, this complex assembles on 
the phagosomal membrane, where oxidants are targeted at high 
concentrations to a pathogen, but are also compartmentalized 
inside the cell to minimize host damage (37). Furthermore, 
neutrophil cytosol contains high levels of antioxidant enzymes, 
such as superoxide dismutase, catalase, and glutathione peroxi-
dase to further limit release of toxic ROS into host tissues (38). 
Thus, it is clear that significant effort is devoted to the control 
of neutrophil activation and, thereby, unnecessary exposure of 
the host to damaging agents through regulated priming and 
activation, sequential mobilization of cytoplasmic granules, and 
compartmentalization of effector systems.

NEUTROPHILS AND INFLAMMATION

Inflammation is a host protective response against invading 
microbes or tissue injury. It consists of complex interactions 
between soluble mediators and host cells with hallmark features 
that include swelling, redness, pain, and heat. During acute 
inflammation, initial recognition of pathogen or damage-
associated molecular patterns by pattern recognition receptors 
on tissue resident immune cells elicits production of immune 
mediators (39). Subsequently, these immune mediators (e.g., 
pro-inflammatory cytokines, chemokines, eicosanoids, and 
vasoactive amines) create a chemoattractant gradient that primes 
neutrophils and summons these cells to the site of injury or 
infection. This process is accompanied by vascular permeability 
and increased expression of selectins on activated endothelium, 
which, in turn, increases neutrophil adhesion and extravasa-
tion (40). Upon arrival in the infected tissues, neutrophils 
phagocytose and kill microbes using processes described above. 
Additionally, neutrophils secrete numerous pro-inflammatory 
molecules that amplify the immune response, and exocytosed 
granule proteases contribute to extracellular matrix degradation 
and tissue remodeling (41–43).

Non-phlogistic removal of effete and/or apoptotic neutro-
phils by mononuclear phagocytes is crucial to the resolution of 
inflammation and initiation of the tissue repair process (44–46). 
The overall importance of macrophages in tissue repair and 
restoration of homeostasis is perhaps exemplified by a mouse 
wound-healing model, in which depletion of these cells results 
in impaired angiogenesis, reduced granulation tissue formation 
and collagen deposition, decreased cell proliferation, and delayed 
re-epithelialization (47). Thus, under normal circumstances, 
acute inflammation is a self-limiting process that eliminates 
invading microbes and promotes tissue repair and return to 
homeostasis. Eicosanoids and other lipid molecules play a key 
role in the initiation and resolution of the inflammatory response 
(48). For example, leukotrienes and prostaglandins such as PGE2 
are essential for trafficking of neutrophils to sites of infection. 
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On the other hand, high concentrations of PGE2 in inflamma-
tion exudate signals for host activation of the 15-lipooxygenase 
pathway and lipoxin production, which stop recruitment of 
neutrophils and promote the resolution of inflammation (49, 50). 
Lipoxins belong to a group of specialized pro-resolving media-
tors that includes resolvins, protectins, and maresins. These lipid 
mediators promote recruitment of monocytes, efferocytosis of 
apoptotic neutrophils, uptake of debris, resolution of inflamma-
tion, and tissue regeneration (51, 52). Interestingly, generation of 
resolution signals starts early during the inflammation process 
and often depends on cell–cell (e.g., neutrophil–endothelial cell) 
interaction (50, 53).

It is widely known that neutrophils play a key role in inflamma-
tory diseases. When the intricate network of signals controlling 
inflammation becomes imbalanced or the acute inflammatory 
response fails to eliminate the source of tissue damage, it can 
transform into a chronic inflammatory state. During chronic 
inflammation, the majority of tissue damage is caused by mac-
rophages, monocytes, and granulocytes (54–57). Rheumatoid 
arthritis (RA) is an example of a chronic inflammatory disease 
to which the contribution of neutrophils has been studied 
extensively. Interestingly, neutrophils isolated from patients with 
RA are primed for ROS production and resemble low-density 
granulocytes (LDGs) from lupus erythematosus patients (58, 59). 
Production of ROS and release of granule enzymes by neutrophils 
contribute directly to cartilage and joint damage and perpetuate 
the inflammatory response (60).

Host tissue damage can also be caused by neutrophils dur-
ing the acute inflammatory response. For example, neutrophils 
are known to contribute directly to lung tissue damage during 
severe pneumonia caused by Staphylococcus aureus (61, 62). This 
severe tissue damage, which in humans can be fatal, is largely 
caused by cytotoxic molecules released from activated and lysed 
neutrophils (63, 64). Inasmuch as neutrophil-derived cytotoxins 
are central to the pathology of inflammatory diseases, it should 
not be surprising that neutrophil extracellular traps (NETs), 
which are largely reported to form from a cytolytic process, are 
associated with many diseases or pathologic conditions.

