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Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, 
thus, is one of the most common infectious complications of immune suppression. 
Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce 
the risk for HCMV infection and/or reactivation by restoring immunity in transplant recip-
ients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous 
mixture of subsets with distinct functions and localization, and it is not clear if current 
adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell 
immunity. The aim of this review is to briefly summarize the role of these T cell subsets 
in CMV immunity and to describe how current adoptive immunotherapy practices might 
affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population 
is made up of terminally differentiated effector T cells with immediate effector function 
and a short life span. Self-renewing memory T cells within the CMV-specific population 
retain the capacity to expand and differentiate upon challenge and are important for the 
long-term persistence of the CD8+ T cell response. Finally, mucosal organs, which are 
frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T 
cells, which do not recirculate. Future work on adoptive transfer strategies may need to 
focus on striking a balance between the formation of these subsets to ensure the devel-
opment of long lasting and protective immune responses that can access the organs 
affected by CMV disease.

Keywords: CMv-specific CD8 T cells, adoptive T cell therapy, tissue-resident memory cells, memory T cells, 
effector T cells, T cell localization

inTRODUCTiOn

Severely immunocompromised patients are at great risk from opportunistic infections. These include 
both new infections acquired from the environment and reactivations of pathogens previously con-
trolled, but not cleared, by the immune system. For over 25 years, investigators have been exploring 
the potential for adoptive T cell therapy to combat these infections in severely immunocompromised 
patients. In brief, antiviral T cells are recovered from healthy donors and infused into immuno-
compromised patients. While this approach is elegant in its simplicity, it is complex in practice and 
several questions remain: how should the T cells be isolated and selected? Should they be expanded 
in vitro or infused directly? How many T cells are needed? Will the methods used influence the ability 
of the infused T cells to target the infections at particular sites in the body or persist?
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TABLe 1 | Overview of the major functional differences between CD8 T cell subsets.

Phenotype immediate effector 
function

Long-term 
maintenance

Proliferative 
capacity

Plasticity Organ 
localization

TEFF KLRG1+ CD45RA+ + − − − −

TMEM CD127+ CD27+ CD45RO+ 
CD62L+/− CCR7+/−

− + + +
−

TRM CD103+ CD69+ + + − − +

Green indicates the presence and red indicates the absence of the indicated attribute.
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CYTOMeGALOviRUS

One of the most common infectious complications of 
immune suppression is human cytomegalovirus (HCMV), a 
ubiquitous β-herpesvirus with a prevalence ranging from 50 
to nearly 100% in human populations (1, 2). HCMV causes 
an acute infection followed by latency that persists for life 
(3). During the latent stage of infection, HCMV is thought 
to occasionally reactivate in a stochastic manner and requires 
continuous control from the host immune system. While 
HCMV is typically asymptomatic in a healthy host, it is a 
major clinical concern for immunosuppressed patients (4, 
5). In infected HIV patients, HCMV can induce retinitis and 
less frequently pneumonitis, enterocolitis, or hepatitis (3, 6). 
HCMV also increases the morbidity and mortality in patients 
receiving both solid organ transplants and hematopoietic stem 
cell transplants (HSCT) by increasing the incidence of graft 
rejection and causing severe organ disease, including pneu-
monitis, enteritis, hepatitis, pancreatitis, and myocarditis (3, 
7–10). Antiviral therapy with gancyclovir and other similar 
drugs have been successful in decreasing the incidence of 
HCMV disease, but drug resistance is a growing problem (11). 
Further, there are several drawbacks to the prolonged use of 
antiviral drugs, including toxicity to organs, myelosuppression 
[reviewed in Ref. (12)], and a possible delay in the emergence 
of HCMV-specific immunity (13, 14).

The need to develop novel anti-HCMV therapies has 
provided the foundation for developing antiviral adoptive T 
cell therapies. Numerous studies in HSCT and, more recently, 
solid organ transplants have shown that adoptive transfer of 
HCMV-specific T cells from donors reduces the risk for HCMV 
infection by restoring HCMV immunity, which reduces the need 
for antiviral therapy and can treat infections that are resistant 
to antivirals (15–26). Thus, understanding how to optimize the 
adoptive immunotherapy approach to restore an effective and 
long-lasting HCMV-specific immunity in patients remains a 
high priority. The ideal goal of adoptive immune therapy is to 
transfer T cells that: (1) are capable of immediate and protective 
effector function, (2) have the ability to localize to the affected 
organs, and (3) will persist long term. The aim of this review 
is to briefly summarize the current knowledge about the dif-
ferent CD8+ T cell subsets and their functions, particularly in 
the context of HCMV-specific immunity, and to describe how 
current adoptive immunotherapy practices might affect the 
reconstitution of these CD8+ T cell subsets in the blood and 
tissues of patients.

