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Antibody-mediated rejection has emerged as one of the major issues limiting the suc-
cess of organ transplantation. It exerts a highly negative impact on graft function and 
outcome, and effective treatment is lacking. The triggers for antibody development, and 
the mechanisms leading to graft dysfunction and failure, are incompletely understood. 
The production of antibodies is dependent on instructions from various immunocytes 
including CD4 T-helper cells that secrete interleukin (IL)-21 and interact with antigen-spe-
cific B-cells via costimulatory molecules. In this article, we discuss the role of IL-21 in 
the activation and differentiation of B-cells and consider the mechanisms of IL-21 and 
B-cell interaction. An improved understanding of the biological mechanisms involved in 
antibody-mediated complications after organ transplantation could lead to the devel-
opment of novel therapeutic strategies, which control humoral alloreactivity, potentially 
preventing and treating graft-threatening antibody-mediated rejection.
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iNTRODUCTiON

Antibody-mediated rejection remains an important barrier to improving long-term survival after 
solid organ transplantation (1–3). In cellular rejection, graft injury is due to direct cytotoxic 
activity of immune cells against graft parenchymal tissue. Antibody-mediated rejection, in 
contrast, is characterized by graft damage induced by circulating alloantibodies. Alloantibodies 
are produced by activated B-cells in response to antigen, costimulation, and cytokines such as 
interleukin (IL)-21 (4, 5).

Interleukin-21 was discovered by Parrish-Novak et al. using a functional cloning approach based 
on expression of the IL-21 receptor (IL-21R) gene and is located at chromosome 4 on position 
q26–q27 (6). The common γ-chain (γc) is a component of the IL-21R complex. IL-21 binding to the 
IL-21R/γc results in signaling via the JAK/STAT pathway (6, 7). This cytokine, a four-α-helix bundle, 

Abbreviations: AID, activation-induced cytidine deaminase; BAFF, B-cell activating factor; BCL-6, B-cell lymphoma-6; Blimp-
1, B lymphocyte-induced maturation protein-1; BMPs, bone morphogenetic proteins; Btk, Bruton’s tyrosine kinase; BTB, also 
named POZ, pox virus and zinc finger; CpG, 5′-C-phosphate-G-3′; CSR, class switch recombination; GrB, granzyme B-cell; 
Ig, immunoglobulin; IL-21, interleukin-21; IL-21R, IL-21 receptor; LPS, lipopolysaccharide; mAb, monoclonal antibody; RD2, 
the second repression domain; Tfh, follicular T helper cells; TLO, tertiary lymphoid organ; TLR, toll-like receptor; XBP-1, 
X-box-binding protein-1; γc, common γ chain.
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FiGURe 1 | iL-21 signaling pathway. Many molecules participate in the IL-21 signaling pathway in B-cells, but the main molecules are IL-21R, JAK, and STAT to 
activate transcription of Blimp-1, BCL-6, AID, Pax5, SHM, granzyme B, XBP-1, and Bim. Generally, IL-21 binds with the IL-21R of B-cells to trigger signaling 
pathways. The JAK and STAT family molecules are activated in turn, while the balance of the transcription factors Blimp-1 and BCL-6 control the maturation B-cell.
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is a typical family I cytokine with broad pleiotropic actions and 
is primarily produced by T follicular helper cells (Tfh), Th17, and 
natural killer T-cells, rather than being generally produced by 
most tissue cells (6, 8, 9). IL-21 controls the activation, prolifera-
tion, differentiation, cytotoxicity, and survival of various target 
immune cells (10, 11). It is also important for the generation of 
B-cell responses in germinal centers resulting in isotype switch-
ing, affinity maturation, antibody production, and development 
of B-cells (12, 13). In particular, IL-21-mediated actions by Tfh 
cells are required for efficient antibody responses. The effectors 
and immune regulatory functions of IL-21 are mediated by bind-
ing to target B-cell surface receptors, which consist of α-chain 
and the γc that is shared with IL-2, IL-4, IL-7, IL-9, and IL-15 
receptors (10, 14, 15).