NETs AND DISEASE

Neutrophil extracellular traps are filamentous web-like struc-
tures that consist of extruded nuclear DNA and histones and 
are decorated with neutrophil granule enzymes, such as MPO, 
elastase, cathepsin G, and lactoferrin (65). They can be formed 
in response to infectious agents, inflammatory mediators, and/
or under certain conditions, including non-specific osmotic 
cytolysis (Figure 1). NETs have been reported to entrap and kill 
numerous microorganisms (66–71). Many studies have inves-
tigated the molecular events leading to the formation of NETs. 
The first cell death mechanism proposed to explain formation of 
NETs was named NETosis (72), and the authors reported that it 
is RAF/MEK/ERK pathway dependent and requires ROS produc-
tion (72). During NETosis, ROS trigger release of elastase from 
azurophilic granules into the cytoplasm, which then translocates 
to the nucleus and promotes decondensation of the chromatin 
through degradation of histones (72–76). This process is followed 

by rupture of the plasma membrane and extrusion of the DNA 
granule–protein complexes into the extracellular milieu to form 
NETs. Recent studies have compared signal transduction events 
involved in necroptosis and PMA-induced NETosis, but the 
findings of two studies were discordant (77–79). Not all reported 
mechanisms of NET formation require NADPH oxidase or cell 
lysis. One of the NADPH oxidase-independent mechanisms 
for NET formation was reported to be a calcium-ionophore-
mediated process that utilizes mitochondrial ROS (80). Yousefi 
et al. reported that NETs form by release of mitochondrial DNA 
and that this process is not associated with cell death or lysis 
(81). A similar phenomenon has been described for eosinophils 
(82, 83). Kubes and colleagues made the intriguing discovery that 
neutrophils form ETs by extrusion of nuclear DNA, while the cells 
remain intact and functional afterward (84, 85). This process has 
been called vital NETosis – although the term “vital NET release” 
is perhaps less confusing (86). Such a process would circumvent 
many of the potential issues associated with cytolytic NET forma-
tion. However, the vast majority of studies report NETs formed 
by cytolysis.

Although the process of NET formation in vitro is relatively 
well characterized, triggers for the process in  vivo are incom-
pletely understood. It is not clear whether neutrophils release ETs 
as a specific response to stimuli in vivo, or if the presence of NETs 
is simply the aftermath of these cells being overwhelmed with 
inflammatory signals or pathogen insult, and/or if the mechanism 
for clearance of effete neutrophils is overwhelmed. Nonetheless, 
the fundamental outcome of NET formation in most studies is 
lysis of neutrophils and accompanying extracellular release of 
cytotoxic molecules. This outcome seemingly defies the numer-
ous aforementioned host systems that are in place to ensure safe 
neutrophil removal and minimize damage to surrounding host 
tissues. Moreover, cell-free DNA and DNA-binding proteins (e.g., 
histones or high mobility group box 1 protein) – all components 
of NETs  –  are classic damage-associated molecular pattern 
autoantigens. NETs have been reported to activate and perpetuate 
the immune response and, thereby, promote chronic inflamma-
tion. Indeed, NET-associated molecules have been shown to elicit 
inflammatory responses mediated by toll-like receptors (TLRs), 
which may, in turn, impact autoimmunity (88). This topic has 
been reviewed recently by Thieblemont and colleagues (89).

