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Bone marrow transplantation (BMT) is the only therapeutic option for many hematolog-
ical malignancies, but its applicability is limited by life-threatening complications, such 
as graft-versus-host disease (GvHD). The last decades have seen great advances in 
the understanding of BMT and its related complications; in particular GvHD. Animal 
models are beneficial to study complex diseases, as they allow dissecting the contri-
bution of single components in the development of the disease. Most of the current 
knowledge on the therapeutic mechanisms of BMT derives from studies in animal 
models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well 
as the development of new treatment regimens, has also been supported by studies 
in animal models. Pre-clinical experimentation is the basis for deep understanding and 
successful improvements of clinical applications. In this review, we retrace the history 
of BMT and GvHD by describing how the studies in animal models have paved the way 
to the many advances in the field. We also describe how animal models contributed 
to the understanding of GvHD pathophysiology and how they are fundamental for the 
discovery of new treatments.

Keywords: animal models, HSCT, aGvHD, cGvHD, pathophysiology

The use of animal models to study human diseases is considered essential for understanding underly-
ing pathophysiological and molecular mechanisms (1). Here, we will review how animal models have 
contributed to understanding the complexity of hematopoietic stem cell transplantation (HSCT) and 
graft-versus-host disease (GvHD). HSCT is the treatment of choice to cure many types of malignant 
and non-malignant hematological diseases. Despite continuous improvements in the pre- and 
post-transplantation procedures, the survival rate of transplanted patients is still poor. Acute GvHD 
(aGvHD) or chronic GvHD (cGvHD) represents major complications after HSCT with high mortal-
ity rates, in addition to other complications, such as relapse of the malignancy, engraftment failure, 
or opportunistic infections. GvHD is evoked by immunocompetent cells present in the graft that 
recognize and attack host tissue in an immunosuppressed environment.

THe HiSTORY OF BONe MARROw TRANSPLANTATiON

The advent of the atomic age in the early 1950s led to a strong interest in developing means to 
protect or cure the potentially lethal effects of radiation. Exposure to high doses of radiation 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00333&domain=pdf&date_stamp=2016-08-30
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00333
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:mariti@medisin.uio.no
http://dx.doi.org/10.3389/fimmu.2016.00333
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00333/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00333/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00333/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00333/abstract
http://loop.frontiersin.org/people/347536/overview
http://loop.frontiersin.org/people/370922/overview
http://loop.frontiersin.org/people/39180/overview
http://loop.frontiersin.org/people/71740/overview


2

Boieri et al. Animal Models of GvHD

Frontiers in Immunology | www.frontiersin.org August 2016 | Volume 7 | Article 333

was recognized to have deleterious effects on hematopoiesis 
and immune cell functions. By using different animal models 
including mice, rats, and guinea pigs, researchers soon discov-
ered that injection of bone marrow or fetal spleen cells into 
lethally irradiated animals could reconstitute the hematopoietic 
system (1–5).

At the time, it was not clear how reconstitution occurred. 
At first, all evidence suggested the presence of “humoral factors” 
that stimulated regeneration of the endogenous hematopoietic 
system (6), but several studies in the following years showed that 
the newly formed hematopoietic system was in fact originating 
from the donor. In one study, biochemical techniques were 
used to track rat bone marrow cells transplanted into lethally 
irradiated mice. The authors postulated that the intravenously 
injected cells were able to migrate to the bone marrow where 
they survived and maintained their ability to proliferate and 
form a new hematopoietic system (7). In another study, Ford and 
colleagues used chromosomal markers to track the donor cells in 
the recipient. Their experiments provided the final evidence that 
reconstitution was originating from donor-derived cells (8). The 
responsible cells in the graft were identified almost 10 years later 
when Till and McCulloch in 1963 described a single progeni-
tor cell type in the bone marrow with the potential to expand 
clonally and to give rise to all lineages of hematopoietic cells. 
This represented the first characterization of the hematopoietic 
stem cell (9).

In 1956, Barnes and Loutit proposed that an irradiation-trans-
plantation approach could be used to treat fatal hematopoietic 
malignancies, such as leukemia (10). They speculated that irradia-
tion followed by injection of bone marrow could treat leukemia if 
leukemic cells were as sensitive to radiation as normal cells. They 
also hypothesized, in the same paper, that if the entire population 
of leukemic cells was not eliminated by radiation, a cure could 
perhaps be achieved with the injection of cells capable to induce 
an immune response toward the residual leukemic cells. With this 
central paper, they introduced the concepts of therapeutic bone 
marrow transplantation (BMT), graft versus leukemia (GvL), and 
cell therapy.

At that time, it was already well known that grafts between 
individuals of different genetic backgrounds were rejected, while 
transplantations between inbred animals or identical twins were 
successful. The first successful human BMT was performed in 
1959 by Thomas and co-workers who treated two leukemic 
patients with irradiation followed by infusion of bone marrow 
from their homozygous twins (“autologous” transplantation) (11). 
Despite successful transplantation, both patients experienced 
relapse. Further animal experiments and human transplantations 
demonstrated that irradiation followed by autologous BMT was 
not enough to eradicate leukemia. As an alternative approach, 
transplantation of immune cells derived from an individual or 
animal with a different genetic background was proposed (“allo-
geneic,” formerly termed “homologous”). This approach was 
experimentally tested in different mouse models (10, 12), result-
ing in successful eradication of the malignancies. Unfortunately, 
the mice died a few weeks later from what was then referred to as 

secondary or homologous disease. This disease was later defined 
as GvHD.

GRAFT-veRSUS-HOST DiSeASe

The definition of GvHD is the result of a great number of accumu-
lated observations since the 1940s. However, it was in particular 
the work of two independent researchers that elucidated the 
details of this phenomenon. Simonsen studied the acquisition 
of tolerance using chick embryos, and observed that injection of 
adult spleen or blood cells resulted in splenomegaly and severe 
hemolytic anemia in the recipient embryo. The rationale behind 
his experiments was that immunological competence is acquired 
after birth and, therefore, any immune effect in the adult to 
embryo transplantation setting is ascribable to the injected cells 
(13). During the same years, Billingham and Brent (14) per-
formed similar studies in mice, describing splenomegaly, defects 
in growth, and early deaths when newborn mice were injected 
with allogeneic (“homologous”) adult lymphoid tissues. The 
phenomenon was termed the “runt disease” due to the growth 
retardation of the mice. In 1959, the same authors concluded that 
runt disease resulted from a graft-versus-host reaction (GVHR). 
Their observations were similar to those of experimental BMT 
(15–18). In addition, several other research groups at the same 
time described a reaction of grafted immune cells against the host 
(19–22), and by the beginning of the 1960s the GVHR was an 
established caveat for successful BMTs.

The nature of the GvHD reaction was ascribed to immu-
nocompetent cells present in the bone marrow graft. Initial 
the first experiments showed that different hematopoietic cell 
populations could be fractionated by centrifugation on discon-
tinuous albumin gradients (23). Factions with low content of 
lymphocytes and high content of blasts were shown to induce 
less GvHD (24). The lymphocytes responsible for inducing 
GvHD was identified as T cells, demonstrated by depletion 
experiments, first with the use of anti-lymphocyte serum (ALS) 
(25, 26), and later confirmed by the use of various methods to 
specifically remove T cells from the graft (27–30). These find-
ings represented an important step forward in improving the 
success of BMTs. The removal of T cells from the bone marrow 
graft was soon applied in the clinic, and the depletion methods 
were substantially improved. Unfortunately, while a reduction 
in GvHD was achieved, patient survival was not improved, 
since the absence of T cells led to increased relapse, higher risk 
of infections, and diminished engraftment. To overcome the 
detrimental effects related to T cell depletions and to boost the 
GvL effect, donor T cells was re-introduced after BM trans-
plantation. The infusion was delayed to allow establishment of 
tolerance toward the host. Murine and canine models served 
well in testing the timing and protocols for T cell infusions, now 
termed donor lymphocyte infusion (DLI) (31–34).