Antibody-mediated (“humoral”) rejection is a key cause 
of graft dysfunction and failure after organ transplantation 
(1, 16, 17) with 30–50% of failed allografts affected (18–20). 
Immunohistochemical and gene expression studies have shown 
that a large number of B-cells infiltrate the rejected allograft (18, 
21–24), contributing to anti-donor responses.

Identifying the role of IL-21-mediated B-cell activation and 
differentiation pathways is critical for understanding the signal-
ing pathways that underlie antibody-mediated rejection. In this 
review, we discuss the potential role of IL-21 on B-cells after 
organ transplantation.

iL-21 SiGNALiNG PATHwAY iN B-CeLLS

The IL-21R is expressed by human naive B-cells, memory B-cells, 
germinal center B-cells (14), and as shown recently, plasma cells 
(25). IL-21R is upregulated on human memory B-cells after 
activation by anti-CD40 mAb (14).

Binding of IL-21 with IL-21R/γc triggers the catalytic activa-
tion of JAK1 and JAK3. This causes phosphorylation of tyrosine 
residues on IL-21R/γc, providing docking sites for STAT proteins 
and other signaling molecules (26). On recruitment, STATs are 
phosphorylated and form homodimers or heterodimers, which 
translocate into the nucleus and modulate expression of the target 
genes (27), which regulate B-cells, such as B-cell-induced matu-
ration protein-1 (Blimp-1) (28), B-cell lymphoma (BCL)-6 (29), 
activation-induced cytidine deaminase (AID) (30), granzyme 
(31), somatic hypermutation (SHM) (32), paired box 5 (Pax5) 
(33), X-box-binding protein 1 (XBP-1) (34), and Bim (35). IL-21 
mediates B-cell proliferation, immunoglobulin (Ig) produc-
tion, and apoptotic functions mainly through the potent effects 
of STAT3 and/or STAT1 activation but also, to a lesser extent, 
through STAT4 and STAT5 (36–39) (Figure 1).

B-CeLL ACTivATiON AND 
DiFFeReNTiATiON

B-cell receptor (BCR) ligation triggers activation of multiple 
downstream molecules. Burton’s tyrosine kinase (Btk), one of the 
downstream products of the BCR signaling pathway, selectively 
regulates IL-21-induced STAT1 phosphorylation and transloca-
tion in the nucleus. Btk deficiency is associated with arrested cell 
development at the pre-B-cell stage. In addition, Btk is involved 
in cytokine-controlled B cell activation. In concert with IL-21, 
CD40, and B-cell activating factor (BAFF), this kinase mediates 
the crosstalk with cytokine pathways through regulation of IL-21-
induced phosphorylation of STAT1 (25). IL-21 and CD40L col-
laborate to synergistically promote Blimp-1 activation and plasma 
cell differentiation (28). CD40L alone has no direct effect on 
Blimp-1, but it greatly augments the IL-21-triggered JAK-STAT 
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FiGURe 2 | B-cell activation and differentiation. Plasma cells are the main executors of B-cell regulation by the IL-21signal pathway. STAT3 is the dominant 
member of the STAT family in this respect. Transcription Blimp-1 has a positive role and BCL-6 a negative role in plasma cell maturation. Additionally, CD40L, ICOS, 
CD86, and BAFF can promote B-cell differentiation to plasma cells, while MHC, CIITA, Pax5, and c-myc are switched off during B-cell differentiation to plasma cells 
or memory B-cells, and XBP-1 is induced. The transcription factor BCL-6 activates BTB, which is required for cell survival and proliferation, while RD2 prevents 
terminal differentiation of B-cells.
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signaling. During this phase, STAT3 plays a more significant role 
than STAT1, because STAT3 mutations dramatically reduce the 
number of memory B-cells and abolish the ability of differentia-
tion of naive B-cells into plasma cells (10). In contrast, STAT1 
deficiency has no effect on memory B-cell formation in  vivo. 
Thus, STAT3 is essential for the generation of effector memory 
B-cells from naive precursors (40). In addition, treatment with 
CD40L enhances the ability of STAT3 to upregulate Blimp-1 
by removing BCL-6, which is a potent inhibitor of Blimp-1 
expression. It has been speculated that IL-21 induces Blimp-1 
and BCL-6 to regulate isotype-switched B-cells (41). Blimp-1 is 
a transcription factor and involved in plasma cell formation and 
maturation (42). Importantly, IL-21 costimulation upregulates 
expression of Blimp-1 (43). Consistent with this, IL-21-driven 
plasma cell differentiation from both naive blood B-cells and 
from memory B-cells are preceded by induction of Blimp-1 
upregulation. Blimp-1 initiates plasma cell differentiation by 
downregulating MHC, CIITA, Pax5, and c-myc expression (33, 
44, 45) and by inducing XBP-1 expression (46, 47). Blimp-1 level 
is very low when BCL-6 is over-expressed in B-cells (48). BCL-6 
may block plasma cell differentiation due to downregulation of 
Blimp-1 (49). BCL-6 also can control B-cell development by BTB 
and RD2, two molecules that repress distinct functional effects of 
B-cells during the germinal centers reaction. BTB is required for 
B-cell survival and proliferation, while RD2 might be important 
for the prevention of terminal B-cell differentiation (50).

