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Helicobacter pylori infection is associated with several gastrointestinal disorders in the 
human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear 
protein, mediates various inflammation functions. The interaction between HMGB1 and 
receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB 
expression, which in turn stimulates the release of proinflammatory cytokines, such as 
interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori 
activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in 
gastric epithelial cells to promote inflammation has not been explored. In this study, we 
found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells 
compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated 
H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, 
and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. 
Furthermore, significantly more RAGE was present in detergent-resistant membranes 
extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that 
H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results 
indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric 
epithelial cells, which may be valuable in developing treatments for H. pylori-associated 
diseases.
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inTrODUcTiOn

Helicobacter pylori, a Gram-negative bacterium, colonizes the 
human stomach and infects more than half of the human popula-
tion worldwide (1, 2). Persistent infection by H. pylori in the stom-
ach induces the production of proinflammatory cytokines, such as 
interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α 
(3), which are closely associated with several gastroenterological 
diseases, including gastritis, peptic ulcer, and gastric adenocarci-
noma (4, 5). Moreover, H. pylori possesses a set of virulence factors 
that allow the bacterium to persistently colonize the hostile envi-
ronment of gastric mucus. These factors include urease, flagella, 
adhesins, and two major virulence factors, vacuolating cytotoxin 
A (VacA) and cytotoxin-associated gene A (CagA) (6).

The major components of lipid rafts (also called cholesterol-
rich microdomains) are phospholipids, sphingolipids, and cho-
lesterol, which together form tight interactions and create rigid 
microdomains in the cytoplasm membrane (7). VacA was the first 
H. pylori toxin shown to hijack membrane cholesterol for its own 
oligomerization and delivery into target cells (8). Translocation, as 
well as phosphorylation, of CagA into gastric epithelial cells was 
previously shown to be cholesterol dependent (9). Accordingly, 
disruption of cholesterol-rich microdomains abolishes the actions 
of VacA and CagA, mitigating H. pylori-associated pathogenesis 
(9–11). These findings indicate that H. pylori orchestrates the 
exploitation of cholesterol for its intricate infection strategy.

High-mobility group box 1 (HMGB1) is a ubiquitous nuclear 
protein that stabilizes nucleosomes, enables nicking of DNA, and 
facilitates transcription (12). HMGB1 has been shown to function 
as a proinflammatory protein that mediates endotoxin-induced 
lethality, tissue damage, and systemic inflammation (13, 14). 
Receptor for advanced glycation end-products (RAGE), a single 
transmembrane-spanning domain belonging to the immuno-
globulin superfamily, serves as a receptor for HMGB1 in the ampli-
fication of proinflammatory signaling (15). Interaction of RAGE 
with HMGB1 triggers mitogen-activated protein kinases (MAPKs) 
and subsequently activates nuclear factor (NF)-κB (16, 17), thereby 
stimulating the release of multiple proinflammatory cytokines 
(18). Moreover, HMGB1 has been implicated in several bacterial 
diseases that are mediated by inflammatory responses (19–21).

Recently, a study of H. pylori revealed that VacA induces 
programed necrosis of cells, releasing HMGB1, and resulting 
in a proinflammatory response (22). However, the mechanisms 
by which H. pylori activates HMGB1 expression and mobilizes 
RAGE into cholesterol-rich microdomains to promote inflamma-
tion in gastric epithelial cells have yet to be studied. Therefore, we 
explored the role of HMGB1 during H. pylori infection of gastric 
epithelial cells. In addition, we investigated whether cholesterol-
rich microdomains are involved in the induction of HMGB1 and 
RAGE expression and the subsequent inflammatory response.

MaTerials anD MeThODs

reagents and antibodies
Alexa Fluor 647-conjugated cholera toxin subunit B (CTX-B), 
Alexa Fluor 488-conjugated goat anti-rabbit IgG, 4′,6-diamidino- 
2-phenylindole (DAPI), and Lipofectamine 2000 were purchased 

from Invitrogen (Carlsbad, CA, USA). Anti-HMGB1 (ab18256), 
anti-RAGE (ab37647), and anti-actin antibodies were purchased 
from Abcam (Cambridge, MA, USA). Methyl-β-cyclodextrin 
(MβCD) was purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Luciferase substrate and β-galactosidase expression vector 
were purchased from Promega (Madison, WI, USA).

