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The ability to distinguish pathogens from self-antigens is one of the most important func-
tions of the immune system. However, this simple self versus non-self assignment belies 
the complexity of the immune response to threats. Immune responses vary widely and 
appropriately according to a spectrum of threats and only recently have the mechanisms 
for controlling this highly textured process emerged. A primary mechanism by which this 
controlled decision-making process is achieved is via Toll-like receptor (TLR) signaling 
and the subsequent activation of the immune response coincident with the presence of 
pathogenic organisms or antigens, including lipid mediators. While immune activation is 
important, the appropriate regulation of such responses is also critical. Recent findings 
indicate a parallel pathway by which responses to both viral and bacterial infections is 
controlled via the secretion of soluble TLR2 (sTLR2). sTLR2 is able to bind a wide range 
of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular 
patterns (DAMPs). sTLR2 has been detected in many bodily fluids and is thus ubiquitous 
in sites of pathogen appearance. Interestingly, growing evidence suggests that sTLR2 
functions to sequester PAMPs and DAMPs to avoid immune activation via detection of 
cellular-expressed TLRs. This immune regulatory function would serve to reduce the
expression of the molecules required for cellular entry, and the recruitment of target
cells following infection with bacteria and viruses. This review provides an overview of 
sTLR2 and the research regarding the mechanisms of its immune regulatory properties. 
Furthermore, the role of this molecule in regulating immune activation in the context
of HIV infection via sTLR2 in breast milk provides actionable insights into therapeutic 
targets across a variety of infectious and inflammatory states.
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inTRODUCTiOn

The ability of cells to distinguish pathogens from innocuous antigens is arguably the most impor-
tant and fascinating function of the immune system. A primary means by which pathogens are 
detected is via binding to and activation of families of pathogen recognition receptors (PRRs) 
expressed extracellularly or intracellularly on virtually every cell type. Since the discovery of 
PRRs, the primary focus has been on the recognition of pathogen-associated molecular patterns 
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(PAMPs) that trigger innate immunity, and enhance the adap-
tive immune response against pathogen invasion. Indeed, the 
sentinel discovery of PRRs has revolutionized our understand-
ing of how host cells recognize and respond to pathogens. To 
date, the functions of several different classes of PRRs have been 
identified, including NOD-like receptors, RIG-I-like receptors, 
C-type lectin receptors, and Toll-like receptors (TLRs). TLRs 
are germ-line encoded, type I membrane receptors, and are 
the most characterized PRRs, with a total of 10 identified in 
humans. It is important to note that virtually every human 
cell expresses a unique ratio of TLRs, which allows them to 
respond to a wide variety of invading microbes, and have proven 
fundamental to our understanding of early pathogen recogni-
tion. Moreover, TLRs have provided valuable insights into the 
subsequent activation of intracellular signaling pathways that 
lead to protective innate and adaptive immune responses. The 10 
TLRs that have been identified in humans are characterized into 
two main categories: (1) surface-expressed TLRs (i.e., TLR1, 2, 
4, 5, 6, and 10) classically known to recognize bacterial, fungal, 
and parasitic PAMPs; and (2) endosomal TLRs (i.e., TLR 3, 7/8, 
and  9), which sense viral dsRNA, ssRNA, and unmethylated 
DNA, respectively (1–5).

The TLR story is far from complete and recent data suggests 
that in the case of TLR2, there may be a number of viral PAMPs 
that signal through this extracellular PRR.

Of equal importance to PAMP recognition, is the ability to 
regulate TLR-induced cellular activation. As recently reviewed by 
Joosten et al., multiple studies demonstrate that without proper 
regulation, PRR activation can lead to undesirable consequences, 
and the over-activation of TLRs is directly involved in the 
pathogenesis of autoimmune diseases and the chronic activation 
of many viral infections (6). In this review, we discuss the role 
of TLR2 in recognizing viral pathogens, and highlight the func-
tion of soluble TLR2 (sTLR2) in the regulation of the immune 
response to bacterial and viral infection, as well as the various 
implications.