The success of allogeneic transplantation depends on the 
degree of histocompatibility match between donor and recipi-
ent. Research on outbred canine models has been vital to study 
genes involved in histocompatibility, and the importance of 
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FiGURe 1 | A timeline presenting seminal events in animal models of 
aGvHD. Acute GvHD is caused by activated alloreactive donor T cells that 
directly cause tissue damage in target organs, such as skin and gut. The 
timeline shows the seminal findings in animal models that have led to the 
current understanding of aGvHD pathology.
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tissue typing and donor selection. In intial experiments, antisera 
were produced by cross immunization of dog littermates. These 
antisera were used in cytotoxicity tests in order to establish 
matched donor/recipient pairs that proved to be effective in 
reducing, but not eliminating, GvHD occurrence. The number 
and nature of the allo-determinants were still unknown; how-
ever, it was already clear that histocompatibility antigens were 
allocated to different loci and that the potential presence of 
different alleles would make the selection of donor–recipient 
pairs difficult, especially in unrelated animals (35–37). In the 
following years, several studies, especially on canine models, 
were vital for understanding the mechanisms related to histo-
compatibility. Histocompatibility was shown to be linked to a 
particular genomic region called the major histocompatibility 
complex (MHC).

Differences in the genes of the MHC region between donor and 
recipient are the major cause of T cell allo-activation and GvHD 
induction, but there are also other genes involved. The first observa-
tions of allo-antigens encoded outside the MHC complex came from 
the above-mentioned studies on BMT in dogs. In some instances, 
dogs developed GvHD when transplanted with MHC-matched 
bone marrow (37). Subsequent studies in the mouse provided more 
evidence on the involvement of non-MHC antigens (38–40), called 
minor histocompatibility antigens (41). GvHD induced through 
mHA was also T-cell mediated as demonstrated by a series of T-cell 
depletion experiments (42, 43), but the manifestation of the disease 
was delayed compared to classical GvHD.

Graft-versus-host disease can develop in two different forms 
that differ in pathogenesis, symptoms, and organ involvement. 
aGvHD affects up to 50% of the patients and accounts for 15% 
of post-transplantation mortality (44). Classically, acute GvHD 
(aGvHD) develops during the first 100 days after transplanta-
tion, but late acute aGvHD has also been described. Typical 
target tissues for aGvHD are the gastrointestinal tract, skin, and 
liver, but other atypical tissues include kidneys (45), salivary 
glands (46), oral epithelium (47, 48), and thymus (49). cGvHD 
develops later, and it occurs in ~50% of long-term survivors 
(50). Chronic GvHD (cGvHD) is associated with significant 
morbidity and mortality, and is still the leading cause of death 
in long-term survivors of HSCT (51). The organs involved 
are mainly skin, mouth, eye, and liver, and less frequently the 
gastrointestinal tract and lung. The pathogenesis of cGvHD is 
not clearly understood and the manifestations resemble more an 
autoimmune disease characterized by autoantibody production, 
chronic inflammation, and collagen deposition in target tissues.

ACUTe GvHD

Pathophysiology of Acute GvHD
Understanding the complexity of the process leading to aGvHD 
requires in-depth mechanistic studies to identify the involve-
ment of the different components of the immune system. For 
this reason, a great deal of the knowledge on the pathophysiol-
ogy of aGvHD is derived from animal models. In this section, 
we will review the seminal findings from animal models that 
have led to the current view of how aGvHD develops, which is 
acknowledged to progress through three phases: (i) activation 

of antigen-presenting cells (APCs), (ii) allo-activation of donor 
T cells, and (iii) tissue destruction by alloreactive T cells. A sum-
mary of these findings are found in Figure 1, while an overview 
of rodent aGvHD models is found in Table 1.

The Conditioning Regimens Lead to Activation 
of APCs
In the first phase, both the conditioning regimen and the underlying 
disease play central roles. Together, they create the tissue damage 
responsible for the production and the release of pro-inflammatory 
cytokines and chemokines that activate macrophages and APCs. 
Of particular importance is the damage to the intestinal epithelium 
caused by the conditioning regimens, and the subsequent release 
of microbial products, such as lipopolysaccharide (LPS) by the 
resident gut bacteria (82–84). After HSCT, we face the uncommon 
situation in which APCs from both host and donors are present. 
Using mouse recipients whose APCs were unable to cross-present 
class I restricted peptides, Shlomchik and colleagues demonstrated 
how host, rather than donor APC, are presenting allo-antigens to 
donor T cells (85). APCs are activated by many signals released 
during this early phase of inflammation, where cytokines, such 
as TNF-α, IL-1, and IL-6, are central. These cytokines, apart from 
activating APCs, can also promote antigen presentation by non-
professional APCs in the tissue and cause direct tissue inflamma-
tion that allows T cells to access their target tissues (86).

Total body irradiation (TBI) was the standard immunoabla-
tive procedure in the first years of BMT, and it is a widely used 
pre-conditioning method in animal models of HSCT. TBI is a 
very harsh procedure and causes significant damage to the 
fast-replicating tissues, such as skin and intestinal mucosa. 
Through research in murine and canine models, it was shown 
that the conditioning intensity and GvHD severity were directly 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | Overview of rodent models for acute GvHD.

Species Model MHC haplotype Conditioning MHC mismatch Reference

Mouse C57BL/6 → BALB/c H2b → H2d TBI Complete (27, 30, 52, 53)
C3H/HeJ → C57BL/6 H2k → H2b

C57BL/6 → B10.BR H2b → H2k

C57BL/6 → B6C3F1 H2b → H2k/b TBI Haploidentical (54–58)
C57BL/6 → B6D2F1 H2b → H2b/d

C57BL/6 → B6AF1 H2b → H2b/a

C57BL/6 → B6.C-H2bm1 H2b → H2bm1 TBI or none MHC-I (59, 60)
C57BL/6 → B6.C-H2bm12 H2b → H2bm12 MHC-II (59, 60)
B10.D2 → DBA/2 H2d → H2d TBI miHA (42, 43, 61–63)
B10.D2 → BALB/c H2d → H2d

B10 → BALB.b H2b → H2b

C57BL/6→ BALB.b H2b → H2b

DBA/2 → B10.D2 H2d → H2d

Rat BN → LEW RT1n → RT1l TBI or CYP or anti-CD25/ 
CD154/CTLA4 Ig

Complete (45, 64–71)
PVG → BN RT1c → RT1n

DA → LEW RT1av1 → RT1l

LEW → BN RT1l → RT1n

Wistar Furth → LEW RT1u → RT1l

LEW.1AR1 → LEW.1AR2 RT1Aa, RT1B/Du, RT1C/Eu →  
RT1Aa, RT1B/Da, RT1C/Eu

TBI MHC-II (72)

BN → (BN × LEW) F1 RT1n → RT1n/l TBI or none Haploidentical (47, 73)
LEW → (LEW × BN) F1 RT1l → RT1n/l (48, 74–81)
LEW → (LEW × DA) F1 RT1l → RT1l/av1

PVG → (PVG × DA) F1 RT1c → RT1c/av1
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correlated (83, 87, 88). Therefore, the development of milder 
conditioning regimens with less damage of the gut were rapidly 
developed in animal models and then brought to the clinic. At 
first, canine models showed that reduced intensity conditioning 
(RIC) led to graft rejection, but introduction of immunosuppres-
sion protocols post transplantation led to successful engraftment 
and reduced GvHD (87).