Bacterial culture
Helicobacter pylori 26695 (ATCC 700392) was recovered 
from frozen stocks on Brucella agar plates (Becton Dickinson, 
Franklin Lakes, NJ, USA), containing 10% sheep blood (23). 
Boiled H. pylori and bacterial lysates were prepared, as described 
previously (24).

cell culture
Human AGS cells (ATCC CRL 1739) were cultured in F12 
medium (Invitrogen). SCM-1 and TSGH9201 cells were cultured 
in RPMI 1640 medium (Invitrogen) (24). All culture media were 
supplemented with 10% fetal bovine serum (HyClone, Logan, 
UT, USA). For transient transfection, AGS cells were incubated 
in OPTI-MEM (Invitrogen), 1 μg NF-κB reporter genes, and 1 μl 
Lipofectamine 2000 for 6 h at 37°C. Transfected cells were then 
cultured in complete medium for 24 h before further analysis.

Western Blot analysis
Helicobacter pylori-infected AGS cells were harvested and then 
boiled in SDS-PAGE sample buffer for 10 min. The protein lysate 
was then resolved by 10% SDS-PAGE and transferred onto polyvi-
nylidene difluoride membranes (Millipore, Billerica, MA, USA). 
The membranes were incubated with antibodies against HMGB1 
or RAGE at room temperature for 1 h. The blots were washed and 
then incubated with horseradish peroxidase-conjugated second-
ary antibody (Millipore). The proteins of interests were detected 
using the ECL Western Blotting Detection kit (GE Healthcare, 
Piscataway, NJ, USA).

Transfection of small interfering rnas
Small interfering RNAs (siRNAs) for RAGE [On-Targetplus 
Human AGER (177) siRNA] and scrambled control (sc-37007) 
were purchased from Thermo Fisher Scientific (Lafayette, CO, 
USA) and Santa Cruz Biotechnology (Santa Cruz, CA, USA), 
respectively. AGS cells were transfected with siRNAs (50 nM) by 
use of Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s instructions.

Quantitative real-time reverse 
Transcription-Pcr
Receptor for advanced glycation end-products mRNA levels  
were analyzed by quantitative real-time PCR using SYBR Green 
I Master Mix and a model 7900 Sequence Detector System, as 
described previously (25). The oligonucleotide primers used 
were corresponded to human RAGE (forward, 5′-CTACCGAG 
TCCGTGTCTACCA-3′ and reverse, 5′-CATCCAAGTGCCA 
GCTAAGAG-3′) and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) (forward, 5′-CCCCCAATGTATCCGTTGTG-3′ 
and reverse, 5′-TAGCCCAGGATGCCCTTTAGT-3′). The pro-
gram was pre-incubated at 50°C for 2 min and 95°C for 10 min; 
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PCR was performed with 40 cycles of 95°C for 10  s and 60°C 
for 1 min.

reporter activity assay
AGS cells were transfected with the NF-κB reporter constructs 
by using Lipofectamine 2000 prior to infection with H. pylori 
(MOI = 100) (26). Reporter lysis buffer (Promega) was added to 
the wells, and cells were scraped from the dishes. Equal volumes 
of luciferase substrate were added to the samples, and lumines-
cence was detected using a microplate luminometer (Biotek, 
Winooski, VT, USA). Luciferase activity was normalized to 
transfection efficiency by determining the β-galactosidase activ-
ity generated from a co-transfected β-galactosidase expression 
vector (Promega) (10).