TLR2 eXPReSSiOn, STRUCTURe, 
AnD SiGnALinG

The majority of human cells contain a repertoire of the 10 TLRs 
identified, and this expression correlates to the type of pathogens 
that will likely be encountered. Indeed, hematopoietic-derived 
cells as well as mucosal epithelial cells express a full repertoire of 
TLRs and have been comprehensively reviewed previously (7, 8). 
The TLR2 gene is found to consist of two 5′ non-coding and one 
coding exon and its promoter contains bindings sites for several 
transcription factors of the Sp1 and Ets families (9).

TLR2 comprises a conserved intracellular toll–interleukin-1 
receptor (TIR) homology domain, a single transmembrane helix 
domain, and a solenoid ectodomain (Figure 1). The ectodomain 
of TLRs is composed of 16–28 diverse leucine-rich-repeat (LRR) 
modules that function in pathogen recognition, while verte-
brate TLR2 has 19–21 LRRs (10). Since it was first identified in 
1998 (4), TLR2 has been shown to sense-specific PAMPs from 
a wide range of viruses, phyla, bacteria, fungi, parasites, and 

inflammatory-induced danger-associated molecular patterns 
(DAMPs) of self-origin (11–14). The reasons for this wide breadth 
of pathogen recognition are in part from its unique ability to het-
erodimerize with other members of the TLR1 superfamily (e.g., 
TLR1, 6, and 10) as well as non-TLR cellular molecules (10, 11). 
The crystal structure for TLR2/1 and TLR2/6 has been solved, 
in which the extracellular domains of each heterodimer form an 
“m”-shaped complex with specific bacterial ligands held in the 
crevice between the two TLRs (15). Specifically, the solution of 
these structures indicates that TLR2/1 recognizes triacylated 
bacterial lipoproteins while TLR2/6 senses diacylated bacterial 
lipoproteins (15). In this way, the binding of the ligand is neces-
sary for heterodimeric interaction and downstream signaling 
(15, 16). Additionally, publications have described a TLR2/10 
complex; however, the specific ligand(s) and function of this 
heterodimer remain unknown (17).

The binding of the corresponding PAMP to its respective 
TLR heterodimer results in the binding of the TLR2 intracellular 
domain, Type 1 IL-1 Receptor (TIR) (18) to its corresponding 
domain on MAL/TIRAP, and the subsequent recruitment of the 
signal adapter protein, MyD88. IRAKs are successively recruited 
to the complex, and the phosphorylation of IRAKs leads to the 
activation of TRAF6 (19, 20). TRAF6 signaling events then 
initiate NF-κB translocation into the nucleus, which in turn 
upregulates the production of many target promoters, including 
pro-inflammatory cytokines (21) (Figure 1).

Furthermore, it has been shown that TLR2 heterodimer 
activation is coupled to pro-inflammatory lipid mediator 
production. Specifically, ligand activation of TLR2/6 or TLR2/1 
expressed in osteoblasts induces pro-inflammatory prostaglan-
din E2 (PGE2) production via NF-κB-dependent gene transcrip-
tion (22). Moreover, Mycobacterium bovis infection was shown 
to increase PGE2 production in macrophages obtained from 
wild-type mice, an effect that was abolished in macrophages 
obtained from mice lacking the TLR2 receptor (23). Although 
these studies suggest the TLR2 heterodimer immune response 
is coupled to PGE2, it remains to be determined whether TLR2 
activation is coupled to other proinflammatory lipid mediators 
(e.g., linoleic acid-derived metabolites) (24). It is important 
to note that anti-inflammatory docosahexaenoic acid-derived 
mediators (i.e., resolvins, protectins, and maresins) are poten-
tially involved in the resolution of TLR2-induced inflammation, 
and merits testing in future studies (25). More recently, a new 
role for TRAM and TRIF was reported for TLR2 signaling (26, 
27). These investigators showed that TLR2-mediated induction 
of the chemokine Ccl5 was impaired in TRAM- or TRIF-
deficient macrophages. Further, TRAM and TLR2 co-localized 
in early endosomes suggesting that signaling may occur from 
an intracellular compartment.