CMv-SPeCiFiC T CeLL SUBSeTS

effector T Cells
Studies have revealed that CMV-specific CD8+ T cell populations 
are heterogeneous mixtures of different subsets with distinct 
transcriptional profiles, function, and patterns of migration 
and localization (27–35) (summarized in Table  1). In the case 
of CMV, the vast majority of CD8s in the blood during latency 
have a phenotype similar to terminally differentiated effectors 
(TEFF), i.e., high levels of the NK cell inhibitory receptor KLRG1 
and low levels of CD127 and CD62L and, in humans, high levels 
of CD45RA and CD57 (27–32). This phenotype is indicative of 
repeated antigen stimulation (36, 37); but unlike T cells respond-
ing to other chronic infections, CMV-specific T cells do not show 
signs of functional exhaustion (28, 30–32, 38–41). Indeed, these 
CMV-specific T cells are cytotoxic and can produce IFN-γ and 
TNF-α rapidly upon stimulation (28, 30–32, 38).

Early work in humans as well as the mouse model of murine 
(M)CMV have noted that CMV-specific TEFF cells accumulated 
over time after the acute phase of infection was resolved (27, 
29–31, 42–44). In fact, an average of 10% of blood CD8s in 
healthy humans are specific for HCMV epitopes (45). This 
process was dubbed “memory inflation” (44) and is driven by 
persistent antigen stimulation (46–49). Interestingly, studies in 
humans and mice have suggested that CMV-specific inflationary 
TEFF turn over with a half-life of approximately 45–60 days (32, 
38). Moreover, MCMV-specific TEFF do not undergo homeostatic 
division and have relatively poor proliferative potential (32, 33, 
48, 50–52). Thus, the evidence suggests that while CMV-specific 
TEFF cells are capable of controlling the virus, they are relatively 
poor at maintaining themselves.

Memory T Cells
While the majority of CMV-specific T cells in the blood during 
memory inflation are TEFF, a small pool of less differentiated 
memory T cells (TMEM) exists within the inflating CD8 population. 
These cells express high levels of CD127 and CD27 (and CD45RO 
in humans) and low levels of KLRG1 and can be further sub-
divided into central memory (TCM) and effector memory (TEM) 
subsets based on their expression of the lymph node homing 
molecules CD62L and CCR7 (33, 53). In contrast to terminally 
differentiated TEFF, resting memory T cells are well known to be 
long-lived, capable of antigen-independent homeostatic division, 
as well as robust expansion and production of TEFF cells, upon 
rechallenge (54). This has led to the model that memory inflation 
is maintained, at least in part, by occasional antigen stimulation 
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TABLe 2 | Transcription factor expression in CD8 T cell subsets.

T-bet eomes Bcl6 Blimp-1 Hobit

TEFF ++ − − ++ ̶/+

TMEM − ++ ++ − −

TRM + − − + ++

Red indicates the absence of the indicated transcription factor. Dark green indicates 
high levels of the indicated transcription factor and light green indicates low levels. The 
red and green striped panel indicates that transcription factor has been reported to be 
present in some cases and absent in others.

3

Smith et al. CMV-Specific CD8 T Cell Differentiation and Localization

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 352

of HCMV-specific TCM or TEM subsets, which subsequently divide 
and differentiate to maintain the large populations of TEFF cells that 
carry out immune surveillance in latently infected organs (55).

Importantly, we have shown that adoptive transfer of either 
MCMV-specific TEFF or memory T cells (a mixture of TCM and 
TEM) were sufficient to protect RAG−/− mice from a lethal viral 
infection. However, MCMV-specific memory T cells could per-
sist long term after transfer had a far greater capacity to expand 
upon challenge than their TEFF counterparts. Moreover, unlike 
MCMV-specific TEFF cells, memory T cells could produce both 
TEFF and new memory T cells after stimulation (33). Thus, while 
effectors may be sufficient to protect against an immediate viral 
threat, transplant patients may remain at risk of developing late 
onset (more than 3 months) or very late onset (more than 1 year) 
HCMV disease, which is increasingly recognized as a complica-
tion of HCMV prophylaxis (56–60). Therefore, long-term protec-
tion from disease may rely on reconstituting the full spectrum of 
HCMV-specific memory T cells.