Determination of il-8 Production
The concentration of IL-8 was determined by enzyme-linked 
immunosorbent assay (ELISA), as described previously (27). 
Briefly, AGS cells were transfected with RAGE siRNA followed by 
infection with H. pylori (MOI = 100) for 6 h. The IL-8 concentra-
tion was determined using a sandwich ELISA kit (R&D Systems).

immunofluorescence labeling
AGS cells (2 × 105) were seeded on coverslips in six-well plates 
and infected with H. pylori at an MOI of 100 for 6 h. The cells 
were fixed with 3.7% paraformaldehyde at room temperature for 
1  h and then permeabilized with 0.1% TritonX-100 for 5  min. 
To label HMGB1 and RAGE, cells were incubated for 30  min 
with antibodies against HMGB1 and RAGE, followed by probed 
with Alexa Fluor 488-conjugated goat anti-rabbit IgG and Alexa 
Fluor 594-conjugated goat anti-rabbit IgG, respectively. The 
stained cells were analyzed using confocal microscopy (LSM 
780; CarlZeiss, Göttingen, Germany) with a 100× objective (oil 
immersion; numerical aperture, 1.3).

analysis of Proteins in Detergent-resistant 
Membrane
To isolate detergent-soluble and -resistant fractions, H. pylori-
infected AGS cells were lysed with ice-cold TNE buffer (25  mM 
Tris–HCl, pH 7.5, 150 mM NaCl, and 5 mM EDTA), containing 1% 
(vol/vol) Triton X-100, as described previously (28). Cell lysates were 
centrifuged at 18,000 × g at 4°C for 30 min to separate detergent-
soluble and -resistant fractions, as described previously (27). The 
proteins of interests in each fraction were assessed by Western blot.

statistical analysis
Experimental results are expressed as means  ±  SEM. The 
Student’s t-test was used to calculate the statistical significance of 
differences between two groups. The difference was considered 
significant when P <  0.05. Statistical analyses were carried out 
using SPSS program (version 11.0, SPSS Inc., Chicago, IL, USA).

resUlTs

H. pylori infection induces hMgB1 and 
rage expression in gastric epithelial cells
We first investigated whether H. pylori infection induces HMGB1 
and RAGE expression in gastric epithelial cells. AGS cells were 

infected with H. pylori at various MOIs (0–500) for 6 h, and the 
expression levels of HMGB1 and RAGE were determined by 
Western blot assay. As shown in Figures  1A–C, HMGB1 and 
RAGE expression levels were markedly increased in cells infected 
with H. pylori at an MOI of 100, whereas they were decreased at 
higher MOIs of 200 and 500. In addition, AGS cells were infected 
with H. pylori (MOI = 100) for different durations (0–24 h) in 
parallel. H. pylori-induced HMGB1 and RAGE expression peaked 
with 6 h of infection and decreased after incubation for 16–24 h 
(Figures  1D–F). These results suggest that H. pylori induces 
HMGB1 and RAGE expression in AGS cells, and that the optimal 
conditions for infection are an MOI of 100 and incubation for 6 h.

live H. pylori is essential for enhancing 
hMgB1 and rage expression in gastric 
epithelial cells
We then explored whether increased HMGB1 expression could 
be seen in AGS and two other gastric epithelial cell lines (SC-M1 
and TSGH9201). As shown in Figure 2A, the expression levels of 
HMGB1 were significantly elevated in the three H. pylori-infected 
gastric epithelium-derived cell lines. AGS cells were found to be 
the most susceptible; therefore, this line was chosen for the fol-
lowing investigations. We next analyzed the effects of live or killed 
H. pylori with the ability to elicit HMGB1 and RAGE expression 
in AGS cells. Live bacteria, boiled bacteria (heat-killed), and 
bacterial lysates (crude extracts) were examined for their capacity 
to induce HMGB1 and RAGE. As shown in Figure 2B, HMGB1 
and RAGE expression in AGS cells in response to live H. pylori 
increased significantly, whereas boiled bacteria and bacterial 
lysates only slightly increased the expression of HMGB1 and 
RAGE in these cells. Our data showed that the expression levels 
of HMGB1 and RAGE were elevated in H. pylori-infected AGS 
cells and that live bacteria were required.

