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MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral 
infections and autoimmune diseases. MHC-I proteins present antigenic peptides and 
are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus 
enabling the immune system to detect self-antigens and eliminate targets lacking self or 
expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors 
on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are 
expressed on monocytic cells and can recognize both classical and non-classical MHC-I 
alleles. Despite their relatively broad specificity when compared to the T cell receptor 
or killer Ig-like receptors, variations in the strength of LILR binding between different 
MHC-I alleles have recently been shown to correlate with control of HIV infection. We 
suggest that LILR recognition may mediate MHC-I disease association in a manner that 
does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, 
the effects of LILR activity following engagement by MHC-I may represent a “degrees 
of self” model, whereby strength of binding to different alleles determines the degree of 
influence exerted by these receptors on immune cell functions. LILRs are expressed by 
myelomonocytic cells and lymphocytes, extending their influence across antigen-pre-
senting cell subsets including dendritic cells, macrophages, and B cells. They have been 
identified as important players in the response to infection, inflammatory diseases, and 
cancer, with recent literature to indicate that MHC-I recognition by these receptors and 
consequent allelic effects could extend an influence beyond the immune system.
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inTRODUCTiOn

MHC class I (MHC-I) proteins are characterized by a high level of polymorphism, with thousands 
of allelelic variants identified to date (1). Such extensive variation indicates powerful selection 
pressure to maintain a wide range of alleles. Disease associations for individual MHC-I alleles are 
well-documented. The most striking is that of HLA-B27, which is present in >90% of the patients 
with ankylosing spondylitis (2). MHC-I polymorphisms have also been shown to be associated 
with the outcome of viral infections, including the control of HIV infection (3), clearance of HCV 
infection (4, 5), and protection from dengue hemorrhagic fever following secondary infection 
with this virus (6).

Proposed mechanisms to explain classical MHC-I disease associations have focused on the 
functional role(s) of these proteins. The best characterized of these roles is MHC presentation of 
short antigenic peptides for recognition by the T cell receptor (TCR) on cytotoxic T cells (CTL). 
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Thus, many studies have examined the nature of the peptides 
presented by disease-associated alleles and of T cell responses 
restricted by these alleles (7, 8). For example, a number of studies 
have examined the peptide specificities of HLA-B27 subtypes (9). 
In the context of HIV infection, a dominant HLA-B27 restricted 
viral peptide is thought to play a key role in the association of 
this allele with control of infection. Immune escape from the 
response against the dominant peptide results in a decrease in 
HIV-1 replication (10).

In humans, classical MHC-I are also recognized by members 
of the killer Ig-like receptor (KIR) family, which are encoded in 
the leukocyte receptor complex (LRC) on chromosome 19. KIR 
demonstrate allele (and in some cases, peptide) specificity (11), 
albeit at a lower level of precision for individual peptide/MHC 
complexes than that shown by classical TCR. KIR are expressed 
on natural killer (NK) cells and T cells where they inhibit the 
ability of these cytotoxic cells to lyse target cells that express self 
MHC-I alleles. As knowledge regarding their biology and MHC 
specificities has grown, KIR has been studied alongside MHC-I 
in conditions such as spondyloarthropathy, HIV, and HCV infec-
tions (5, 12, 13). There is considerable variation in KIR haplotypes 
such that any individual may not carry the relevant MHC ligand 
for every KIR receptor that they express and vice versa. A number 
of studies suggest that particular combinations of KIR and HLA 
alleles, believed to result in functional receptor/ligand interac-
tions, are associated with protection from progression to AIDS 
following HIV infection (14).

A lesser-studied family of proteins encoded within the LRC is 
also capable of recognizing MHC class I. These leukocyte Ig-like 
receptors (LILR) do not appear to be involved in the cytolytic 
removal of targets bearing non-self MHC-I protein complexes 
(15). Instead, they are predominantly expressed on cells of the 
myelomonocytic lineage, and some of them show a broad speci-
ficity encompassing both classical and non-classical MHC-I (16). 
The observation that LILR vary in the strength of their binding 
to individual MHC-I alleles, however, raised the possibility that 
these innate immune receptors may contribute in some man-
ner toward MHC-I disease associations (17). In support of this 
theory, a recent study of a large cohort of HIV-1 infected patients 
demonstrated that the overall binding strength of LILRB2 for the 
MHC-I haplotypes expressed by these individuals was positively 
associated with the level of viremia (18).