Since IL-21 activates STAT3 in B-cells, this may indicate that 
activation of STAT3 in human B-cells is pivotal for the induction of 
Blimp-1 expression and plasma cell differentiation (11, 40). It has 
been reported that IL-21-dependent CD86 upregulation is reliant 
on STAT3 phosphorylation and PI3K, revealing unexpected roles 
for these pathways in IL-21-mediated B-cell responses (51). In 
addition, IL-21 drives humoral immune responses via STAT3-
dependent induction of the transcription factors required for 
plasma cell generation (52). These authors reported that IL-21via 
STAT3 sensitizes B-cells to the stimulatory effects of IL-2. Thus, 
IL-2 plays an adjunctive role in IL-21-induced B-cell differentia-
tion. An absence of this secondary effect of IL-21 may amplify 
humoral immunodeficiency in patients with mutations in STAT3 
and IL-21R due to impaired responsiveness to IL-21. In concert, 
IL-21 and BAFF stimulate and may maintain humoral immunity 
in humans (53). BAFF has the ability to substitute for CD40L 
activity with regards to IL-21 costimulation and differentiation 
of memory B-cells present in spleen (53) (Figure 2).

iMMUNOGLOBULiN PRODUCTiON

Critical sites for the generation of antibody responses are the 
germinal centers in lymphoid follicles present in lymph nodes 
that also have been identified in transplanted organs (4, 54) where 
antigen-primed B-cells interact with T-cells, most of which are Tfh 
cells secreting IL-21. The B-cells are driven to undergo Ig isotype 
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FiGURe 3 | immunoglobulin (ig) production. Ig is produced by plasma cells, so the signaling pathway for mediation of Ig production is similar to that for 
IL-21-mediated plasma cell maturation. Some molecules, however, have a specific role in Ig production: BMP-2, -4, -6, and -7 may exert a negative influence and 
Btk a positive influence. In addition, some cytokines contribute to Ig CSR. IL-4 can induce to IgG1 formation, IFN-γ to IgG2a, and IL-10 to IgA.
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switching, with SHM and secretion of high affinity antibodies (12, 
55–58). Bryant et al. reported that IL-21 stimulates naive B-cells 
to mainly produce IgM+ B-cells, while low frequencies of IgG 
and IgA secreted B-cells were also detected (59). When IgG was 
produced, IL-21 favors naive B-cells to develop into IgG1- and 
IgG3-secreting B-cells (56, 57, 59–62). It has been reported that 
IgM-specific Abs targeting BCR and IL-21 costimulation also 
induce the expression of AID (63, 64). Interestingly, although AID 
catalyzes both class switch recombination (CSR) and SHM, only 
CSR is induced in naive human B-cells after stimulation by IL-21 
and anti-CD40 (45, 47, 60, 65). The C-terminal of AID is required 
for CSR but not for SHM (65, 66), and it has been postulated 
that IL-21 induces AID activity only at the C terminus. Multiple 
studies have shown that IL-21 causes CSR of CD40-stimulated 
human naive splenic IgM+ B-cells to IgG1 and IgG3, and CSR 
of CD40-stimulated cord blood B-cells to IgA (47, 60). As well 
as the molecules described above, among the group of cytokines 
called bone morphogenetic proteins (BMPs) (67), BMP-2, -4, -6, 
and -7 inhibit CD40L/IL-21-induced production of IgM, IgG, 
and IgA. In memory B-cells, BMP-6 upregulated expression of 
