
August 2016 | Volume 7 | Article 3321

General Commentary
published: 31 August 2016

doi: 10.3389/fimmu.2016.00332

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Katalin Lumniczky,  

National Center for Public Health – 
National Research Directorate for 
Radiobiology and Radiohygiene, 

Hungary

Reviewed by: 
Franz Rödel,  

Goethe University Frankfurt, Germany

*Correspondence:
Peter Vaupel 

peter.vaupel@tum.de

Specialty section: 
This article was submitted to Cancer 

Immunity and Immunotherapy,  
a section of the journal  

Frontiers in Immunology

Received: 20 July 2016
Accepted: 17 August 2016
Published: 31 August 2016

Citation: 
Vaupel P and Multhoff G (2016) 

Commentary: A Metabolic Immune 
Checkpoint: Adenosine in Tumor 

Microenvironment. 
Front. Immunol. 7:332. 

doi: 10.3389/fimmu.2016.00332

Commentary: a metabolic Immune 
Checkpoint: adenosine in tumor 
microenvironment
Peter Vaupel* and Gabriele Multhoff

Department of Radiooncology and Radiotherapy, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, 
Germany

Keywords: antitumor immunity, adenosine, VeGF, phosphatidylserine, radiotherapy

A commentary on

A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment
by Ohta A. Front Immunol (2016) 7:109. doi:10.3389/fimmu.2016.00109

HyPoXIa DrIVeS malIGnant ProGreSSIon

Hypoxia (i.e., critically reduced oxygen levels) is present in most human tumors (1). Systematic stud-
ies on the oxygenation status in the clinical setting have shown that the existence of hypoxic/anoxic 
subvolumes is a pathophysiological trait in solid malignancies with complex spatial and temporal 
heterogeneities, both within and between tumors of the same type. For many years, tumor hypoxia 
has been regarded as an obstacle for the control of tumors treated with standard radiotherapy 
(RT), some chemotherapies, and photodynamic therapy. During the last two decades, evidence is 
accumulating suggesting that hypoxia has a strong negative impact driving cancer cells toward a 
more aggressive phenotype, resulting from an increased mutagenicity (<0.1% O2, severe hypoxia), 
and hypoxia-driven regulation of a plethora of genes, promoting changes of the proteome and 
metabolome, preferentially through HIF-dependent mechanisms (<1% O2, modest-to-moderate 
hypoxia), ultimately leading to a poorer patient prognosis (2–4). In addition, hypoxia can enhance 
the expression of stem cell markers (5, 6) and can lead to a substantial inhibition of innate and 
adaptive antitumor immune responses [e.g., recently highlighted in Ref. (7)].

Inter alia, this latter aspect is addressed in a recent review by Ohta in this journal (8). Antitumor 
immune suppression – and thus tumor progression – can in part be directly mediated by hypoxia itself 
(adenosine-independent immune suppression) and, to a major part, be driven by HIF-dependent 
adenosine (ADO) production by immune and cancer cells with subsequent accumulation in the 
extracellular space (ECS), which contributes to a pro-cancer, hostile tumor microenvironment 
(9–11).

aDenoSIne CoUnteraCtS antItUmor ImmUne reSPonSeS

Adenosinergic effects on cancer and endothelial cells facilitating tumor progression and poor patient 
prognosis have been summarized in a recent review (9). Upon hypoxic stress, cancer cells release 
ATP4− through PANX-1-channels and exocytosis into the ECS where nucleotides (ATP, ADP, and 
AMP) are converted into ADO by the HIF-sensitive, membrane-bound “tandem” ectoenzymes 
CD39/CD73. ADO actions are mediated mainly by HIF-sensitive A2A receptors on tumor and stro-
mal cells of the tumor microenvironment (immune and endothelial cells included) using autocrine 
and paracrine pathways (Figure 1). A robust and long-lasting accumulation of ADO in the ECS is 
supported by a HIF-dependent inhibition of the nucleoside transporter ENT-1, which impedes a 
“downhill” ADO transport into the cell and thus a removal of ADO from the ECS. The rate of ADO 
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FIGUre 1 | Schematic diagram showing the individual steps of hypoxia-/HIF-1alpha-mediated adenosine (aDo) generation in the extracellular space 
(eCS) of tumor (and stromal) cells. Upon hypoxic stress, ATP (ATP4−) is released into the positively charged ECS through pannexin-1 channels (1) or via 
exocytosis. Following the release of ATP into the ECS, the hypoxia-/HIF-1alpha dependent “tandem-enzymes” CD39 (2) and CD73 (3), the major nucleotide 
catabolizing enzymes, convert ATP into AMP and thereafter to ADO. Upon accumulation within the ECS and inhibition of ADO-uptake into the intracellular 
compartment by HIF-mediated inhibition of the nucleoside transporter ENT-1 (4), ADO acts in an autocrine and paracrine fashion in a sense that tumor-mediated 
immune suppression occurs (upper and left parts of Figure 1). Stimulating effects on endothelial (EC, right part of Figure 1) and tumor cells (lower part of Figure 1) 
are exerted through activation of A2A or A2B-receptors (5). Actions of VEGF/VEGFR expression on immune cells (and tumor and endothelial cells) are comparable 
to those elicited by ADO (see also Table S1A in Supplementary Material). Immune cells involved are specified in Table S1A in Supplementary Material. +, activation 
and stimulation; −, inhibition and suppression.