TLR2 ACTivATiOn BY viRAL PAMPs 
PROMOTeS viRAL inFeCTiOn

A number of viral proteins have been identified as PAMPs for 
TLR2, including those from cytomegalovirus (CMV) (28), herpes 
simplex virus (HSV) (29), hepatitis C virus (HCV) (30), measles 
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FiGURe 1 | A representative schematic of the structure of soluble TLR2 (sTLR2). sTLR2 comprises the extracellular portion of TLR2 and does not contain 
the transmembrane nor the TIR domains required for TLR2 signaling. The size of sTLR2 varies in different mucosal fluids, and is composed of cleaved portions of 
the N and C terminus.
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virus (31), and HIV (32). CMV glycoproteins B and H have been 
shown to interact directly with the TLR2/1 heterodimer, leading 
to the activation of NF-κB, which initiates pro-inflammatory 
cytokine production and supports a productive infection 
(28, 33). A seminal study reported that HSV glycoproteins gH/
gL and gB co-immunoprecipitated with TLR2, but only gH/gL led 
to downstream NF-κB activation (29). In addition, TLR2/1 and 
TLR2/6 heterodimers were shown to be involved in sensing the 
HCV core and NS3 proteins, respectively, which activated NF-κB 
and increased cytokine production in human macrophages and 
cell lines (30). Moreover, we previously demonstrated that specific 
HIV structural proteins (i.e., p17, p24, and gp41) interacted with 
TLR2, leading to NF-κB activation and the subsequent produc-
tion of proinflammatory cytokines. Specifically, p17 and gp41 
interacted with TLR2/1, while p24 was sensed by the TLR2/6 

heterodimer (32). To date, the most convincing of the viral 
TLR2 interactions is that from in vivo data, which demonstrated 
that TLR2−/− mice did not produce proinflammatory cytokines 
compared to wild-type mice after exposure to HCV core and NS3 
proteins (30). This result confirms the role of TLR2 in initiating 
the inflammatory response to this virus (30). Importantly, the 
PAMP(s) that trigger cellular activation through the TLR2/10 
heterodimer have yet to be identified, but may have the potential 
to act as viral-specific PRRs.

The primary consequence of viral recognition to the immune 
system is the production of proinflammatory cytokines, and 
the subsequent recruitment of additional target cells. However, 
virally induced TLR2-dependent cellular activation has been 
shown to contribute to viral spread and pathogenesis due to 
enhanced expression of various viral entry receptors (29, 31, 
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TABLe 1 | Biological activities and functions of sTLR2.

Role Description Publications

Direct interaction of sTLR 
domain with bacterial 
peptidoglycan

Extracellular TLR2 domain 
directly binds peptidoglycan 
from Staphylococcus aureus

(47)

Anti-inflammatory activity of 
sTLR2 in human plasma and 
breast milk

First discovery of sTLR2 
modulating TLR2 signaling in 
human plasma and breast milk

(39)

sTLR2 as a biomarker in heart 
failure

Patients with post myocardial 
infarction had lower sTLR2 
levels 

(45)

Parotid saliva contains sTLR2 
and sCD14 that abrogate 
augmentation of IL8 production

Human parotid saliva contains 
sTLR2 and modulates IL8 
production by monocytic cells

(42)

sTLR2 in human amniotic 
fluid modulates intraamniotic 
inflammation to Gram-positive 
bacterial infection

Depletion of sTLR2 from 
preterm amniotic fluid removed 
its neutralizing property

(41)

Established sTLR2 as a 
regulator of TLR2-mediated 
inflammatory responses, 
capable of blunting immune 
responses without abrogating 
microbial recognition

Mechanistically, sTLR2 
interfered with TLR2 
mobilization to lipid rafts for 
signaling and acted as a decoy 
microbial receptor

(48)

Increased production of sTLR2 
in patients with ulcerative colitis 
and Crohn’s disease