LeUKOCYTe ig-LiKe ReCePTORS

The various members of the LILR family are broadly categorized 
as inhibitory (LILRB) or activating (LILRA), according to the 
presence or absence of tyrosine-based signaling motifs in their 
cytoplasmic tail. In some cases, putative activating receptors have 
been shown to elicit inhibitory effects and vice versa for inhibi-
tory receptors (19). Receptor engagement results in intracellular 
phosphorylation of the tyrosine-based motifs within the recep-
tors themselves (LILRB) or on associated adaptor molecules 
(LILRA) (19). Downstream signaling events can be mediated 
by phosphatases such as SHP-1, SHP-2, and SHIP (20, 21) and 
vary according to the receptor and/or cellular context. For 
example, SHP-2 may mediate production of IL-6 via the NF-kB 

pathway following LILRB2 engagement on dendritic cells (22) or 
 inhibition of the mTOR pathway following LILRB1 engagement 
on T lymphocytes (23).

There are multiple similarities between KIR and LILR in terms 
of Ig domain-based structure, gene location within the LRC, and 
ability to recognize MHC-I (15). Unlike their NK receptor coun-
terparts, however, LILR orthologs (known as PIR) are found in 
rodents, where they demonstrate similar ligand binding, expres-
sion, and functional profiles (24, 25). This may indicate a higher 
degree of evolutionary conservation for LILR than for KIR, with 
bovine orthologs also identified (26) and similar proteins docu-
mented in chickens and fish (27, 28). Within the murine system, 
there is a single inhibitory receptor, PIR-B, and multiple activat-
ing receptors (PIR-A). PIRs are involved in the regulation of 
lymphocyte, antigen-presenting cell, and granulocyte functions 
(29), and their study has enabled the identification of functions 
for both these receptors and their human counterparts, such as 
the regulation of synaptic plasticity (30) and platelet activation by 
PIR-B and LILRB2 (31).

Figure 1 shows the known expression profiles of LILR on leu-
kocyte subsets according to current literature. The known expres-
sion profiles for LILR are not exhaustive; expression of individual 
members of the family has been documented for macrophages, 
B-cells, NK cells, and other non-immune cells (32–40). These 
receptors are, therefore, likely to have far-reaching effects on a 
range of immunological functions. Immune cells, which have yet 
to be characterized in full for LILR expression, include invariant 
NK (iNKT), gamma delta (γδ), regulatory (Treg) and T helper 17 
(Th17) T-cells, B-cell subsets, as well as the various APC subsets 
and granulocytes.

Leukocyte Ig-like receptor activity can result in the upregula-
tion or downregulation of both innate and adaptive functions 
with a range of effects on different cell types. For example, LILR 
and PIR have been shown to inhibit TLR-mediated functions of 
antigen-presenting cells such as inflammatory cytokine secretion 
(38, 41–43). Inhibitory LILR have been shown to inhibit the 
upregulation of co-stimulatory proteins on antigen-presenting 
cells (36, 44–46), thus favoring regulatory T cell responses 
(47–50). On lymphocytes, inhibitory LILR have been shown to 
inhibit T and B cell receptor signaling and downregulate anti-
body and cytokine production (51–53). Activating LILR have 
been shown to mediate monocyte activation and secretion of 
inflammatory cytokines (54) and on basophils to trigger release 
of histamine (55).

MHC ReCOGniTiOn BY LiLR

Following the initial identification of LILRB1 as a receptor for 
self and viral MHC-I (56), structural studies predicted that sev-
eral other members of the family would also recognize MHC-I 
(57). Members of the family were allocated into two groups on 
this basis, with Group 1 containing receptors predicted to bind 
MHC-I and Group 2 containing receptors that were not pre-
dicted to bind MHC-I (57). It was confirmed subsequently that 
the Group 1 members LILRA1, LILRA2, LILRA3, LILRB1, and 
LILRB2 can engage MHC-I (17, 58). Members of the LILR family 
vary in their MHC-I binding preferences. LILRB2 demonstrates 
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the broadest specificity, with the ability to recognize all classical 
and non-classical self MHC-I alleles and forms tested to date. 
Although LILRB2 binds to both the α3 and β2m regions of the 
MHC-I antigen-presenting structure, the major portion of its 
binding site lies within the highly conserved α3 domain (59). The 
degree of interaction between this receptor and the α3 domain is 
sufficient to allow LILRB2 to bind open conformers of MHC-I, 
which lack β2m. In contrast, the major LILRB1 binding site lies 
within β2m, thus this receptor can only associate with β2m-
associated MHC-I. Recognition of open MHC-I conformers has 
also been observed for LILRA1 and LILRA3, which were shown 
in one study to have stronger binding to open confomers than to 
β2m-associated MHC-I (17). These findings indicate that alter-
natively folded forms of MHC-I may play a functional role in the 
immune response. It is also important to note that the members 
of the LILR family may interact in cis with MHC-I on the cell 
surface, as been demonstrated for PIR-B and LILRB1 (60, 61).