2

Vaupel and Multhoff Immunosuppressive Effects of Adenosine

Frontiers in Immunology | www.frontiersin.org August 2016 | Volume 7 | Article 332

removal from the ECS can further be reduced by HIF-dependent 
inhibition of the enzymes adenosine kinase (catalyzing AMP 
formation) and/or ADO-(ecto-)deaminase that favors inosine 
formation (9).

According to recent statements by Ohta [e.g., Ref. (8, 12)], 
the distinguished readership of this journal interested in this 
topic may get the impression that Blay et al. (13) were the first to 
detect and publish high intratumor ADO levels. Actually, in 1994, 
we studied the bioenergetic status of experimental tumors as a 
function of tumor size and oxygenation level (14, 15). In order 
to analyze the concentrations of different metabolites of ATP 
hydrolysis, ADO was assessed using HPLC techniques. A key 
result of these investigations was a very high ADO concentration 
in the range of 50–100 μM. ADO levels increased with enlarg-
ing tumor sizes and thus correlated with the extent of hypoxia 
(10, 15). In subsequent studies, “supraphysiologic” intratumor 
ADO contents in the micromolar range were confirmed (13). 
Extracellular ADO concentrations in normal tissues were found 
to be in the range of 10–100 nM [reviewed in Ref. (10)]. Our data 
published in 1994 clearly indicate that tumors – in contrast to 

normal tissues – accumulate ADO in concentrations high enough 
to even stimulate “low-affinity” A2A receptors.

In recent communications, we have emphasized that ADO 
can sabotage not only spontaneous antitumor immune responses 
but also antitumor immune functions artificially introduced with 
therapeutic intention, such as RT (9) and clinically achievable 
hyperthermia (HT) [see Table S1A in Supplementary Material 
(16)]. In addition, ADO can counteract immune therapies of 
solid tumors.

VeGF anD PHoSPHatIDylSerIne  
aS ImmUnoSUPPreSSIVe SIGnalS  
In tUmorS

Hypoxia-/HIF-driven expression of the vascular endothelial 
growth factor (VEGF) and activation of VEGFR also promote 
tumor evasion from immune responses [Figure  1 (17–20)]. 
Reversion of efficient antitumor immune responses may be a sig-
nificant part of the benefits of antiangiogenic therapy (in addition 
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to the debatable “normalization of the tumor vasculature” theory) 
using inhibitors targeting the VEGF/VEGFR pathway (17–20). 
Besides releasing an immunosuppressive and angiogenic 
secretome, accelerated tumor cell proliferation, growth promo-
tion, increased invasion and metastasis, and development of 
chemoresistance have been observed upon autocrine activation 
of VEGF/VEGFR.

From these data, it is evident that ADO accumulation and 
increased VEGF/VEGFR expression are accomplices thwarting 
spontaneous antitumor immune responses (Figure 1). In addi-
tion, both hypoxia-/HIF-induced mechanisms can substantially 
attenuate antitumor immunity elicited by RT and HT (Table S1A 
in Supplementary Material).

Upon hypoxic stress, phosphatidylserine (PS) is frequently 
dysregulated in tumor cells and their microenvironment, thus 
antagonizing antitumor immunity [for a review, see Ref. (21)]. 
Although initially identified as an early signal of apoptosis, PS on 
the outer membrane leaflet on immature tumor endothelial cells 
(22), tumor exosomes (23), and viable tumor cells (24) provides 
a conserved immunosuppressive signal.

tHeraPeUtIC StrateGIeS 
CoUnteraCtInG tHe 
ImmUnoSUPPreSSIVe aCtIVItIeS oF 
aDenoSIne, VaSCUlar enDotHelIal 
GroWtH FaCtor, anD 
PHoSPHatIDylSerIne

Measures to counteract immunosuppressive ADO actions have 
been discussed recently [(16), Table S1B in Supplementary 
Material]. These include respiratory hyperoxia, mild HT improv-
ing the oxygenation status of the tumor, antagonizing or down-
regulation of ADO receptors, inhibition of CD39 and CD73, 
co-blockade of immune checkpoint inhibitors CTLA-4 and 
PD-1/PDL-1, inhibition of the ENT-1 transporter or blockade of 
the ATP-release channel, HIF-pathway inhibition, enhancement 
of ADO degradation to inosine, and facilitation of AMP synthesis 
from ADO.

Blockade of the VEGF/VEGFR system by antiangiogenesis 
has been suggested to inhibit its deleterious effects on antitumor 
immune responses (Table S1B in Supplementary Material).

Reversal of the PS-induced antitumor immunosuppression 
can be stimulated by PS-targeting therapeutics [e.g., AnxA5, 
bavituximab, Table S1B in Supplementary Material (21)].

ConClUSIon

Elevated ADO concentrations in the tumor microenvironment 
as a consequence of hypoxia/hypoxic stress were first described 
by Busse and Vaupel in 1994 (14, 15). This microenvironmental 
condition together with a hypoxia-/HIF-induced VEGF/VEGFR 
expression is sabotaging spontaneous and therapeutically trig-
gered antitumor immune responses. Another signal compromis-
ing antitumor immunity is PS (25–31).
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