(46)

sTLR2 in amniotic fluid is 
a potential biomarker of 
microbial invasion of the 
amniotic cavity and histological 
chorioamnionitis 

sTLR2 in pregnancies 
complicated by preterm 
rupture of membranes

(49–51)

sTLR2 significantly inhibits 
HIV infection, integration and 
inflammation

First identification of sTLR2 as 
an inhibitor of HIV infection, 
integration and immune 
activation

(40, 43)

sTLR2 as a biomarker for 
systemic lupus erythematosus 
(SLE) and lupus-related 
cardiovascular dysfunction

Serum sTLR2 can attenuate 
disease activity

(52)

Possibility of using sTLRs as 
diagnostic tool in inflammatory 
conditions

Value of sTLR2 to discriminate 
infections and non-infectious 
inflammatory diseases and viral 
and bacterial infections were 
analyzed

(53)

First identification of a 
mechanism involved in 
regulating production of sTLR2

sTLR2 production involves 
ADAM10 and ADAM17-
dependent TLR2-ectodomain 
shedding

(54)

TLR2 expression and function 
in monocytes were impaired in 
chronic HBV infection 

Chronic hepatitis B patients 
had elevated TLR2 expression 
and TNF and IL6 in PBMCs, 
but decreased levels of sTLR2 
in serum compared to inactive 
and immunotolerant carriers

(55)
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33), thereby increasing the viral infection (32). These unique 
viral-PAMP specific alterations in receptor expression suggest a 
novel mechanism by which viruses can manipulate innate sens-
ing with specific viral proteins. Indeed, we reported a significant 
increase in CCR5 expression in macrophages exposed to HIV-1 
PAMPs (p17 and gp41) that led to significantly increased in vitro 
cell-free R5 HIV infection (32). These results are similar to other 
viral proteins that promote cellular activation through a TLR2-
dependant mechanism. Specifically, the hemagglutinin protein 
of the measles virus has been shown to significantly increase 
cellular activation in human monocytic cells by increasing the 
surface expression of the measles receptor, CD150, via a TLR2-
dependent mechanism (31). Furthermore, previous publica-
tions have shown that there is a TLR2-dependent increase in 
CCR5 expression on permissible cells, resulting in significantly 
increased HIV infection (34, 35).

Taken together, these publications highlight the role of TLR2 
and its heterodimers as important extracellular PRRs for viral 
PAMP recognition, resulting in increased cellular activation and 
facilitating viral infection in permissive cells.

ReGULATiOn OF TLR-MeDiATeD 
iMMUne ACTivATiOn

Since the discovery of PRRs, research has primarily focused on 
the engagement of PAMPs that trigger innate immunity and 
promote the adaptive immune response against pathogens. 
However, the control of aberrant immune activation and 
signaling are equally important. Without proper regulation, 
PRR activation can have disastrous consequences. The over-
activation of TLRs is directly involved in the pathogenesis of 
several autoimmune diseases and the chronic activation of many 
viral infections (6, 36, 37). Therefore, multiple stages of intrinsic 
extracellular and intracellular regulatory mechanisms have been 
shown to balance TLR-dependent immune responses appropri-
ately. These extracellular regulatory mechanisms include the 
production of sTLRs that act as decoy receptors, and inhibit 
TLR-PAMP engagement. Furthermore, once the TLR–ligand 
interaction occurs, there are multiple intracellular regulators 
that inhibit signaling pathways, including negative feedback 
loops, the downregulation of TLR expression, degradation of 
TLR proteins, and even the activation of controlled cell death, 
which has been extensively reviewed by Cao et al. (20). Here, 
we focus on the role of extracellular sTLR2 in the inhibition of 
virally induced immune activation.