Extracellular traps have been detected in a growing number 
of inflammatory and autoimmune diseases, in which contribu-
tion of neutrophils, or more specifically, cytotoxic components 
released during neutrophil lysis, was previously reported 
(Table 1). In these pathologic conditions, NETs appear harmful 
and sustain inflammatory processes. For example, Kolaczkowska 
et al. showed in an animal model of S. aureus-induced sepsis that 
extensive liver damage was primarily caused by neutrophil influx 
and presence of NETs within the liver vasculature (90). Necrotic 
liver damage was reduced significantly in mice deficient in neu-
trophil elastase or PAD4, as these mice had decreased ability to 
form NETs (90). NET components are also potent procoagulants 
that activate factor XII of the coagulation cascade and contribute 
to formation of both venous and arterial thrombi. Thus, NETs 
play an instrumental role in deep vein thromboses, atheroscle-
rosis, or acute myocardial infarction (56, 91–97). In certain types 
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FIGURE 1 | NETs form during osmotic lysis of human neutrophils. (A) Immunofluorescence staining of freshly isolated human PMNs (histone 2A; red), MPO 
(green), and DNA (DAPI; blue). (B) NETs formed following electropermeabilization (pulse of 800 V at 25 mF). Brightness and contrast of the images in (A,B) were 
adjusted in Adobe Photoshop CC2014 (Adobe Systems Inc., San Jose, CA, USA). (C) Scanning electron micrograph of a control neutrophil that was not 
electropermeabilized, and (D) NET-forming human neutrophil following electropermeabilization (pulse of 600 V at 10 mF). Studies with human neutrophils were 
performed according to a protocol approved by the Institutional Review Board for Human Subjects, US NIAID/NIH, as described elsewhere (87). All subjects gave 
written informed consent prior to participation in the study and in accordance with the Declaration of Helsinki. The image in (A) was originally published in Ref. (87). 
Copyright © (2013) The American Association of Immunologists, Inc.
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of respiratory diseases, removal of NETs reduces some of the 
disease-associated symptoms. In lung diseases, in which NETs 
contribute to formation of obstructive “plugs,” human recombi-
nant DNase I has been used to dismantle NETs (98–100). This 
treatment reduces the risk of disease exacerbation and improves 
overall outcome for the patient (98–100). Consistent with those 
findings, DNase treatment and removal of NETs has also been 
shown to improve lung function in murine asthma models (101).

CONCLUDING PERSPECTIVE

Formation of NETs is usually accompanied by neutrophil lysis, 
although there are notable exceptions (86). Here, we focus our 

discussion solely on NETs that form following neutrophil lysis. 
A cytolytic process for NET formation exposes the host to toxic 
molecules that contribute to inflammation, tissue damage, and 
disease. Inasmuch as the potential for neutrophil lysis poses a 
significant threat to human health, neutrophil activation and 
turnover are highly regulated. Multiple host mechanisms exist 
to prevent neutrophil lysis and control release of cytotoxic 
granule components and ROS – and these regulatory processes 
are presumably circumvented by the formation of NETs. 
Therefore, it seems unlikely that the host immune system has 
evolved to use NETs as routine means for innate host defense 
against microbes. Rather, we suggest formation of NETs by 
cytolysis is an incidental phenomenon and not a standard or 
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TABLE 1 | Selected neutrophil-associated inflammatory diseases and contribution of NETs.

Syndrome/disease Description/role of neutrophils Contribution of NETs Reference

Pulmonary disorders

Cystic fibrosis lung disease Neutrophils contribute to many of the pathological 
manifestations of CF, including vigorous inflammation, chronic 
bacterial infections, and a self-perpetuating cycle of airway 
obstruction

CXCR2-mediated and NADPH oxidase-independent 
NET release

(102)

Chronic obstructive pulmonary 
disease (COPD)

Aberrant inflammatory response to cigarette smoke or other 
particles; emphysema

NETs and NETotic neutrophils are present in COPD 
sputum

(103, 104)

NETs contribute to the severity of restricted airflow

Respiratory syncytial virus disease 
(RSV)

Major cause of lower respiratory tract disease in children. 
Extensive neutrophil accumulation

Occlusion of small airways by DNA rich plugs. NETs 
have the ability to capture RSV particles

(105)

Acute lung injury (ALI) and acute 
respiratory distress syndrome 
(ARDS)

Involves complement C5 activation, acute inflammatory 
response and neutrophil accumulation, alveolar hemorrhage, 
edema, and fibrin deposition

NETs induce toxicity in epithelial and endothelial cells (106, 107)

Predominant role of histones in lung epithelial and 
endothelial cell death

Vascular disorders

Venous thromboembolism (VTE), 
including pulmonary embolism (PE) 
and deep vein thrombosis (DVT)

Inflammatory cells play a key role in thrombus formation; 
large numbers of neutrophils in early thrombus

NETs are present in the initial stage of thrombus 
formation

(56, 96, 97)

Disseminated intravascular 
coagulation (DIC)

Wide spread activation of coagulation; thrombotic occlusion 
of small and midsize vessels

NETs promote coagulation (108)

Acute tubular necrosis, acute renal 
failure

Cell necrosis during initial inflammation, which amplifies the 
inflammatory response (renal necroinflammation)

NETs as a DAMP signal (109)

Atherosclerosis Chronic inflammation of the arterial wall. Neutrophil elastase-
dependent secretion and activation of IL-1β by endothelial 
cells; LL-37