DNA-binding protein inhibitor genes, but potently inhibited 
CD40L/IL-21-induced upregulation of the transcription fac-
tor XBP-1 (34). This factor is crucial for final stage in plasma 
cell differentiation (34). As described above, Btk is an efficient 
propagator of IL-21 signaling, critical for CSR in human B-cells 

and secretion of Ig (25). Additionally, the outcome of IL-21-
mediated Ig secretion depends on the presence of IL-4 and IL-10, 
which influence the outcome of IL-21-mediated CSR. IL-10 acts 
synergistically with IL-21 to induce secretion of IgA by CD40L-
stimulated human B-cells, whereas IL-4 has an inhibitory effect 
(47). As shown by the group of Bromberg, IL-10 deficiency in 
B-cells prevents transplantation tolerance, resulting in decreased 
follicular immune regulatory CD4+ T-cells, a recently identified 
T cell subset, and increased IL-21 expression by Tfh cells in the 
B-cell and T-cell marginal zones (68). This has implications for 
our understanding of the mechanisms involved in tolerance 
and show at the same time that B cells play pivotal roles in the 
induction of this immune phenomenon (68). Interestingly, as 
with IL-21, IL-10, in combination with toll-like receptor (TLR), 
signaling also enhances phosphorylation of STAT3, resulting in 
increased IgG production. Hence, IL-21 and IL-10 increase the 
activity of the TLR–MyD88–STAT3 pathway in human B-cells by 
enhancing Ig production stimulated by STAT3 phosphorylation 
(69) (Figure 3).

ReGULATORY B (B10) CeLLS

Interleukin-21 may also modulate the immune response by 
immune-dampening regulatory mechanisms. One of these is per-
formed by B10 cells, named for their ability to produce abundant 
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FiGURe 4 | Regulatory B (B10) cells. IL-21 binding to IL-21R expressed on B10 pro-cells may trigger B10 pro-cell maturation to B10 cells. Synergistically with 
MHC-II, LPS, CpG, or CD40 ligation stimulation can induce this cell subset to produce IL-10.
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IL-10 (70). Expression of IL-10 is a common characteristic of 
regulatory immune cells, and B10 cells are thus referred to as 
regulatory B-cells (71, 72). The B10 cell subset represents <1% 
of peripheral blood B-cells in humans (73). A high proportion 
of peripheral B10 cells and progenitor (pro)-B10 are present in 
the CD24hiCD27+ B-cell subset, and approximately 60% also 
express CD38 (73). B10 progenitors and B10 cells have been 
identified in human (73). Ex vivo, human B10 progenitors can 
be driven to develop into B10 cells by lipopolysaccharide (LPS) 
or 5′-C-phosphate-G-3′ (CpG), or by CD40 ligation. In vitro, 
IL-21/CD40-receptor signaling pathways can promote the 
development and expansion of B10 cells by four million-fold to 
suppress the immune response. IL-21R signaling, together with 
major histocompatibility complex class II and CD40 cognate, 
interacts with CD4+ T-cells and although not required for B10 cell 
development, are necessary for B10 cell effector functions that 
result in antigen-specific responses. Interestingly, BCR ligation 
augments human B-cell IL-10 responses to CpG (74). Whether 
human B10 cells develop into antibody-secreting cells, or enter 
the memory B10 cell subset, remains to be determined (75). B10 
cells may represent a subset, which is similar to regulatory T-cells 
(76) (Figure 4).