The direct attenuation of negative regulation is accomplished 
by soluble factors, including sTLRs that act as decoy receptors 
and bind to PAMPs in the extracellular space, preceding their 
engagement with specific PRRs (38). To date, four extracellular 
sTLRs have been identified in humans, including sTLR1, sTLR2, 
sTLR4, and sTLR6. Of these four extracellular sTLRs, sTLR2 has 
been detected in a wide variety of human fluids and has been 
shown to be involved in many disease states summarized in 
Table 1. LeBouder et al. (39) first described the specific forms of 
sTLR2 in breast milk and plasma, and subsequent reports have 
confirmed these reports and extended our understanding of the 
predominant presence of sTLR2 in breast milk (40), amniotic 

fluid (41), saliva (42), and cultured monocytes (42, 43). In 
breast milk, sTLR2 has been shown to act as a decoy receptor 
by interfering with specific PAMP binding to membrane-bound 
TLR2, and thus helps to regulate aberrant cellular activation. 
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Under chronic inflammatory conditions (e.g., inflammatory 
bowel diseases, HIV infection, and various cardiovascular condi-
tions), the sTLR2 concentration is elevated compared to healthy 
individuals (43–46).

Taken together, sTLR2 is an interesting immunomodulatory 
factor that has direct bacterial and viral binding capacity leading 
to decreased cellular activation and infection, while simultane-
ously not impacting the clearance of pathogens.

GeneRATiOn OF sTLR2 AnD iTS 
ALTeReD FORMS

LeBouder et al. were the first to identify sTLR2 in bodily fluids 
(i.e., breast milk and plasma). They went on to show that it 
functioned as an innate immune factor that modulated cellular 
activation. In fact, when they depleted sTLR2 from serum, there 
was a significant increase in pro-inflammatory cytokine produc-
tion following bacterial lipopeptide exposure (39). They further 
elucidated through co-immunoprecipitation and computational 
molecular docking studies that sTLR2 and sCD14 interacted 
in concert to encapsulate bacterial lipoproteins. Additionally, 
they went on to demonstrate that sTLR2 is generated from a 
post-translational modification in the TLR2 protein in an intra-
cellular compartment and that an internal reservoir of sTLR2 
is maintained in macrophages (39). Subsequent investigations 
later confirmed and extended these findings to demonstrate 
that sTLR2 is produced by the proteolytic cleavage of the TLR2 
transmembrane protein through a process referred to as ectodo-
main shedding, which has been eloquently reviewed previously 
(56, 57). This post-translational mechanism utilizes disintegrin 
metalloproteinases (ADAMs) (i.e., ADAM10 and ADAM17), 
which are enzymes that are integral to the generation of other 
soluble immune factors, including cytokines, chemokines, and 
various growth factors (54). During innate immune responses, 
ectodomain shedding is a strategy that permits downregulation 
of responses triggered by pathogens or stressors. Furthermore, 
since metalloproteinases are upregulated in many inflammatory 
disorders, production of high levels of sTLR2 would serve to 
diminish detrimental inflammation (54).

sTLR2 was also later identified in saliva (42) and amniotic 
fluid (41). We subsequently reported that the concentration of 
sTLR2 in breast milk differed among women, had a short half-life 
at physiological temperatures, and the expression levels decreased 
over time postpartum (40). Interestingly, the forms of sTLR2 in 
breast milk were shown to more closely mirror the predominant 
forms found in the saliva and amniotic fluid (41, 42) compared to 
plasma. Although the reason for these altered forms in mucosal 
fluids remains undetermined, we believe it to be a result of dif-
ferent glycosylation patterns. Furthermore, our evaluation of 
sTLR2 in breast milk indicated a progressive decline of sTLR2 
levels over time postpartum (40), an observation that is similar to 
other milk proteins (58). Although the reason for this decline in 
abundance of sTLR2 is not completely clear, these decreases may 
correspond to the infant’s increased ingestion of breast milk with 
age, therefore, providing effective levels of sTLR2 throughout the 
entire breastfeeding period.

DiReCT SUPPReSSiOn OF BACTeRiA-
inDUCeD CeLLULAR ACTivATiOn

Classically, sTLR2 has been studied for its role in modulating 
Gram-positive bacteria-induced cellular activation. In 2003, 
LeBouder et  al. were the first to characterize the function of 
sTLR2 in immunomodulating bacterially induced pro-inflam-
matory cytokine production by PBMCs (39). Subsequent studies 
have highlighted the role of sTLR2 in significantly inhibiting 
bacterial-induced cellular activation, and subsequent inflamma-
tory response. Moreover, sTLR2 was found to reduce bacterially 
induced pro-inflammatory cytokine production in vitro in oral 
epithelial cells, placental tissue explants, and human intestinal 
epithelial cells (40–42). sTLR2 also significantly reduced bacteria-
associated inflammation in mice, without impairing microbial 
clearance (48). Together, these publications indicate that sTLR2 is 
critically important for downregulating bacteria-induced cellular 
activation.