Tissue-Resident Memory T Cells
The long held view of T cell migration purports that TCM traffic 
through the secondary lymphoid organs, while TEM and TEFF cells 
migrate through the non-lymphoid organs to carry out immune 
surveillance (53, 61, 62). However, in recent years studies using 
parabiosis and intravascular staining have revealed that CD8+ 
T cells that remain after a cleared infection only rarely circulate 
through non-lymphoid organs (63–70). Instead, it has become 
clear that some T cells in non-lymphoid tissues – particularly 
mucosal and barrier tissues – adopt yet another differentiation 
program that enables residency within the tissue, rather than 
continuous recirculation. Because of their localization, these 
tissue-resident memory T cells (TRM) may play a vital role in the 
protection of tissues from pathogens. Studies using parabiosis, 
adoptive transfers, and/or organ transplants have shown that TRM 
populations are: (1) maintained in the organ long term without 
recirculating and (2) not replenished by the circulating memory 
T cell population (61, 68, 69, 71–76). TRM have been identified in 
many sites throughout a mouse and human, including the skin, 
liver, lung, brain, sensory ganglia, thymus, kidney, gut, salivary 
gland, reproductive tract, and even the spleen and blood vessels 
(77). Tissue-resident T cells have a transcriptional program that 
is distinct from their circulating counterparts and are frequently 
identified by expression of CD69 and CD103, although there have 
been reports of TRM that express neither (70, 78–81).

Because TRM cells are poised at the sites of pathogen entry and 
reactivation, they provide superior immunity to many local chal-
lenges compared to circulating memory cells (71–73, 79, 82–84). 
Upon antigen stimulation, TRM are typically capable of producing 
IFN-γ and carrying out cytotoxic activity against infected cells 
(69, 72, 76, 80, 85–88). In addition, TRM-derived IFN-γ induces an 
antiviral state in the tissue, induces DC maturation and NK cell 
activation, and recruits circulating T and B cells that can respond 
to infection (89–91). During MCMV infection, the mucosal 
organs are primarily occupied by MCMV-specific TRM popula-
tions, while the large TEFF populations that characterize memory 
inflation are mostly restricted to the blood and vasculature (34, 
35, 50). However, it is not yet known what role TRM play in the 

control of MCMV or HCMV latency (34, 35) or in protection from 
viral disease in immunocompromised patients. The mucosae in 
general are important sites of persistence, reactivation, and shed-
ding for all herpesviruses; therefore, it is possible that promoting 
migration of T cells to these sites and promoting their differentia-
tion into TRM could be a major factor in successfully controlling 
CMV reactivation with adoptive immunotherapy.

Transcriptional Control of T Cell 
Differentiation
Each CD8+ T cell subset is defined by a transcriptional pro-
gram that dictates the T cell’s viability, trafficking patterns, 
and functional capacity (summarized in Table  2). It is well 
established that the balance between memory and effector 
CD8 differentiation is controlled by the reciprocal expression 
of certain transcription factors. In brief, TEFF differentiation 
is promoted by high expression of T-bet, Blimp-1, and ID2; 
whereas TMEM formation requires high expression of Eomes, 
BcL6, and ID3 [reviewed in Ref. (92)]. It is typically thought 
that promoting one of these subsets antagonizes the develop-
ment of the other. Less is known about the transcriptional 
control of TRM differentiation, but recent work is beginning 
to reveal that it is distinct from both TEFF and TMEM subsets. 
TRM formation requires downregulation of both Eomes and 
T-bet (93, 94). However, their long-term survival, at least in 
the skin and lungs, depends on residual expression of T-bet to 
drive expression of the IL-15 receptor (94). The establishment 
of TRM in several organs also depends on the downregulation 
of KLF2, the transcription factor that is responsible for CD62L 
expression in TMEM. Expression of KLF2 promotes the expres-
sion of the S1p1 receptor, which promotes T cell egress from 
organs and antagonizes CD69 expression and, thus, acts as a 
switch between circulating and resident memory T cells (95). 
Additionally, a recently discovered transcription factor, Hobit 
(Homolog of Blimp1 in T Cells) was specifically upregulated in 
TRM in mice. TRM formation and maintenance in several organs 
was dependent on the expression of Hobit in collaboration with 
Blimp1, while circulating TMEM were unaffected by the loss of 
both Hobit and Blimp1 (96). However, it is important to note 
that Hobit expression is not an exclusive marker of TRM cells. In 
humans, Hobit was highly expressed in CMV-specific effectors 
isolated from the blood (28, 97). Again, the overlapping and 
differential use of transcription factors by different T cells sub-
sets suggests that cell fate decisions may be intrinsically linked 
and mutually exclusive.
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iMPLiCATiOnS FOR ADOPTive 
TRAnSFeRS