B10 cells are able to control the immune response, but an 
excessive reaction from these cells may also promote tumor cell 
growth or chronic infection (77). It is possible that regulatory fine 
tuning by B-cells and IL-21 production by T-cells might be a key 
factor in maintaining immune tolerance (78). Most investigations 
of B10 cells have concentrated on autoimmune diseases (79), but 
a few have assessed their role in transplantation (80). A mouse 
islet T-cell transplantation study has demonstrated that B10 cells 
control immune responses (81).

B-CeLL APOPTOSiS MeDiATeD BY iL-21

The effects of IL-21 on B cells depend on the costimulatory 
signals that are received. In the absence of signal from a 

T  cell (such as the T cell engaging CD40), BCR activation 
is required for IL-21-mediated B cell apoptosis (15, 29, 35). 
The balance between STAT1 and STAT3 is critical for IL-21-
induced B-cell apoptosis in the IL-21 signaling pathway. 
STAT1 mainly acts in cell cycle arrest and apoptotic cell 
death (45, 47, 82, 83). By contrast, STAT3 mostly exerts an 
anti-apoptotic effect, especially in numerous malignancies 
where it is constitutively active (83). In some circumstances, 
IL-21 can induce apoptosis of B-cells activated via signals 
through the TLR, LPS, CpG, anti-IgM, and IL-4 (11, 15). 
Complete protection from IL-21-mediated apoptosis was not 
inhibited by other molecules involved in apoptotic pathways. 
Functional studies have demonstrated that IL-21 substan-
tially inhibited proliferation and Bim-dependent apoptosis 
of activated mouse B-cells (47). Hagn et al. reported that CpG 
together with IL-21 may enhance their apoptosis-inducing 
and immunogenizing effects (84). It is therefore possible that 
combining CpG with IL-21 could more effectively induce 
apoptosis in B-cells than CpG or IL-21 alone. Furthermore, 
IL-21 can inhibit B-cell proliferation when receiving a 
strong signal via TLR while preventing apoptosis of B-cells 
via upregulation of B-cell leukemia/lymphoma-X linked 
(BCL-XL), an anti-apoptotic protein of the BCL-2 homology 
3 (BH3) family (11, 85) (Figure  5). From this viewpoint, 
IL-21 appears to act as an immunosuppressive cytokine on 
B-cells. This finding indicates that the apoptotic effects of 
IL-21 may only be relevant in  situations where a humoral 
immune response is improperly triggered, thereby shutting 
down at least one arm of the immune system before extensive 
damage is done (7).

GRANZYMe B PRODUCTiON BY B-CeLLS

Interleukin-21 can induce BCR-stimulated human B-cells to 
differentiate into granzyme B-expressing cytotoxic cells (GrB) 
in a STAT3-dependent manner in the absence of a CD40 signal 
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FiGURe 6 | Granzyme B expression by B-cells. IL-21 can induce BCR-stimulated B-cells to differentiate into granzyme B (GrB), an effect which is dependent on 
STAT3 and which is promoted by IL-15 or CpG. CD40 inhibits differentiation into GrB-cells.