The role of the gut microbiota in the development of GvHD 
was first described in the early 1970s when experiments using 
germ-free mice showed that elimination of the gut microbiota 
reduced symptoms and mortality related to aGvHD (89, 90). 
In the following years, gut decontamination using broad-
spectrum antibiotics was applied in clinical BMT. Results from 
clinical trials gave contrasting results and ultimately showed 
no increase in survival (91, 92). The reason is that the use of 
broad-spectrum antibiotics for gut decontamination does not 
take into consideration that the mutualistic relationship between 
patient and microbiota can be also protective in some instances. 
In more recent years, studies focusing on the composition of the 
microbiota have shown how the abundance of some bacterial 
species over others can protect or promote aGvHD. In particu-
lar, immunosuppressive treatments and aGvHD lead to loss in 
microbiota diversity, and the prevalence of members from the 
Enterobacteriales and Enterococcus order together with a loss 
in Clostridiales bacteria can promote aGvHD (93). The loss 
of Clostridiae species has important functional consequences 
since this population is thought to be an important promoter 
of regulatory T cell (Treg) proliferation and activity (94). The 
re-establishment of gut microbiota diversity through the intro-
duction of probiotic therapy has been successful in reducing 
experimental aGvHD in mice (95).

Alloreactive T Cells Are Activated in Secondary 
Lymphoid Tissues
During the second phase, host APCs cross-present host auto-
antigens to donor T cells, which will be activated and start 
proliferating. The interaction between APCs and T cells is 
further enhanced by cytokines produced in the first phase (96). 
Furthermore, co-stimulatory molecules, including CD80 and 
CD86 expressed by APCs and CD28 expressed on T cells, give 
the classical second signal required for full T cell activation. Their 
expression is upregulated by the ongoing inflammation. The sec-
ondary lymphoid tissues of the gut are thought to be the primary 
site of T cell activation, as shown by experiments demonstrating 
failure to develop aGVHD in mice lacking Peyer’s patches (PP) 
or where donor T cells lack the ability to migrate into PP (97).

The complex heterogeneity of T cell populations in humans 
makes it difficult to study the specific role of each subset, and how 
they may either promote or suppress aGvHD. Animal models are 
and have been essential for in-depth studies of the function of 
different T cell populations. For example, involvement of naïve 
rather than memory T cells in aGvHD has been investigated in 
mouse models. Several studies have shown how the transfer of 
purified effector memory CD44+CD62L− T cells did not induce 
GvHD while retaining a GvL effect (98, 99).

CD4+ T helper (Th) cells can differentiate into diverse subsets 
depending on the cytokines and microenvironment they are 
exposed to, and different Th subsets may be involved in aGvHD 
pathogenesis in distinct organs (100): Th1 cells, producing IFN-γ, 
IL-2, and TNF-α, are mostly involved in the pathogenesis of gas-
trointestinal GvHD (101), while Th17 cells, producing IL-17A, 
IL-17F, IL-21, and IL-22, are thought to be the major pathogenic 
subset in skin GvHD (102). Only the simultaneous depletion of 
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both these T helper populations is effective in controlling GvHD 
in mouse models (103).

The role of B cells in aGvHD is still controversial and 
under investigation. Host B cells have been shown, in mouse 
models, to be induced by TBI to produce IL-10 and contribute 
to reduce aGvHD occurrence (104). In previous studies in 
the rat, Renkonen and colleagues showed that, in lymphoid 
organs, there is increased B cell activation, proliferation, and 
antibody production early after BMT before the appearance 
of aGvHD symptoms. At later stages, the number of B cells 
decreased in the lymphoid compartment, but remained at 
high levels in the liver, suggesting a pathogenic role at least 
in this organ (105).

Alloreactive T Cells Migrate to Target Organs and 
Mediate Tissue Destruction
The third and last phase of aGvHD pathophysiology is the 
effector phase with migration of lymphocytes to their target 
tissues as one of the key steps. Chemokines and chemokine 
receptors specifically guide T cells in this process [reviewed 
in Ref. (106)]. CCR5 seems to have a broad effect as it has 
been described to mediate the recruitment of effector T cells, 
as well as Tregs, to many different target organs (97, 107, 108). 
In gastrointestinal aGvHD CXCR3 (109), CX3CL1 (110), and 
CCR6 (111) has been shown to play additional important roles. 
Blocking the interaction between chemokine receptors and their 
ligands is one of the therapeutic strategies that are currently 
under investigation. Once T cells reach their target site, the 
tissue destruction occurs by direct induction of apoptosis medi-
ated by TNF-α and IL-1 (112), and/or by killing mediated by 
cytotoxic CD8+ T cells through perforin/granzyme and Fas–FasL 
interactions. The suppression of CD8+ T cell function is crucial 
in the control of aGvHD (113).

The effector mechanisms in aGvHD have been studied in 
several mouse models. Donor spleen cells lacking both perforin 
and FasL failed at inducing aGvHD (114). Using different 
genetic combinations of donor and host mice, Graubert and 
colleagues showed that the perforin/granzyme pathway is 
mostly involved in MHC class I restricted aGvHD, while the 
Fas–FasL interaction is involved in MHC class II restricted 
aGvHD (115). A more recent study showed that CD8+ T cells 
deficient for both perforin and FasL can still induce aGvHD in 
a donor–recipient combination that differs at a single MHC class 
I antigen. In this model the serum levels of IFN-γ and TNF-α 
were increased, and CD8+ T cells showed increased activation 
and proliferation. The authors concluded that both perforin 
and FasL are important during the contraction phase, and can 
contain the expansion of CD8+ T cells (116). T cell expressed 
TNF-related apoptosis-inducing ligand (TRAIL) induces pro-
apoptotic signals upon binding to the TRAIL receptor on target 
cells, and is a commonly used killing pathway. Interestingly, 
this pathway has not been involved in tissue destruction in 
aGvHD, but it mediates anti-tumor responses. Murine T cells 
overexpressing TRAIL have been shown to suppress GvHD 
by inducing apoptosis of alloreactive T cells and mediating 
anti-lymphoma responses. The mechanism of action is thought 
to be through the interaction of the TRAIL+ T cells with host 

APCs bearing the TRAIL receptor DR5, but also fratricide of 
alloreactive T cells (117).

Treatment of aGvHD
The current standard treatment for aGvHD is the use of steroids 
in combination with calcineurin inhibitors. This treatment 
induces general immunosuppression, but has side effects. 
In addition, many patients with aGvHD are resistant to this 
treatment. There is, therefore, a need to improve treatments 
and to target specifically aGvHD, without affecting GvL. The 
complex pathogenic mechanisms described in the previous 
sections offers a variety of pathways as potential targets for new 
therapeutic protocols. Also in the development of treatments 
for aGvHD, animal models have been and will be extremely 
important, although the translation from the pre-clinical 
to clinical setting is not always straight forward as human 
pathology is more complex due to many varying environmental 
factors as we will discuss in more detail below. Nevertheless, the 
possibility of studying the mechanisms involved in the efficacy 
of different treatments in animal models is instrumental for 
designing safe and effective protocols in humans. We will review 
some treatment strategies, where the use of animal models has 
been essential.

Immunosuppression
Canine models have been essential for testing post- 
transplantation immunosuppressive therapies to ameliorate 
GvHD. Together with immunohistocompatibility matching and 
T cell depletion, the use of immunosuppressive drugs in the 
post-transplantation phase represents one of the major advances 
for GvHD-free BMT. This is especially the case for partial 
MHC-mismatched transplantation or for non-myeloablative 
RIC regimens prior to transplantation. Methotrexate (MTX) 
is an immunosuppressive drug that targets the production of 
folic acid, which is essential for the synthesis of nucleic acids 
and proteins. MTX was first tested in dogs and proved to be 
effective at reducing GvHD occurrence (118, 119). A few years 
later, the discovery of calcineurin inhibitors (e.g., cyclosporine 
A and tacrolimus) greatly improved the prophylaxis protocols. 
When used early after transplantation, these drugs, alone or 
in combination with MTX successfully reduced GvHD occur-
rence in animal models (64, 74, 75, 120–122), and were soon 
after introduced to the clinic, where the combined use of MTX 
and cyclosporine showed an advantage over cyclosporine alone 
(123, 124). Although protocols vary between clinical centers, a 
combination of calcineurin inhibitors, MTX, and antithymocyte 
globuline (125) is still the gold standard (126).