The mechanism of the immunomodulatory function of sTLR2 
appears to be due, at least in part, to its ability to encapsulate 
bacterial lipoprotein, therefore inhibiting it from binding to the 
membrane-bound form of TLR2. Specifically, computational 
molecular docking has been used to reveal the binding of a cylin-
drical N-terminus to a C-terminus between sTLR2, soluble CD14 
(sCD14), and the encapsulated synthetic bacterial lipoprotein, 
Pam3CSK4 (39).

Importantly, the function of sTLR2 seems to be highly selective 
and precise. Specifically, Oever Ten et al. showed that the release 
of sTLR2 is significantly increased in cells that are activated due to 
infectious rather than non-infectious agents (53). Furthermore, 
sTLR2 concentrations were significantly increased in patients 
suffering from viral and bacterial infections. These data not only 
indicate that sTLR2 is an important modulator of inflammation, 
but also highlights the importance of discriminating between 
infectious and non-infectious bacterial and viral inflammatory 
diseases when regulating sTLR2 release (53).

DiReCT SUPPReSSiOn OF viRALLY 
inDUCeD CeLLULAR ACTivATiOn 
AnD inFeCTiOn

The immune system uses a range of soluble molecules (e.g., 
defensins, anti-proteases, IFNs, and chemokines) to suppress and 
control viral infections (59, 60). For instance, elafin/trappin-2 is a 
serine protease inhibitor that functions as an anti-inflammatory 
mediator on mucosal surfaces. In addition, elafin/trappin-2 also 
exhibits antibacterial activity against Gram-positive and negative 
bacteria, as well as various types of fungal infections. Moreover, 
it has been shown to interfere directly with viral PAMPs/host 
engagement, thus modulating the immune response (61).

The sTLR2-dependent regulation of immune activation dur-
ing viral infection remains poorly understood. However, the 
ability of TLR2 to recognize many viral proteins, including HSV 
(29), measles (31), CMV (28, 62), and HCV (30) suggests that 
sTLR2 plays an important immunomodulatory role, as is sug-
gested in Figure 2. To date, only two published manuscripts have 
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investigated the role of sTLR2 in indirectly inhibiting viral infec-
tion. We reported that sTLR2 directly interacted with the HIV 
PAMPs in vitro (e.g., p17, p24, and gp41), leading to significantly 
reduced NF-κB activation, IL-8 production, CCR5 expression, 

and HIV-infection in a dose-dependent manner (40, 43). It has 
also been suggested that sTLR2 plays a role in HIV pathogenesis 
(44). Mammary epithelial cells (MECs) and a monocytic cell line 
(THP-1) exposed to HIV–PAMPs induced the production of 

FiGURe 2 | sTLR2 functions as an immunoregulatory factor in the intestinal mucosa. Pathogen exposure (e.g., HIV) results in TLR activation of the intestinal 
epithelial cells (left). Cellular activation promotes the production of various pro-inflammatory cytokines and chemokines, as well as the subsequent recruitment of 
effector cells to the site of exposure. However, many of these cells (i.e., CD4+ T cells and monocyte/macrophages) are viral target cells, providing an abundant 
number of host cells for the virus to infect. Therefore, activation of the immune response serves to propagate the viral infection, as well as the local inflammatory 
response. Conversely, in the presence of sTLR2 (right), viral proteins that typically activate various TLRs expressed by intestinal epithelial cells are sequestered, 
preventing the activation of the immune response. In this respect, sTLR2 functions as a regulatory molecule, limiting the available target cells for viral infection and 
the local inflammatory response.
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