FiGURe 5 | B-cell apoptosis. IL-21 can also induce apoptosis of B-cells when activated by LPS, TLRs, CpG, anti-IgM, or IL-4 in the absence of T-cell signals. In 
the absence of such molecules, the balance between STAT1 and STAT3 regulates B-cell apoptosis via the IL-21 signaling pathway. STAT1 induces cell death, while, 
conversely, STAT3 exerts an anti-apoptotic effect. Bim also plays an apoptotic role and BCL-XL an anti-apoptotic role.
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(31, 77, 86–88). GrB+ B-cell numbers are dependent on IL-21 
production, and increasing doses of anti-IL-21 decreased 
the number of GrB-expressing B-cells in co-culture systems 
(78). The increase in GrB+ B-cells in the circulation of toler-
ant recipients may be due to a direct effect of IL-21 (78). GrB 
secreted by B cells may play a key role in the regulation of 
immune responses (78, 89). Xu et al. showed that IL-21 initially 

triggers transcription of the GrB gene in B-cells, while STAT3 
is required for GrB synthesis in PCs activated by IL-21 and 
IL-15. The defect in GrB formation in STAT3-deficient B-cells 
might arise from a lack of cell proliferation and differentiation 
(88). Recent in vitro studies have indicated that CD40 signaling 
in B-cells inhibits their differentiation into GrB+ cells (31, 77) 
(Figure 6).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 7 | Overview of the immunostimulatory and 
immunoregulatory effects of iL-21. IL-21 promotes B-cell proliferation, 
plasma cell differentiation, B-cell memory, and Ig class switching, and is also 
important for the development of IL-10 + regulatory B-cells (Bregs/B10), 
B-cell apoptosis, and granzyme B producing cells.
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iL-21 AS A POSSiBLe PLAYeR iN 
ALLOReACTiviTY AFTeR 
TRANSPLANTATiON

Antibody-mediated rejection is a major problem after organ 
transplantation mediated by anti-HLA antibodies and donor-
specific antibodies (DSA). This poorly defined alloimmune 
response is refractory to treatment with conventional immuno-
suppression (1). From our recent studies, we know that in this 
process, B-cells can be activated by IL-21-producing Tfh cells 
and differentiate into Ig-producing plasma cells. We reported 
that these Tfh cells as well as B-cells infiltrate the allograft during 
rejection and colocalize in follicular-like structures in the trans-
planted kidney (4, 18). These tide clusters of T and B-cells form 
highly organized lymphoid structures named tertiary lymphoid 
organs (TLOs). Associations between the presence of these TLO 
and poor graft outcome have been reported (90–92). In contrast, 
Xu et  al. reported that IL-17, and not IL-21, is responsible for 
lymphoid neogenesis. Therefore, they suggested that Th17, 
but not Tfh, cells could play a role in the process of lymphoid 
neogenesis (93). It is likely that infiltrated and organized T and 
B-cells contribute to the anti-donor response by antigen presen-
tation of B cells and by help of Tfh cells to the infiltrated B-cells. 
Besides IL-21, the capacity of Tfh cells to provide help to B-cells 
depends upon the acquisition of molecules that are known to 
play functional roles in T-cell–B-cell interactions, such as CD40 
ligand, inducible co-stimulator (ICOS), and programed death 1 
(PD-1) (18, 33, 94, 95).

In organ transplantation, specifically targeting B-cells to 
decrease plasma cell differentiation by either IL-21-dependent B 
cell apoptosis or IL-21R blockade may provide novel approaches 
for the prevention of the development of de novo DSA and treat-
ment of antibody-mediated rejection.

The first approach is speculative and based on the finding 
that IL-21 induces B-cell apoptosis when costimulation signals 
are absent (15, 29, 35). At the same time, IL-21 might stimulate 
the cytolytic functions of alloantigen activated CD8 T cells, 
the aggressors in acute rejection (96, 97). Therefore, we should 
be careful with IL-21 cytokine treatment. This strategy should 
first be tested in experimental animal models by using various 
concentrations of IL-21 to define if B cell apoptosis and T cell 
cytotoxicity rely on the same or different concentrations of 
IL-21. This knowledge is helpful to better understand the role 
of IL-21 in B-cell-mediated immune processes such as apoptotic 
cell death.