Targeting of Cytokines
TNF-α is one of the most important cytokines involved in the 
pathogenesis of aGvHD, implicated in many steps during the dis-
ease progression. The importance of this cytokine in aGvHD was 
first described in a mouse model (127). Since then several studies 
have shown how neutralization of TNF-α can lead to reduced 
symptoms of aGvHD, and different means to target TNF-α and 
its receptor interaction either post- (128) or pre-transplantation 
are currently being explored.
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IL-6 has a broad effect, activating many different immune 
cells. It has been associated with various inflammatory diseases, 
and has a predominant role in the early phases of aGvHD. 
Mouse studies have shown that IL-6 and its receptor (IL-6R) 
are upregulated during aGvHD (129), and that the addition of 
exogenous IL-6 can exacerbate the disease (130). Blockade of 
IL-6R were shown to reduce GvHD without affecting GvL (129, 
131). Interestingly, mice treated with an anti-IL6R antibody also 
showed increased Treg reconstitution, which can effectively 
contribute to the reduction of aGvHD (131). A recently FDA-
approved monoclonal anti-IL-6R antibody (Tocilizumab) has 
been shown to have beneficial effects in the treatment of steroid-
refractory aGvHD (132).

The classical role attributed to IL-2 is to stimulate T cell 
proliferation. After many years of both experimental and clinical 
research, it is now clear that IL-2 has a more broad effect, includ-
ing the maintenance of Treg homeostasis. Due to its effect on this 
regulatory population, IL-2 has been investigated as a therapeutic 
agent for treatment or prophylaxis of aGvHD. Administration of 
low doses of IL-2 alone has produced contrasting results in mouse 
models showing either beneficial (133) or no effects (134), but 
co-administration of rapamycin has been beneficial. Rapamycin 
targets conventional T cell signaling by blocking mTOR signaling. 
As Tregs use different signaling pathways, they are insensitive to 
rapamycin. In the presence of rapamycin, Treg do not compete with 
conventional T cells for IL-2 and this leads to their expansion (135).

The role of IL-18 and IL-22 in aGvHD pathogenesis is more 
controversial. ILC3 is a subset of innate lymphoid cells involved 
in maintaining gut homeostasis by producing IL-22, and is 
suggested to play a role in aGvHD pathogenesis. IL-22 is a 
cytokine with both protective and inflammatory functions, most 
likely depending on the microenvironment and the cell types 
involved (136). IL-22 produced by ILC3 targets epithelial cells, 
and regulates the production of anti-microbial factors, which are 
important in controlling the epithelial barrier function (137). In 
a mouse model, IL-22 depletion or deficiency in the host was 
shown to increase aGvHD severity, and ILC3 and IL-22 were 
suggested to protect the intestinal stem cell pool and epithelial 
barrier function during inflammation (138). Interestingly, in 
another mouse model, donor-derived IL-22 was shown to have 
the opposite effect and contribute to the severity of GvHD by 
promoting Th1 cell infiltration in presence of IFN-α (139).

Targeting of Chemokines and Chemokine Receptors
Blocking chemokine–chemokine receptor interaction is another 
logical therapeutic strategy that has been tested using animal 
models. Administration of anti-CXCR3 (140) or anti-CX3CL1 
(110) antibodies in mouse models of aGvHD were shown to 
reduce gastrointestinal aGvHD. CCR5 is involved in migration 
of lymphocytes to several target tissue of aGvHD, and for this 
reason, it appears as an interesting target molecule. However, 
targeting CCR5 has given contrasting results as this chemokine 
is thought to be involved also in Treg recruitment to peripheral 
tissues (141).

Another interesting approach to treat aGvHD has been 
to take advantage of the upregulation of CXCL10 (ligand for 
CXCR3) observed in target tissues during disease. By injecting 

CXCR3-transfected Tregs, Hasegawa and colleagues showed spe-
cific migration of these cells to the target organs and subsequent 
reduction in aGvHD severity (142). Despite the encouraging 
results in animal models, it is important to keep in mind that 
the chemokine system is redundant, and blocking a single 
interaction does not always directly translate to a milder GvHD 
phenotype. For this reason, the use of agents with a broader effect 
that target more than one pathway has been tested. Among these, 
the broad-spectrum chemokine inhibitor NR58-3.14.3 has been 
successfully proved to reduce murine aGvHD especially in lung 
and liver (143).

Targeting of Co-stimulatory Molecules
Engagement of co-stimulatory molecules is necessary for full 
activation of T cells, and blocking these molecules has interest-
ing potentials. Studies in animal models showed that anti-CD80 
and anti-CD86 inhibited T cell expansion, and that mice treated 
with these antibodies experienced milder symptoms of aGvHD. 
Moreover, T cells isolated from CD28-deficient mice caused 
less severe GvHD (144, 145). Other studies have focused on 
targeting the CD40–CD40L pathway. Also in this case, the use 
of anti-CD40L antibodies reduced the severity of GvHD, which 
is thought to induce a selective depletion of activated T cells, 
and at the same time to induce Tregs (146–148). Along the 
same lines, the OX40–OX40L interactions are important in the 
pathogenesis of GvHD. T cells from rats with aGvHD upregulate 
OX40 (149), and administration of blocking antibodies against 
OX40L reduced aGvHD mortality in a mouse model (150). Other 
co-stimulatory pathways have been investigated in animals. 
Blockade of all of the following pathways have shown potential 
beneficial effects on aGvHD severity: 4-1BB/4-1BBL (151), 
ICOS/ICOS-L (152), LIGHT/HVEM (153), NKG2D-NKG2D-L 
(154), DNAM-1/DNAM-1-L (155), and the CD30/CD30L (156) 
pathways. However, co-stimulatory molecules are also important 
for the GvL effect, and blocking these molecules may severely 
compromise the GvL effect and, therefore, their clinical use may 
be limited. Nevertheless, experimental models suggest that not 
all molecules are equally involved in GvHD and GvL, and a bet-
ter understanding of the importance of different co-stimulatory 
molecules for either GvHD or GvL may help identify new targets 
that can reduce GvHD while maintaining GvL.

Cell Therapy
Over the last 15  years, focus has been put on the use of cells 
with immunosuppressive functions to regulate aGvHD, in 
particular mesenchymal stem cells (MSCs) and Tregs (157). 
MSCs are found at very low frequencies in the BM and other 
organs, such as adipose tissue, placenta, and amniotic fluid, and 
have the potential to differentiate into adipocytes, chondrocytes, 
myocytes, and osteoblasts. MSC support hematopoiesis in the 
BM (158), and contribute to embryo implantation by promot-
ing trophoblast invasion in the placenta (159). MSC also have 
immunosuppressive functions which, together with the ease at 
expanding them ex vivo, have made them promising candidates 
for immunotherapy for aGvHD [reviewed in Ref. (160)]. Despite 
the initial success in the treatment of steroid-refractory aGvHD 
(157, 161), MSC therapy has failed to give consistent results 
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and animal studies also show contrasting outcomes (65, 66, 
76, 162–167). Clinical trials testing the efficacy of MSC in the 
treatment of GvHD started before thorough investigation in pre-
clinical models was completed (168). The precise mode of action 
of MSC on the immune system is not well understood, and these 
cells seem to acquire different functions according to the environ-
ment they are exposed to (169, 170). A better understanding of 
the biology of MSC, together with improved and standardized 
techniques for their isolation, characterization, and expansion 
may allow development of improved methods for their use in 
aGvHD prophylaxis or treatment. Tregs are a subset of CD4+ 
T cells that represent 5–10% of the total T cell pool in human 
and rodents (171–173). Tregs express high levels of CD25 and 
the transcription factor FOXP3, which is necessary and sufficient 
for their immunosuppressive activity (174). The functional and 
phenotypical properties of Tregs are conserved in human and 
rodent species, making animal studies particularly relevant for 
applications in humans. Treg have immunosuppressive proper-
ties, and they are fundamental to induce and maintain peripheral 
self-tolerance, protecting from aberrant immune responses that 
can lead to excessive inflammation and autoimmunity. Earlier 
animal experiments showed that depletion of Treg from the BM 
graft resulted in severe aGvHD, with mice dying by day 21 after 
transplantation compared to day 41 in non-depleted transplanta-
tions (175). Moreover, addition of donor Treg to the graft at 1:1 
ratio with conventional T cells was shown to delay or prevent 
aGvHD (175, 176). In order to exert their effects, Tregs must 
migrate to the secondary lymphoid tissues where alloreactive T 
cells are activated. For this reason, only the CD62L+ and not the 
CD62L− population of Tregs have been shown to protect from 
lethal aGvHD (177, 178).