H. pylori-induced rage expression is 
elicited by hMgB1
Confocal microscopy was used to observe HMGB1 expres-
sion in AGS cells. As shown in Figure 3, without H. pylori, the 
image showed faint HMGB1 staining in cell nuclei. In contrast, 
the distribution of fluorescence clearly showed that HMGB1 
localized in both the nucleus and the cytoplasm of cells upon 
H.  pylori infection. We then analyzed RAGE expression in 
response to H. pylori-induced HMGB1. AGS cells were mock-
treated or -pretreated with isotype IgG or neutralizing antibody 
against HMGB1 (α-HMGB1) for 30 min and then incubated with 
H. pylori for 6 h. As shown in Figure 4, blocking of HMGB1 by 
α-HMGB1 significantly reduced H. pylori-induced RAGE mRNA 
and protein levels, whereas this mock-treated cells or cells treated 
with isotype IgG showed no such effect. These results indicate 
that H. pylori infection induces HMGB1 expression, which in 
turn elicits the production of RAGE in gastric epithelial cells.

silencing rage mrna ameliorates 
H. pylori-induced inflammation
AGS cells were then transfected scrambled control siRNA (SiCon) 
or RAGE siRNA (SiRAGE) for 24 h following incubation with 
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FigUre 1 | H. pylori induces hMgB1 and rage expression in gastric epithelial cells. AGS cells were infected with H. pylori for 6 h with various MOIs 
(a–c), including an MOI of 100 at different time points (D–F). Total cell lysates were prepared to evaluate HMGB1 and RAGE expression by Western blot 
analysis. Protein expression levels were quantified by densitometric analysis and normalized to β-actin (B,c,e,F). Statistical significance was evaluated by 
Student’s t-test (*P < 0.05).
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H. pylori for 6 h. A quantitative real-time PCR analysis showed 
that SiRAGE transfection significantly reduced the level of RAGE 
mRNA when compared to SiCon transfection (Figure  5A). 
Additionally, H. pylori-induced RAGE mRNA expression was 
markedly suppressed by transfection with siRAGE. We therefore 
analyzed whether silencing RAGE decreased NF-κB promoter 
activity and IL-8 production in H. pylori-infected cells. Cells were 
co-transfected with SiRAGE and an NF-κB/wt luciferase reporter 
prior to incubation with H. pylori for 6 h and then subjected to 
luciferase activity assay. Culture supernatants were harvested to 
evaluate IL-8 production by ELISA. Our data showed that both 
NF-κB promoter activity and IL-8 production were significantly 
reduced by knocking down RAGE in cells infected with H. pylori 
(Figures 5B,C). These results confirm H. pylori-induced inflam-
mation in response to reciprocally elicited HMGB1 and RAGE 
expression.

Mobilization of rage into  
cholesterol-rich Microdomains  
by H. pylori induces il-8 Production
The involvement of cholesterol-rich microdomains in the 
induction of RAGE by H. pylori infection was explored next. 
The colocalization of RAGE with CTX-B, a raft-associated mol-
ecule that binds to the ganglioside GM1, was clearly observed 
around the cytoplasmic membrane in H. pylori-infected cells 
(Figures  6E–H); this effect was minimal in uninfected cells 
(Figures  6A–D). The merged images were then analyzed by 
confocal microscopy z-section. As shown in Figures 6I–L, the 
adhered bacteria (arrows) clearly appeared to colocalize with 
RAGE and CTX-B in the cytoplasmic membrane. These results 
indicate that the recruitment of RAGE into membrane rafts 
occurs in response to H. pylori infection.
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FigUre 2 | live H. pylori is essential for enhancing hMgB1 and rage 
expression. Gastric epithelial cell lines, AGS, SC-M1, and TSGH9201 cells, 
were infected with H. pylori at an MOI of 100 for 6 h. (a) Cells from these 
cells lines were uninfected or infected with H. pylori (MOI = 100) for 6 h. Cell 
lysates were prepared to analyze HMGB1 expression by Western blot. 
Protein expression levels were quantified by densitometric analysis and 
normalized to β-actin. Statistical significance was evaluated by Student’s 
t-test (*P < 0.05). (B) AGS cells were untreated or treated with live H. pylori 
or heat-killed H. pylori (boiled H. pylori) at an MOI of 100, or crude extracts 
prepared from H. pylori (H. pylori lysate). Cell lysates were prepared to 
measure HMGB1 and RAGE protein expression by Western blot, with β-actin 
was used as the protein loading control. The expression level of each protein 
was quantified by signal intensity, and the respective value is indicated at the 
bottom of each lane.
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We further investigated whether H. pylori-induced HMGB1 
and RAGE expression required lipid raft integrity. Western blot 
analysis showed that CTX-B was enriched in the detergent-
resistant membrane (DRM) fraction (Figure  7A), whereas 
disrupting lipid rafts with MβCD reduced the presence of 
CTX-B in the DRM. During H. pylori infection, HMGB1 
and RAGE were abundant in the DRM fraction. Moreover, 
treatment of cells with MβCD led to a significant reduction in 
H. pylori-induced HMGB1 and RAGE expression in the DRM 
(Figures 7B,C), suggesting that cholesterol-rich microdomains 
play an important role in H. pylori-triggered HMGB1 and RAGE 
expression.