NETs present in atherosclerotic plaques and 
contribute to endothelium dysfunction

(43, 94, 110)

Acute myocardial infarction Rupture of coronary atherosclerotic plaque and subsequent 
thrombotic occlusion of the vessel

NETs and histones as a pro-coagulant (95)

Acute thrombotic 
microangiopathies (TMA)

Excessive microvascular thrombosis Decreased DNase I activity leads to impaired NET 
degradation

(111)

Transfusion-related acute lung 
injury (TRALI)

Presence of anti-neutrophil antibodies. Activation of 
neutrophils in lungs that leads to damage of the endothelium 
and capillary leakage

Abundance of NETs in affected alveoli (112)

Primary systemic vasculitis: 
granulomatosis with polyangiitis 
(GPA) (Wegener’s granulomatosis) 
and microscopic polyangiitis

Necrotizing vasculitis that affects small and medium size 
vessels – results in organ dysfunction; involvement of ANCA; 
neutrophilic inflammation; and formation of neutrophil 
granulomas

Not verified (113, 114)

Others

Systemic lupus erythematosus 
(SLE)

Systemic autoimmune disease characterized by production 
of autoantibodies against self-nuclear antigens; more 
apoptotic neutrophils in circulation

Patients develop antibodies against DNA and 
antimicrobial peptides present in NETs

(58, 115, 116)

NETs increase the risk of venous and arterial 
thromboses
An abnormal subset of neutrophils, called 
low-density granulocytes (LDGs), are present in 
SLE. These cells form NETs readily, but a direct 
contribution to SLE remains to be determined

Pancreatitis Granulocytic epithelial lesions, formation of neutrophil rich 
aggregates and occlusion of pancreatic ducts

NET aggregates occlude pancreatic ducts and 
promote inflammation

(117)

Psoriasis Immune-mediated genetic disorder; dysregulation between 
immune system and cutaneous cells, dendritic cells and 
lymphocytes are key players; characterized by hyperkeratotic 
plaques

Release of IL-17 during NET formation; subset of 
LDG similar to those in SLE; neutrophil elastase 
cleaves IL-36Ra, which is linked to psoriatic 
inflammation

(118–120)

Tumors (e.g., Ewing sarcoma, 
Lewis lung carcinoma; chronic 
myelogenous leukemia)

Not well defined; MMP-9 (gelatinase), cathepsin G, and 
neutrophil elastase contribute to tumor proliferation and 
angiogenesis

Primary tumors facilitate NET production from 
circulating neutrophils

(121–124)

NETs can influence proliferation of B cells

Liver metastases after surgical 
stress

Activation of immune system after surgery, which enhances 
the risk of systemic metastases and tumor recurrences

Production of NETs activates TLR9 pathway to 
induce their pro-tumorigenic activity

(125)

Periodontitis Chronic inflammation of periodontium that is triggered by 
bacterial infection and subsequent influx of neutrophils 

NETs present (126)
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Syndrome/disease Description/role of neutrophils Contribution of NETs Reference

Rheumatoid arthritis (RA) Systemic autoimmune disease, which has genetic and 
environment risk factors; joint inflammation and damage 
mediated by influx of immune cells into synovial joint space. 
Cartilage destruction mediated by ROS production and 
secretion of proteases

Increased spontaneous NETosis  (60, 127)
NETs as targets for auto-antibody

Inflammatory bowel diseases (IBD) 
includes Crohn’s disease (CD) and 
ulcerative colitis (UC)

Chronic relapsing gastrointestinal inflammation Possible induction of NETs through NOX2 
(gp91phox)

(128, 129)

Chronic otitis media (COM) Acute middle ear infection that can result in hearing loss; 
characterized by mucoid effusions

NETs play a central role in effusions (130)

Gout (form of arthritis) Precipitation of uric acid induces rapid onset of inflammation 
and influx of neutrophils into affected joint

Possibly anti-inflammatory mediators (131)
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traditional means used by neutrophils to eliminate invading 
microorganisms. Such a hypothesis is more consistent with 
neutrophil biology and function, including recent studies of 
phagocytosis (132), and has no bearing on NET function per se. 
In other words, NETs may simply be the remnants of dead 
neutrophils – however effective they may be at ensnaring and/
or killing microbes. On the other hand, a mechanism of NET 
formation that leaves neutrophils intact  –  as with vital NET 
formation – avoids many of the caveats of a cytolytic process 
and merits further investigation.
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