Regulatory T cells are categorized into two groups, both 
important for controlling peripheral tolerance: naturally occur-
ring Treg (nTreg) that develop in the thymus and induced Treg 
(iTreg) that differentiate from conventional T cells in response to 
TGF-β and IL-2. The second group is therapeutically interesting 
because iTreg can be generated in vitro from conventional T cells 
(179), and they can be expanded to therapeutically sufficient 
amounts. Unfortunately, animal studies have shown that this 
approach does not lead to any protection from aGvHD. The main 
reason is that iTreg are unstable in vivo, and upon transfer they 
can lose the expression of FOXP3, together with their immuno-
suppressive activity (180, 181). One of the hypotheses to explain 
this instability is that the inflammatory environment of aGvHD 
can induce the conversion of iTreg back to conventional T cells. In 
favor of this hypothesis are studies showing how blocking inflam-
matory cytokines, in particular STAT3-dependent cytokines, 
can improve the iTreg stability (182, 183). The nTreg represent, 
therefore, a potentially more effective therapeutic tool, but their 
low frequency in the periphery requires optimization of ex vivo 
or in vivo expansion protocols.

Natural killer cells are another therapeutically interesting cell 
population in context of aGvHD and GvL. Earlier studies in rodent 
models demonstrated that NK cells are important for successful 
engraftment after BMT. NK cells are particularly radioresistant 
and can mediate rejection of allogeneic cells (184–186). The pres-
ence of residual NK cells after immune ablation can play a role 

in the acceptance or rejection of the allogenic graft. Studies in 
rats showed that differences in both the classical and non-classical 
MHC class I genes can contribute to NK-cell mediated rejection 
(187, 188). On the other hand, the infusion of alloreactive NK 
cells, together with a reduced TBI in a haploidentical transplanta-
tion mouse model, caused eradication of leukemia and depletion 
of the residual host hematopoietic system, thus facilitating the 
engraftment of donor BM cells. The additional NK-cell mediated 
killing of host APC prevents activation of alloreactive T cells and, 
therefore, no aGvHD (189). The use of NK cells to cause a GvL 
effect is restricted to those combinations of donor–recipient in 
which NK cell alloreactivity can be fully exploited (KIR–MHC 
mismatch). Moreover, not all types of tumor cells have the same 
sensitivity to NK cells due to variable expression of ligands for 
activating and inhibitory receptors. Additional stimulation of NK 
cells with cytokines might be required in order to accomplish an 
effective and long-lasting GvL effect for the NK-cell resistant 
tumors. A recent study demonstrated how NK cells pre-activated 
with a combination of IL-12, IL-15, and IL-18 reduced aGvHD 
while retaining the GvL effect in a fully mismatched BMT mouse 
model. Injected NK cells retained their activated phenotype and 
exerted their immunosuppressive activity by inhibiting alloreac-
tive T cell proliferation (190).

CHRONiC GvHD

Pathophysiology of Chronic GvHD
Chronic GvHD in the clinic was initially defined as any symptoms 
of GvHD that occurred more than 100 days after transplantation, 
but it became increasingly clear that this definition was inad-
equate. Due to the heterogeneity of the clinical manifestations of 
cGvHD, cGvHD was only properly defined a decade ago with the 
NIH Consensus Project on cGvHD, and cGvHD is now classified 
as a disease distinct from aGvHD (191, 192). Both aGvHD and 
cGvHD arise as a complication of allo-HSCT transplantation, but 
with different pathology and underlying disease-driving mecha-
nisms. Hallmarks of cGvHD in the clinical setting are systemic 
fibrosis, chronic inflammation, sclerodermatous manifestations, 
and autoantibody production. These features are similar to sev-
eral autoimmune diseases; yet do not fully mimic any particular 
autoimmune disease, being an entity on its own. However, due to 
the pathological similarities between cGvHD and autoimmune 
diseases, there has been a close synergy between the two fields; 
the difference being that cGvHD is mediated by a foreign donor 
lymphoid graft.

Therapies directed at ameliorating cGvHD have improved lit-
tle over the past decades. The reason is incomplete knowledge of 
the underlying mechanisms that drive the disease. This has been 
mainly due to lack of animal models that completely recapitulate 
the full clinical heterogeneity of cGvHD. For more than three 
decades after cGvHD was acknowledged in the clinic, the best 
described and most utilized animal models for cGvHD addressed 
only one or a few of the many clinical manifestations of cGvHD, 
principally autoantibody generation or sclerodermatous disease 
(193) (Table  2). The clinical relevance of these animal models 
was a concern, as they did not fully mimic the clinical setting in 
terms of composition of the donor graft, preparative regimens, 
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FiGURe 2 | Timeline of major events in cGvHD research using animal 
models. Chronic GvHD is characterized by autoantibody production and 
deposition in target tissues, and tissue fibrosis. The timeline presents how 
animal models have contributed to increased understanding of the pathology 
of cGvHD, and included is also the NIH consensus reports on staging and 
diagnosis of cGvHD, which has contributed to development of improved 
rodent models of cGvHD during the last decade.

TABLe 2 | Overview of rodent models for chronic GvHD.

Species Model Conditioning Manifestation Reference

Mouse C57BL/6 → B10.BR Cy i.p./TBI Bronchiolitis obliterans (194)
DBA/2 → BALB/c TBI Scleroderm. (195)
B10.D2 → DBA/2 × B10.D2 F1 TBI Scleroderm. (186)
B10.D2 → BALB/c TBI Scleroderm. (188, 189)
C57BL/6 → BALB/ca TBI Scleroderm. (190)
BALB/c → BALB/c × A/Jax F1 None SLE (185)
DBA/2 → DBA/2 × C57BL/6 F1 None SLE (183)
CBA → CBA × A F1 None SLE (193)
C57BL/6 → C57BL/6 × BALB/c F1 None SLE (193, 196)
B6 → B6 × bm12 F1F1 None SLE (197)

Rat LEW → SD SD neonates tolerized with LEW  
lymphoid cells

Fibrosis (184)

aLow dose donor spleen cells prerequisite.
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post-transplantation immune suppression, and the diverse human 
genetic background. Still, the animal models were instrumental 
for investigating subpopulations of donor and host leukocytes in 
the pathogenesis of cGVHD. In Figure  2, we have highlighted 
seminal findings from animal models. Moreover, during the last 
decade, improved models were developed that incorporate more 
of the features of clinical cGvHD, and these have led to further 
advances in our understanding of the underlying mechanism of 
cGvHD pathology.