We next examined whether cholesterol-rich microdomains 
were essential for H. pylori-induced IL-8 production. AGS cells 
were untreated or pretreated with MβCD and then incubated 
with H. pylori for 6 h. Results showed that MβCD treatment sig-
nificantly suppressed IL-8 promoter activity in H. pylori-infected 
cells (Figure 8A). Similarly, H. pylori-induced IL-8 production in 
cells was markedly reduced when cholesterol-rich microdomains 
were disrupted by MβCD (Figure  8B). Taken together, results 
from this study demonstrate that depletion of cholesterol inhibits 
the mobilization of RAGE into cholesterol-rich microdomains, 
thereby mitigating H. pylori-induced inflammation.

DiscUssiOn

Infection with H. pylori is associated with sustained inflam-
mation, which may lead to severe gastric diseases (5). Previous 
studies have indicated that HMGB1 can be secreted by H. pylori 
VacA-treated cells, which then underwent necrosis, inducing a 
proinflammatory response (22). Moreover, H. pylori infection 
increases the expression of RAGE, which subsequently interacts 
with its ligand HMGB1, and is believed to amplify the inflamma-
tion cascade (29). Despite the fact that the interaction of HMGB1 
and RAGE can be linked to necrosis and a proinflammatory 
response in cells (30), the detailed mechanism by which H. pylori 
induces HMGB1 and RAGE expression and triggers IL-8 secre-
tion to promote inflammation of gastric epithelial cells remains 
unclear. To elucidate the direct mechanical effects of bacterial 
infection, we employed antibody neutralization of HMGB1 and 
siRNA for RAGE and demonstrated that H. pylori-induced RAGE 
following the elevation in HMGB1 levels. Furthermore, RAGE 
was mobilized into lipid rafts, which contributed to the induc-
tion of NF-κB activation and IL-8 production during H. pylori 
infection. Notably, depletion of cholesterol diminishes H. pylori-
induced signaling, confirming the recruitment of RAGE into lipid 
rafts by H. pylori to promote inflammation in gastric epithelial 
cells.

High-mobility group box 1 has been recognized as a damage-
associated molecular pattern (DAMP), and it has been implicated 
in several bacterial diseases, including inflammatory lung injury 
(20), pneumonia (19), sepsis (31), and keratitis (32). Accumulating 
evidence indicates that HMGB1 functions as an alarmin, forming 
immune stimulatory complexes with chemotactic factors that 
promote the migration of leukocytes, activation of lymphoid cells, 
and augment the inflammatory response (30, 33, 34), which cor-
relate with severity of infection (21). RAGE, a ligand for HMGB1, 
is involved in activating NF-κB and stimulating proinflammatory 
factors (35). Treatment of mice with neutralizing α-HMGB1 
reduced the bacterial burden and ameliorated tissue injury (20, 
32). Similarly, blocking HMGB1 reduced H. pylori-elicited RAGE 
expression, resulting in the attenuation of NF-κB activation and 
thereby mitigating inflammation in gastric epithelial cells. Our 
findings are in accordance with previous studies with other bacte-
ria, indicating a potential pathogenic role for HMGB1 and RAGE.