Despite their broad specificity, LILRB1 and LILRB2 show 
variation in their strength of binding to different MHC-I alleles 
(17). Binding occurs predominantly through the D1-D2 domains 
of the receptor (57), but it has been suggested that secondary 
binding sites in the D3 and D4 domains may contribute to allelic 
variations in the strength of LILR binding (62). The potential 
importance of such variations was first highlighted by the 
observation that MHC-I complexes differing by only one amino 
acid in the bound peptide showed different affinities for LILRB2, 
which corresponded with the extent of LILRB2-mediated modu-
lation of antigen-presenting cell phenotype (63). A subsequent 
comparison of binding strength for different MHC-I alleles to 
LILRB1 and LILRB2 identified distinct preferences (17). LILRB1 
has a lower affinity for some HLA-A alleles; those with Ala193 
and Val194 have shown lower binding ability. Ser207 and Gln253 
alleles also show weaker binding to LILRB1 and are in linkage 

disequilibrium with Ala193 and Val194. LILRB2 has been shown to 
bind most strongly to HLA-A and weakly to HLA-B alleles but 
with greater variability for these alleles than LILRB1. Its binding 
is weakest to a subset of alleles including HLA-B27 and HLA-
B*5701. Some of these outliers were MHC-I alleles with known 
disease associations, leading to the suggestion that LILR recogni-
tion of MHC-I might influence susceptibility to, and outcome of, 
some viral infections or autoimmune diseases.

LiLR, MHC, AnD inFeCTiOn

Viral infection may be regarded as the primary pathology in 
which MHC-I recognition is essential to achieve a successful 
immune response. MHC-I proteins present fragments of intracel-
lular proteins to T cells in order to enable the lysis of infected cells, 
and the peptide binding specificity of particular MHC-I alleles 
may thus influence the course of disease. There is evidence to 
suggest that LILR expression is induced in response to infection 
(64) and can be regarded as an indicator of an effective adaptive 
immune response (65). Studies are now beginning to highlight 
the relevance of LILR in particular infections and the influence 
of MHC-I recognition in the process.

Distinct LILR expression profiles were found to be associated 
with dendritic cell dysfunction during acute HIV-1 infection 
(66) and with “elite” control of infection (39). As there are well-
characterized associations for different MHC-I alleles with either 
HIV viral control or progression to AIDS (67) and given that 
LILR have been implicated in its disease pathology, this viral 
infection represented a suitable model for testing the hypothesis 
that LILR may mediate MHC-I disease associations. Support for 
this theory was provided by studies, which demonstrated that 
MHC-I alleles and complexes associated with disease progres-
sion were preferential ligands for the inhibitory receptor LILRB2, 
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whereas those associated with delayed onset of AIDS showed 
weaker binding to the receptor (17, 63, 68, 69). It could therefore 
be hypothesized that weaker affinity for LILRB2 would result 
in a lack of inhibition of dendritic cell functions, resulting in a 
more effective anti-HIV immune response. One study sought 
to examine the MHC-I haplotype of HIV-1 patient cohorts in 
combination with the strength of their LILR binding in order to 
assess whether LILR recognition might influence the course of 
disease. An association with LILRB2, but not LILRB1, binding 
strength was observed, indicating that the strength of MHC-I 
recognition correlates with control of viral load (18). This study 
provided the first strong evidence that, despite the broad specific-
ity of LILR, the strength of their binding preference for different 
MHC-I alleles could represent a novel mechanism for an MHC-I 
association during infection.

Binding of MHC-I by “Activating” members of the LILR 
family may also be relevant in HIV-1 infection. LILRA1 and 
LILRA3 preferentially bind HLA-C open confomers (17), and 
HLA-C variants have been associated with different outcomes of 
HIV infection. One particular polymorphism, −35C/T, lies 35 kb 
upstream of the HLA-C locus. The −35C allele corresponds with 
increased HLA-C expression, which in turn is associated with 
delayed onset of AIDS (70). HLA-C proteins are more stable in 
open conformer form than their HLA-A and -B counterparts and 
are upregulated following immune cell activation. It is, therefore, 
possible that LILRA1 or LILRA3 recognition of HLA-C might 
provide a further mechanism for MHC-I disease associations 
during HIV infection.