Lupus-Like and Scleroderma-Like Animal Models of 
cGvHD
Chronic GvHD as a complication after allo-HSCT in the clinic 
was first acknowledged during the 1970s, with reports on auto-
immune-like symptoms developing in patients several months 
after BMT. An autoimmune form of GvHD was described more 
than a decade earlier in experimental mouse and rat models. 
In  1961, Oliner, Schwartz, and Dameshek reported a form of 
GvHD (“runt disease”) in a parent to F1 hybrid transplantation 
model with autoimmune characteristics similar to systemic lupus 
erythematosus (SLE) (197). Two years later, Stastny, Stembridge, 
and Ziff reported in the rat a chronic form of GvHD (termed 
“homologous disease”) with features of sclerosing skin lesions 
similar to scleroderma (198). These works were followed by stud-
ies arguing that the “runting” syndrome of acute allogeneic disease 
must be separated from chronic allogeneic disease, the latter with 
symptoms manifesting at a later time point (199). It was suggested 
that, as for acute allogeneic disease, the chronic form was evoked 
by an immunological reaction of the donor against host antigens, 
although the exact mechanisms was not pinpointed at the time.

Throughout the 1970s and 1980s, the SLE-like and the sclero-
derma-like mouse models of cGvHD were the dominant animal 
models for cGvHD. These models were also extensively used for 
studies of autoimmune diseases. The SLE-like models generally 
involved transfers of lymphoid cells from a parental strain into 
non-irradiated F1 hybrids [e.g., BALB/c to BALB/c × A/Jax F1 
(199) or DBA/2 to C57BL/6  ×  DBA/2 F1 (197)], resulting in 
transient or mixed chimerism. The main manifestation in these 
models is generation of autoantibodies, while skin pathology is 
less common. The relevance of these models has been questioned, 
mainly due to absence of bone marrow derived stem cells in the 

donor inoculum and absence of host immuno-depletion prior to 
transplantation.

Scleroderma-like mouse or rat models involves transplanta-
tion of major or minor MHC-matched or mismatched bone 
marrow into sub-lethally irradiated recipients, resulting in full 
donor chimerism (200–203). Here, the main manifestations are 
fibrotic changes in the skin, liver, lung, and salivary glands, while 
autoantibodies are less common. The scleroderma-like model 
for cGvHD shares many symptoms with sclerodermatous clini-
cal cGvHD. The incidence of sclerodermatous cGvHD among 
long-term survivors of allo-HCST is around 3–10%, but the 
incidence of sclerodermatous cGvHD in the clinic is expected 
to rise as increasing numbers of unrelated donor transplants are 
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performed, as well as the increased use of mobilized peripheral 
blood as stem cell source.

More recently, developed mouse models have better reca-
pitulated human cGvHD. In these models, transplantation of 
MHC-mismatched T cell-depleted bone marrow together with 
a low dose donor lymphocytes leads to cGvHD (196). Fibrosis of 
the skin, salivary gland damage, and serum autoantibodies are 
observed. Similarly, a mouse model developed in Blazar’s labo-
ratory with cyclophosphamide and lethal TBI pre- conditioning 
followed by allo-BM transplantation and low dose alloreactive 
T cell infusion, showed cGvHD manifestations in a wide range 
of cGvHD target organs (52). These models will likely signifi-
cantly advance our understanding of the underlying immune 
reactions.

Donor-Derived CD4+ T Cells as Initiators of cGvHD
It was earlier shown that T cells play a central part for autoim-
mune development by collaborating with B cells for autoanti-
body generation (204). Fialkow and colleagues suggested that 
host CD4+ T cells were the drivers of autoantibody production, 
and that cGvHD was a purely host-derived, but graft-initiated, 
disease (205). However, it was soon clear that donor-derived 
CD4+ T cells were the real initiators of the disease, although 
the antigens recognized by the host-reactive donor T cells 
were not clear. Several pieces of evidence showed that naïve 
donor-derived CD4+ T cells were central for inducing cGvHD 
pathology, e.g., (i) when unfractionated lymph node cells or 
splenocytes were adoptively transferred into non-irradiated 
F1 hybrid hosts containing a mutated allele in MHC class I 
(B6 × bm1), a milder form of cGvHD was observed compared 
to transfer into F1 hybrid hosts with mutated MHC class II 
allele (B6 × bm12) (59), (ii) transfer of alloreactive donor CD4+ 
T cells obtained from mice with aGvHD to lethally irradiated 
secondary hosts led to cGvHD (206), and (iii) mature donor-
derived CD4+ T cells were shown to cause both alloreactive 
and autoreactive responses using a DBA/2 to BALB/c cGVHD 
model (207). On the other hand, CD8+ T cells and the pool of 
CD4+ effector/memory T cells were found insufficient for induc-
ing cGvHD (98, 208–211). Furthermore, depletion of CD8+ T 
cells from the graft, but not CD4+ T cells, led to autoantibody 
production. Later, a correlation was made between low CD8+ 
T cell numbers with cGvHD severity in several parents into F1 
hybrid models (212). Thus, there is a notion that the frequen-
cies of donor alloreactive CD8+ T cells may determine whether 
aGvHD or cGvHD develops. For example, CD8+ T cell anergy 
can shift the responses from an aGvHD to an SLE-like cGvHD 
(194, 213). Although CD8+ T cells are not necessary to induce 
cGvHD, they infiltrate skin and intestines where they contribute 
to the observed pathology (214).

B Cells as Autoantibody Producers and APCs
In contrast to aGvHD, B cells have a clear role in evoking cGvHD 
pathology. Although it was presumed that donor helper T cells 
were needed for production of autoantibodies by B cells, this 
was not directly shown until 1990, when Eisenberg’s group 
utilizing a mouse model of SLE demonstrated that autoantibody 
production by self-reactive host B cells, and not donor-derived 

B cells, was directly induced by donor-derived helper T cells 
(195, 215). The importance of B cells for inducing cGVHD 
pathology was subsequently shown by several investigators 
in SLE-like mouse models, by either blocking co-stimulatory 
molecules, such as CD40L and CTLA4, important for B-cell 
crosstalk (146, 216). Furthermore, B cell persistence, obtained 
by transferring perforin-deficient T cells from an aGvHD model 
(B6 into B6xDBA/2 F1 hybrids), resulted in a shift to cGVHD 
symptoms resembling SLE-like cGvHD (217). Later, in a mouse 
model of RIC, persistence of host B cells was associated with 
cGvHD lesions and autoantibodies of host origin (218). It was 
also shown that patients with extensive cGvHD had faster B cell 
recovery and detectable autoantibodies after allo-HSCT (219). 
Patients with severe cGvHD also have elevated levels of soluble 
B-cell activating factor (BAFF), which is evidence for activated 
B cells (220). Elevated BAFF serum levels were also associated 
with higher circulating levels of pre-germinal center (221) B cells 
and post-GC plasmablasts (222). Blockade of germinal centers 
with lymphotoxin-receptor Ig-fusion proteins was shown to 
suppress cGvHD, further demonstrating the involvement of 
mature, activated B cells (223). Interestingly, transplantation 
of bone marrow incapable of secreting allo-antibodies resulted 
in less severe cGvHD, demonstrating a role for both auto- and 
allo-antibodies in cGvHD pathology (223).

In addition to their role as producers of autoantibodies, B cells 
are potent APCs that stimulate donor T cells to further propagate 
the cycle that leads to cGvHD. Priming of donor T cells to mHA 
and subsequent cGvHD development was shown to depend on 
B cells as APCs (224). Almost a decade later, it was shown for 
the first time in a clinical setting, that a coordinated B and T cell 
response to a mHA, with donor B cells mediating the specific-
ity, could be mounted in a setting of cGVHD (225). Further 
experiments in the mouse demonstrated that donor B  cells 
promoted clonal expansion of autoreactive CD4+ T cells, their 
differentiation to the Th2 subset, and prolonged survival. In fact, 
these T cells mediate cGvHD when transferred into secondary 
recipients (226).