In this study, we showed that H. pylori infection elicits 
HMGB1 and RAGE expression, which enhances IL-8 produc-
tion. In contrast, silencing RAGE appears to reduce H. pylori-
mediated NF-κB and IL-8 activities. However, NF-κB and IL-8 
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FigUre 4 | hMgB1 is crucial for rage expression in H. pylori-infected cells. AGS cells were untreated or pretreated with 1 μg/ml of isotype IgG or 
anti-HMGB1 at 37°C for 30 min and then infected with H. pylori at an MOI of 100 for 6 h. RAGE mRNA and protein expression levels were measured by  
(a) quantitative real-time PCR and (B) Western blot analysis, respectively. Results are expressed as means ± SDs. *P < 0.05.

FigUre 3 | hMgB1 expression in response to H. pylori infection. AGS cells were uninfected or infected with H. pylori (MOI = 100) at 37°C for 6 h. Cells were 
fixed and probed with antibody against HMGB1 (green) or stained with DAPI (blue) to visualize cell nuclei and H. pylori (arrows). The stained samples were analyzed 
by confocal microscopy. Scale bars, 10 μm.
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activities were still greater in siRAGE-transfected cells infected 
with H. pylori than in transfected cells that were uninfected. 
These results suggest that there are diverse receptors and ligands 
for HMGB1 and RAGE that interact and contribute to H. pylori-
induced inflammation. For instance, HMGB1 is able to trigger 

a proinflammatory response by interacting with either IL-1β, 
CXCL12 to form immune stimulatory complexes, or several cell 
surface receptors, including RAGE, toll-like receptor 2 (TLR2), 
and TLR4 (15, 36). Our recent findings support the explanations 
that infection of gastric epithelial cells with H. pylori induces 
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FigUre 5 | Knocking down rage reduces nF-κB promoter activity 
and il-8 production in H. pylori-infected ags cells. Cells were 
transfected with control siRNA (SiCon) or RAGE siRNA (SiRAGE) for 24 h 
prior to infection with H. pylori (MOI = 100) for 6 h. (a) The RAGE mRNA level 
was determined by quantitative real-time PCR. (B) Cells were co-transfected 
with SiRAGE and NF-κB/wt luciferase reporter for 24 h and cultured with 
H. pylori (MOI = 100) for an additional 6 h. NF-κB promoter activity was 
analyzed by luciferase reporter assay. (c) The level of IL-8 in the culture 
supernatant was determined using a standard ELISA. Results were 
expressed as means ± SDs. *P < 0.05.
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TLR4/MD-2 expression, which contributes to the inflammatory 
response (27). On the other hand, RAGE can bind ligands other 
than HMGB1, including amyloids and members of the S100 pro-
tein family (37, 38). Understanding the interactions other than 
those of HMGB1 and RAGE is required to further investigation 

the molecular patterns involved in immune sensing following 
infection with H. pylori.

Damage-associated molecular patterns are endogenous danger 
signals that have been identified, including HMGB1, S100A8/9, 
IL-1α, and IL-33/ST2 (39–41). Activation of HMGB1 signal is 
mediated by several pattern-recognition receptors (PRPs), such 
as RAGE and toll-like receptors (TLRs), that are important for 
H.  pylori-induced inflammation has been revealed in our and 
other studies (24, 29, 42). Similar to HMGB1, IL-1α and IL-33/
ST2 also are types of alarmins, which are abundantly expressed in 
epithelial and endothelial cells (43, 44). Expression of IL-1α and 
IL-33/ST2 has been reported in several bacterial infectious dis-
eases. For example, IL-1α production was essential for the early 
recruitment of neutrophils to the lungs infected with Legionella 
pneumophila (45). In patients with Staphylococcus aureus infec-
tion on the skin, IL-33 is markedly increased as compared to the 
healthy controls and suggested that IL-33 possesses antimicrobial 
and wound-healing effects (46). However, limited reports indi-
cated that IL-1α and IL-33/ST2 can be upregulated in cells treated 
with the virulence factors from H. pylori (47, 48), but their role 
in H. pylori-induced pathogenesis is ill defined. Although these 
DAMPs have been found to be associated with necroptosis, which 
is an important process for induction of inflammatory diseases 
(41), the exact role in H. pylori-induced inflammation remains 
to be investigated.