Leukocyte Ig-like receptor binding preferences for MHC-I 
alleles may influence the outcome of other viral infections. 
Expression of HLA-B27 is associated with spontaneous clearance 
of hepatitis C virus infection (71), and by analogy with HIV-1, it 
could be hypothesized that the low binding preference of LILRB2 
for this allele might influence disease outcome. Another viral 
infection where LILR may be responsible for MHC-I-associated 
protective effects is dengue. Large case-control studies have iden-
tified MHC-I alleles with protective effects in dengue infection 
(72). Antibody opsonized dengue has recently been shown to 
co-ligate the inhibitory receptor LILRB1 when engaged by FcγR, 
leading to inhibition of FcγR signaling (73) and indicating that 
LILRB1 may play a role in antibody-dependent dengue. Infection 
with DENV is highly inflammatory and results in a large influx 
of activated B-cells.

AUTOiMMUniTY

Individual LILR have been implicated in autoimmunity, and their 
preferences for MHC-I alleles may be relevant in these conditions. 
Of the receptors known to recognize MHC-I, LILRA3 has been 
found to be associated with a number of inflammatory condi-
tions. Expressed only in a soluble form, LILRA3 possesses no 
known signaling capacity of its own but can bind ligands of cell-
associated LILR. Some individuals do not express LILRA3 due to 
a large 6.7 kbp sequence deletion. The prevalence of this deletion 
polymorphism is population-dependent and ranges from 6 to 
84% (74, 75), with a particularly high relevance in the Japanese 
population, where a number of non-functional spliced isoforms 

have also been identified (76). The deletion has been associated 
with increased susceptibility and early onset of multiple sclerosis 
(MS) symptoms in a number of studies (77, 78), although con-
flicting data have been observed in other populations (74).

LILRA3 deficiency may also be a risk factor for Sjögrens syn-
drome (SS), with increased prevalence of null allele homozygous 
individuals (79) in certain populations, while the functional 
allele is a suggested risk factor in others (75). More recent studies 
have linked LILRA3 to rheumatoid arthritis (RA). In contrast to 
MS, increased serum level of functional LILRA3 is a proposed 
genetic risk factor for RA, with serum levels correlating directly 
with disease severity (80). Of further note is the prominent 
expression of LILRA2, A5, B2, and B3 in synovial tissues of RA 
patients (81), and the reduction of LILRA2, LILRB2, and LILRB3 
in patients responsive to disease-modifying antirheumatic drugs 
(DMARDs) (82). Functional LILRA3 has also been suggested as 
a risk factor for systemic lupus erythematosus (SLE) following a 
genotyping study in Han Chinese populations, which also found 
higher levels of LILRA3 mRNA in SLE patients (75).

OTHeR LiGAnDS AnD 
FUnCTiOnS OF LiLR

Direct recognition of dengue virus by LILRB1 highlights the 
relevance of future studies to characterize the full range of ligands 
for these receptors and compare their relative binding strengths. 
As described above, LILRB2 is known to be the most promiscu-
ous receptor in the family in terms of its broad specificity for 
classical and non-classical MHC-I in folded and unfolded forms. 
LILRB2 has also been shown to bind a range of non-MHC ligands 
including angiopoietin-like proteins (32) and NOGO, a myelin 
component (30). More recently, LILRA3 has also been shown to 
bind NOGO (83). These findings extend the relevance of LILR 
beyond immune responses to situations such as neurodegenera-
tion, neural plasticity, angiogenesis, and other, as yet, unidentified 
scenarios where MHC-I may compete with other ligands for 
receptor binding (84). In the future, comparative binding assays 
may indicate how MHC-I allelic preferences might influence the 
ability of LILR to bind alternative ligands. Such investigations 
could cast light on previous observations regarding the relevance 
of MHC-I in neural plasticity and regeneration (85, 86) and 
associations with non-immune conditions such as Alzheimer’s 
disease.

FUTURe DiReCTiOnS

Studies on HIV-1 have provided proof of concept that LILR bind-
ing preferences for MHC-I alleles could represent a novel mecha-
nism to explain some of the associations of MHC-I alleles with 
autoimmune diseases and the outcome of certain viral infections. 
According to this model, the influence of LILR can vary accord-
ing to the strength of their binding to MHC-I alleles, representing 
a “degrees of self ” model. MHC polymorphisms could, therefore, 
determine the degree of LILR signaling and consequent regula-
tion of functions for a range of immune cell subsets as indicated in 
Figure 2. However, identification of the underlying mechanisms 
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through which LILR might alter disease outcomes will require an 
enhanced understanding of LILR biology. It will be necessary to 
obtain a full characterization of the LILR expression repertoire on 
immune cell subsets and identify the functional effects of LILR on 
each cell type. For example, in the context of dengue infection, 
LILR expression on B cell subsets may also be relevant in viral 
uptake and/or generation of non-neutralizing antibodies. It will 
also be necessary to characterize LILR expression and function 

on non-immune cells. Comparative binding assays between 
MHC-I alleles and alternative ligands should then help to explain 
the wide-ranging influence of these proteins.
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