Mouse Models Suggest That cGvHD Is a Th2-Driven 
Disease
It has been debated whether cGvHD is primarily a Th1 or a 
Th2-driven disease. Most mouse models suggest that cGvHD 
is a Th2-driven disease. In the SLE-model, expansion of 
recipient B cells leading to lymphadenopathy, splenomegaly, and 
autoantibody production are observed. With this model, Th2 
cytokines were shown to stimulate secretion of fibrosis-inducing 
cytokines (e.g., IL-13 and TGF-β) resulting in sclerodermatous 
disease (208, 209). When the cytokine balance was manipulated 
toward a Th1 type, a shift of symptoms to more aGvHD-like 
pathology was observed (227, 228). Furthermore, increased B 
cell activity was linked to increased levels of the Th2 cytokines 
IL-4 and IL-10, with concomitant suppression of IL-2 and IFN-γ 
by T cells isolated from animals with cGvHD (229). Confirming 
these observations, were clinical studies showing that a lack of 
Th1 responses led to early-onset cGvHD, and conversely, an early 
Th1 response with high IFN-γ production was associated with 
less cGvHD (230). These observations were later confirmed in 
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mouse models, demonstrating lower incidence of cGvHD in the 
presence of donor T cells producing high levels of IFN-γ (221).

Involvement of Thymic Dysfunction for cGvHD 
Development
The thymus has a central role for both T cell development and for 
induction of T cell tolerance toward self antigens. Autoreactive 
T cells are negatively selected in this process. This is illustrated 
by studies of thymectomized neonatal mice that spontaneously 
develop multi-organ autoimmune disease (231, 232). Therefore, 
autoreactive T cells in context of cGvHD could result from defec-
tive tolerance induction due to thymic damage as a consequence 
of pre-conditioning or immune-mediated damage.

A mouse model of thymic dysfunction, where lethally irradi-
ated hosts (C3H/HeN) receive T cell-depleted bone marrow from 
MHC-mismatched, MHC class II deficient donors (C57BL/6) 
represent a model where impaired negative selection occurs as 
a consequence of lack of MHC class II expression by thymic 
dendritic cells. In this model, many features of clinical cGvHD are 
observed, including sclerodermatous skin disease, weight loss, 
fibrosis, inflammation, and immune cell infiltration of salivary 
glands, while autoantibody generation is not reported (233). A 
weakness of this model is the fact that host thymic medullary 
epithelium cells also mediate negative selection. In addition, in 
this model thymic function is constitutively impaired by lack of 
MHC class II molecules, and does not address whether there is 
a temporal window of thymic damage where impaired negative 
selection occurs. In another model, where sub-lethal irradiation 
of BALB/c was performed prior to transfer of MHC-matched, 
mHA-mismatched DBA/2 bone marrow, donor T cells caused 
lesions characteristic of cGvHD when transferred to secondary 
allogeneic recipients. These cells were shown to be thymopoiesis 
dependent, and the authors, thus, concluded that T cells generated 
in the thymus were responsible for cGvHD development (206). 
Of note, a previous study using the same animal model could not 
demonstrate thymic dependence for cGvHD development (234).

A number of other mouse models points against a role for 
the thymus in the induction of cGvHD, as none of the murine 
models involving genetically unmodified mice has provided 
any evidence of impaired negative selection. In particular, no 
adversities of the thymic architecture or T cell development 
has been observed in the well-described SLE or Scleroderma-
models described in the previous sections. Moreover, transfer 
of DBA/2 splenocytes and bone marrow to thymectomized 
BALB/c hosts did not change the incidence or the severity of 
cGvHD compared to mice with intact thymus (235). However, 
recent years’ research has indicated that alloreactive donor 
CD8+ T cells may damage thymic epithelial cells, leading to 
generation of autoreactive T cells (196, 236). The resulting auto-
reactive T cells were demonstrated to interact with donor B cells 
resulting in autoantibody production (196). Although recently 
developed mouse models strongly suggest that dysfunctional 
thymic negative selection is important for cGvHD pathogenesis, 
a role for the thymus in human cGvHD pathology is not clear. 
In addition, one must bear in mind that the thymus involutes 
by age, and older patients are not likely to have abundant 
functional thymic tissue.

Treatment of cGvHD
Current treatment of cGVHD is largely based on immunosup-
pressive steroids, but development of more targeted therapies to 
replace or to treat steroid-refractory cGvHD are currently tested 
in pre-clinical animal models and several have now entered clini-
cal trials.

Inhibition of Fibrosis
Platelet-derived growth factor (PDGF) and TGF-β are both 
pro-fibrotic cytokines inducing fibroblast activation. cGvHD 
patients are shown to have elevated levels of circulating, stimu-
lating autoantibodies toward PDGFRα. PDGFR signaling leads 
to enhanced reactive oxygen species generation and subsequent 
collagen synthesis and deposition. Mouse cGvHD models were 
instrumental for developing Imatinib, a tyrosine kinase inhibi-
tor that targets PDGFRα (41), and also anti-TGF-β treatment 
was shown to prevent skin and lung fibrosis (237). Imatinib has 
shown promising results in clinical trials of steroid-refractory 
cGvHD patients (238, 239). An enhanced effect was observed by 
simultaneous targeting of both PDGFRα- and TGF-β signaling 
pathways using Imatinib and Nilotinib, the latter targeting c-Abl 
in the intracellular pathway induced by TGF-β (240).

Targeting of B Cells
As donor-derived B cells are central auto- and allo-antibody pro-
ducers, and significantly contribute to clonal expansion of donor-
derived CD4+ T cells, therapies have been directed at depleting B 
cells from the patients. The well-known B cell-depleting antibody 
Rituximab (anti-CD20) specifically targets B cells and has been 
used in the treatment of patients with refractory cGvHD, result-
ing in objective improvements of symptoms (241–243). However, 
the antibody rarely results in complete remission of cGvHD. It is 
also a concern that anti-CD20 antibodies poorly target germinal 
centers in lymph nodes, in contrast to efficient removal of B cells 
from peripheral blood (244).

Infusion or Induction of Tregs
As for aGvHD, the use of Tregs in therapy of cGvHD is being 
exploited in clinical trials, as cGvHD patients have reduced fre-
quencies of Tregs similar to aGvHD patients (245, 246). In mouse 
models, it was shown that transfer of ex vivo expanded Tregs 
resulted in suppression of cGvHD (247), suggesting that they 
may be utilized to treat cGvHD. However, the required ex vivo 
expansion of Tregs to obtain sufficient numbers for transfer into 
patients is technically challenging, and may also be associated 
with changes in their functionalities as discussed above. Another 
strategy is the expansion of Treg in  vivo by injecting low-dose 
subcutaneous IL-2 leading to increased Treg accumulation that 
has demonstrated reduced severity of cGvHD (248).

ADvANTAGeS AND LiMiTATiONS OF 
ANiMAL MODeLS FOR GvHD

As outlined above, animal models have largely contributed 
to current GvHD prophylaxis and treatment protocols (249). 
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An overview of the most common animal models are found 
in Tables  1 and 2. Each model has advantages but also their 
limitations.

In the early days of GvHD research, canine models were 
important for studying the role of MHC disparities in GvHD 
(250), and the canine models substantially contributed to 
advance our understanding of the biological mechanisms at 
play in HSCT and GvHD. Among the many researchers in this 
field, Edward Donnal Thomas is often recognized as the father of 
clinical BMT, for which he earned the Nobel Prize of Medicine 
in 1990. In addition to his clinical work, he carried out intensive 
research in canine models of BMT and GvHD. Canine models 
are still used in studies pertaining to the effectiveness of cellular 
immunotherapy, such as the utility of an anti-CD28 antibody as 
therapy to prevent GvHD during allo-HSCT (251).