This study presents a model of the early H. pylori-induced 
gastric epithelial cell inflammatory response. The expression of 
HMGB1 and RAGE was only tended to increase with infections 
for 6 h. After incubation for a longer time, the expression levels 
of HMGB1 and RAGE were diminished. This trend can also 
be seen in infections with S. aureus and other Gram-negative 
bacteria in mouse models (19, 20, 49). One possible explanation 
for this observation is that cytokine production was substantially 
reduced at a time point later than 6  h, which may result in a 
reciprocal reduction in HMGB1 release and amelioration of 
bacteria-induced pathogenesis.

Although an inflammatory response with the recruitment 
of leukocytes is crucial for eradicating intracellular pathogens, 
prolonged activation of neutrophils may result in serious tissue 
damage in the stomach (50). IL-8 is recognized as one of the most 
important chemokines that cause neutrophils to infiltrate into sites 
of bacterial infections (51). Moreover, HMGB1 is reported to be 
a chemoattractant for neutrophils during inflammation (52). In 
this study, we showed that H. pylori exploits cholesterol to induce 
inflammation through activation of the HMGB1–RAGE–IL-8 
axis. Silencing RAGE significantly attenuated H. pylori-induced 
NF-κB activation and IL-8 production. Our results, combined 
with the findings of others, indicate that HMGB1 might be a key 
target for the development of therapeutic agents against H. pylori-
induced inflammation.

Although our study has demonstrated that H. pylori exploits 
cholesterol to induce inflammation through activation of the 
HMGB1–RAGE–IL-8 axis, the limitation of this work is that 
it lacks in  vivo data. It has been reported that the human 
serum HMGB1 levels are significantly and sequentially 
increased during gastric cancer progression (53). Similarly, 
in a previous study, the HMGB1 expression in gastric cancer 
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FigUre 6 | Mobilization of rage into lipid rafts at sites of H. pylori infection. AGS cells were uninfected or infected with H. pylori (MOI = 100) for 6 h. Cells 
were fixed and stained with DAPI (blue) (a,e,i) to visualize H. pylori (arrows) and cell nuclei, with Alexa Fluor 488-conjugated cholera toxin subunit B (CTX-B) to 
visualize GM1 (green) (B,F,J), or with antibody against RAGE (red) (c,g,K), and then the merged images were observed by confocal microscopy (D,h,l). Merged 
confocal z-section images (i–l) show bacteria colocalized with RAGE and CTX-B (cyan). Bars, 10 μm.
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tissues was increased as compared to that in non-cancerous 
tissues (54). Moreover, a markedly higher percentage of RAGE 
expression was found in H. pylori-infected biopsies with 

dysplasia or in  situ carcinoma as compared to that in the 
control groups (55). Most importantly, it has been proven that 
overexpressed HMGB1 enhances IL-8 secretion in tumor cells 

FigUre 7 | role of cholesterol-rich microdomains in H. pylori-induced hMgB1 and rage expression. AGS cells were untreated or pretreated with 5 mM 
MβCD at 37°C for 1 h. Cells were then washed and infected with H. pylori at an MOI of 100 for 6 h. (a) Detergent-resistant membrane (DRM) and detergent-soluble 
(S) fractions were prepared and subjected to cold detergent extraction using 1% Triton X-100 at 4°C followed by centrifugation. Each fraction was analyzed by dot 
blot or Western blot using cholera toxin subunit B (CTX-B) conjugated to horseradish peroxidase or antibodies against HMGB1 and RAGE, respectively. Protein 
expression levels of (B) HMGB1 and (c) RAGE were quantified by densitometric analysis (*P < 0.05).
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