The second approach could be blockade of the IL-21 pathway 
proven to affect the production of pathogenic immunoglobulins 
in animal models of autoimmune diseases. In these studies, 
blockade of the IL-21R signaling pathway reduced B-cell-
mediated diseases (98). Also, in a mouse model of islet trans-
plantation, mIL-21R-Fc combined with CTLA-4-Ig diminished 
T-cell and B-cell effector functions, and tolerance was induced 
in a subgroup of treated animals (99). It is critical to determine 
whether neutralizing the IL-21 function also inhibits production 
of anti-HLA antibodies and DSA in organ transplant recipients. 
So far, such studies have not been conducted, but based on the 

biological functions of IL-21, the promising findings in animal 
models for autoimmune diseases and in vitro studies, targeting 
the IL-21 pathway could be expected to reduce the incidence of 
antibody-mediated alloreactivity. Our studies using peripheral 
T-cells and B-cells derived from kidney transplant patients 
showed that the interaction between IL-21-producing Tfh cells 
and B-cells could be inhibited by an IL-21 receptor antagonist. In 
these co-cultures, B-cell differentiation and IgM and IgG produc-
tion were diminished (4). We believe that IL-21-producing Tfh 
cells play a dominant role in alloreactivity and should be targeted 
by novel immunosuppressive agents.

Like many other cytokines, IL-21 has multiple functions. In 
addition to its actions in B-cell apoptosis and differentiation it 
also drives regulatory B10 responses. These cells have been shown 
to suppress T-cell-mediated rejection induced by mismatched 
MHC molecules and prolong allogeneic islet T-cell survival, 
suggesting a potential regulatory role for B10 cells in organ 
transplantation (80, 81). Since IL-21 can promote regulatory 
B10 cell proliferation, harnessing the anti-inflammatory proper-
ties of B10 cells by anti-IL-21 agents could potentially stimulate 
antibody-mediated rejection and promote a less favorable 
tolerogeneic environment by modulating the plasma cell/Breg 
(B10) balance (68) (Figure 7). Recently, another type of Bregs 
was described, which could be inhibited by anti-IL-21 treatment. 
The number of GrB-producing B-cells with regulatory properties 
was significantly higher in tolerant patients compared to patients 
with stable graft function (78). This observation suggests that 
targeting the IL-21R pathway with immunosuppressive agents 
may harness this cell population. Data in this area, however, 
remain sparse.

CONCLUSiON

In general, IL-21 promotes humoral immunity, and IL-21 
blockade may attenuate B-cell hyperactivity in which also 
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costimulatory signals are involved. However, B-cells may have 
a dual effect, acting both as a driver and as a regulator of the 
immune system (78, 79, 100). In B-cells that recognize Ag and 
receive T-cell help, IL-21 induces survival, proliferation, isotype 
switching, and differentiation to Ig-secreting plasma cells or GrB-
producing B-cells. B-cells can also cause cell death or, in the form 
of regulatory B10 cells, can induce autoimmunity if they receive 
a strong signal via BCR, or via TLR, and IL-21 costimulation. An 
equilibrium between effector and suppresser cells is necessary to 
maintain B-cell homeostasis and the immune balance, especially 
for the prevention of antibody-mediated transplantation rejec-
tion. Future studies should focus on elucidating details of the 
signaling cascades and downstream changes in gene and protein 
expression within B-cells in response to IL-21, either alone or 
in combination with other molecules. This knowledge may 

ultimately lead to an effective therapeutic strategy to overcome 
antibody-mediated rejection following transplantation, particu-
larly by targeting the differentiation of B-cells into plasma cells 
via IL-21 signaling pathways.
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