Although outbred animal models are sometimes required to 
better mimic several aspects of human HSCT and GvHD, the 
most preferred animal model in context of GvHD is currently 
the mouse (252). The advantages of mouse models are the (i) 
broad availability of transgenic and gene-deficient strains that 
provide mechanistic insights into the role of individual genes 
for GvHD (253), (ii) the presence of inbred strains that are well 
characterized for studying GvHD and GvL, (iii) the availability of 
many well-characterized reagents, and (iv) the relative low costs 
of breeding mice (254, 255).

Several well-characterized mouse models of both acute and 
cGvHD have been established, such as the full MHC class I 
mismatch C57BL/6 to BALB/c (256) or C3H/HeJ to C57BL/6 
(30) for aGvHD, and B10.D2 to BALB/c for cGvHD. The 
mouse is a particular valuable model to determine the role 
of individual cell types, genes and factors that affect GvHD. 
Examples are transgenic mice that have a mutant MHC class 
I, e.g., B6.C-H2bm1 (bm1), or mutant MHC class II, e.g., B6.C-
H2bm12 (bm12). Both the H2bm1 and H2bm12 models have been 
important in understanding the interaction of T cells with 
recipient and donor APCs (257). Humanized murine models 
are also interesting models for GvHD and GvL research (258). 
An example is the Hu-PBL-SCID model, which is based on 
the NOD-scid mice. In this model, HIV-1 envelope protein 
gp120 delayed GvHD development by activation of human 
Tregs (259). Similarly, GvHD development was delayed in the 
Hu-PBL-SCID model based on NOD-scid IL2null mice following 
treatment with a soluble Fas ligand (260). On examination of 
the kinetics of engraftment and development of GvHD in the 
latter model, it was observed that mice deficient in MHC class I 
exhibited a delay in GvHD (261). However, it is difficult to select 
an appropriate model, as engraftment or the strength GvHD 
symptoms does not necessarily correlate with the pathophysiol-
ogy of GvHD in humans (262).

Rats are also used for GvHD studies. Rats are genetically 
similar to mice, but they are larger in size, have a longer life 
span, and have more biomaterial that can be used for experiments 
(263). GvHD models in rats include MHC-mismatched strains 
between LEW and BN (264, 265), or between PVG and BN 
(67, 68). Rat models have been used to test immunomodulatory 
drugs such as Thalidomide (266) and MC1288, an analog for 
vitamin D (267) as therapeutic strategies for GvHD.

Conditioning prior to transplantation causes tissue damage 
and pro-inflammatory responses that affect the GvHD outcome 
(268, 269). Therefore, the timing of transplantation and condi-
tioning regimens will significantly affect the experimental out-
come (270). Conditioning regimens in murine models frequently 
involves TBI, in contrast to the clinical settings where patients 
are usually given chemotherapy, and where only a few patients 
are subjected to TBI (271). Sadeghi and colleagues developed 
a chemotherapy-based GvHD mouse model with busulfan and 
cyclophosphamide as the conditioning regimen. The mouse 
model was mismatched for both MHC and mHA [C57BL/6 (H2b) 
to BALB/c (H2d)], and the allogeneic transplanted mice devel-
oped clinical and histological symptoms associated with GvHD, 
such as apoptosis and T cell infiltration into the target organs 
(272). This model represents a myeloablative-conditioning 
regimen, which is most commonly used in the clinic. Another 
mouse model involving the same chemotherapy as conditioning 
was described using MHC-matched, mHA-mismatched mice 
[LP/J (H2b) – C57BL/6 (H2b)]. This model was developed to 
more closely mimic the clinical situation, where patients usually 
are MHC matched. With this model, similar T cell infiltra-
tion, GvHD-specific damage, and systemic inflammation were 
observed in the mice as reported in humans (273). Thus, animal 
models of selective mHA mismatch may represent human HSCT 
more closely than MHC-mismatched models (193).

Another important consideration is the fact that the immune 
cell compositions vary between species. In murine models, mice 
receive bone marrow and T cells from an allogeneic counterpart 
to induce severe aGvHD. The T cell expansion is mainly homo-
geneous in the inbred recipients, in contrast to the heterogene-
ous T cell response in humans (274). Furthermore, differences 
in the proportion of lymphocyte subsets (such as CD4+, CD8+, 
and Tregs) between species can influence pathophysiology of 
GvHD (193). In addition, the metabolism and pharmacology of 
animal models can be different and these differences between 
animal models and humans could explain why some of the 
findings in mice models have not been successfully translated 
into clinical trials. For example, IL-11 reduced transplant 
related mortality (TRM) and prevented GvHD while maintain-
ing GvL effects in mice (275). By contrast, IL-11 included as 
GvHD prophylaxis caused multi-organ failure in a phase I/II 
double blinded, placebo-controlled trial for allo-HSCT (276). 
In another example, experiments in mice showed that GvHD 
was effectively prevented in animals by therapy with a monoclo-
nal antibody against the IL-2 receptor (IL-2R) (277). However, 
the use of IL-2R antibodies in two separate clinical trials was 
only moderately successful in reducing the incidence of severe 
GvHD (278, 279).

An important difference between mouse and rat animal 
models and humans is the homogenous genetic composition of 
inbred rodents, in contrast to the heterogeneous humans (193). 
Furthermore, the genetic drift that occurs in inbred strains from 
a particular colony might affect the ability to reproduce data 
consistently between labs (280). Given that inbred strains are an 
artificial model, several different inbred strains and/or outbred 
animals should be used to better represent the genetic complexity 
in the human population. For this reason, canines are sometimes 
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preferred to study new regimens in prophylaxis and treatment of 
GvHD (281).

Moreover, there are important species differences that need 
to be taken into consideration when extrapolating results found 
in animal models to humans (282). Differences in the anatomy, 
physiology, microbiota, play an important role in GvHD pathol-
ogy (193). In addition, age plays an important role in influencing 
the efficacy of immune reconstitution post-transplant, as well as 
susceptibility to GvHD (283). Non-human primates or canine 
models are better fit for long-term therapies, given their longer 
life span than rodents. Moreover, the effects of opportunistic 
infections that affect HSCT outcome that can be observed in 
humans are not modeled in rodents kept in SPF conditions.

An alternative to study GVHR is the use of the skin explant 
model. The skin explant model can closely mimic the in  vivo 
mechanisms and pathology of human GvHD (284, 285). The 
skin explant assay for GvHD was initially tested as a method 
to predict incidence and severity of GvHD in humans (286), 
and we have previously shown that a rat skin explant assay for 
GvHD is useful to determine the severity of GvHD between 
different rat strains (287). Although in vitro studies can provide 
hypotheses and models for research, there is a strong need for 
testing and validation in an in vivo animal model. The important 
pathophysiological conditions and symptoms of GvHD have 
been successfully reproduced in a number of animal models 
(288), and animal models have been very useful in understand-
ing various key mechanisms of GvHD and GvL. However, they 
still fail to fully compensate for the variable time of onset of the 
disease, the rate of progression, relapse of primary disease, and 
other important clinical variables attributed to GvHD pathol-
ogy and HSC outcome (288). Till date, researchers have failed 
to create accurately an animal model encompassing all human 
parameters (289). Identifying suitable models for specific fields 
would be beneficial.

FUTURe PeRSPeCTiveS

Overall, substantial progress has been made using animal models to 
understand GvHD. However, major clinically relevant questions still 
remain unanswered. It is important to understand the mechanisms 
involved in the effect of RIC on late-onset aGvHD, for instance, or 
the mechanisms involved in steroid-resistant disease (290). In spite 
of distinctive similarities of GvHD pathology between different 
animal models and humans, the corollary question remains: Do 
animal models, in absence of immunosuppressive medications post 
transplantation, adequately simulate GvHD that occurs in humans 
(291). Designing interventions using animal models involving 
mimicry of the experience of the patient during their treatment in 
the clinic could be important. Larger animal models or non-primate 
humans could be used to investigate steroid resistance, secondary 
treatments, and also monitor these effects long term.
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