Preserving Memory Capacity
In light of the heterogeneity of the CMV-specific CD8+ T cell 
population, it is important to consider how the source of T cells 
will impact the efficacy of adoptive immunotherapy. Adoptive 
immunotherapy typically involves extracting antiviral T cells 
from the blood. Therefore, in the case of HCMV infection, 
current transfer protocols will be using mostly TEFF and to a 
lesser extent circulating TMEM cells. Clinical studies have begun 
to investigate how the phenotypic make-up of the transferred 
HCMV-specific CD8 population impacts the outcome of the 
treatment (18, 98, 99). Peggs et al. showed that rapid CD8+ T cell 
expansion was positively correlated with the number of central 
memory cells (CD45RA−, CCR7+) transferred (18). In another 
study, HCMV-specific CD8s with a memory-like phenotype 
(CD45RO+, CD27+, CD57−) were more likely to persist and 
offer protection in a recipient than more differentiated T cells 
(CD27−, CD57+) (96). Interestingly, these studies also show that 
the majority of the CD8s that arise after transfer are terminally 
differentiated (18, 98). Finally, a non-human primate model of 
adoptive T cell therapy and CMV infection revealed that donor 
T cells derived from antiviral TCM cells were more protective that 
T cells derived from TEM or TEFF sources (100). Thus, it is evident 
that maintaining the memory potential of adoptively transferred 
cells may be of critical importance for the eventual success of the 
therapy.

Maintaining CD8+ T cell populations with memory potential 
during isolation may require unique and carefully controlled 
conditions. There are a number of factors that promote the 
formation of TEFF at the expense of TMEM, including strong TCR 
signaling, longer duration of antigen exposure, the presence of 
pro-inflammatory cytokines during priming (e.g., IL-12, type 
I IFN, IFN-γ), and repeated antigen stimulation [reviewed in 
Ref.  (101)]. Repeated stimulation is of particular concern due 
to the fact that most adoptive immunotherapy protocols for 
selecting antiviral T cells involve antigen stimulation. Short-
term peptide stimulation followed by IFN-γ capture has been 
used to isolate virus-specific T cells (18, 102), and long-term 
stimulation is commonly used to extensively expand T cells 
in  vitro prior to transfer. While TMEM can retain the ability to 
expand and produce cytokines after multiple challenges, each 
rechallenge event drives transcriptional changes that leave them 
less proliferative and more sensitive to terminal differentiation 
(37, 103, 104). Indeed, in repeated challenge experiments with 
MCMV, TMEM could recapitulate memory inflation at least 
through a tertiary challenge; however, the magnitude of inflation 
and the proportion of CD8s that retained a memory phenotype 
decreased with each challenge (33). Notably, recent work has 
suggested that relatively few T cells isolated without expansion 
using peptide-loaded tetramers (105) or streptamers (99) may be 
effective at controlling CMV. Eliminating the need for extensive 
antigen stimulation during adoptive transfer protocols may 
help to preserve the function and plasticity of HCMV-specific 
memory cells.

Migration to the Mucosa
Although many studies have investigated TCM, TEM, and TEFF 
differentiation in response to stimulation, it is much less clear 
how T cells are instructed to traffic to infected tissues and/
or develop a TRM (tissue-resident) program. CMV infects and 
reactivates in several mucosal organs, and HCMV disease 
after transplant commonly manifests in the lungs and the gut 
(3). Thus, it is critical to ensure that adoptively transferred 
antiviral T cells are capable of trafficking to these mucosal 
sites. Several studies in mice have shown that naive cells, 
resting memory cells, and highly differentiated effectors have 
restricted access to non-lymphoid tissues and are not able 
to respond to TRM differentiation signals in  vivo or in  vitro 
(68, 69, 78, 106–108). Instead, TRM cells form within a short 
window after infection from recently activated early effectors 
(68, 69, 74, 78, 106, 107, 109). Consistent with this, adoptive 
transfer of MCMV-specific CD8s isolated from the spleen at 
late time points only rarely trafficked to the parenchyma of 
non-lymphoid organs or differentiated into TRM in latently 
infected recipients (34). However, when circulating inflation-
ary T cells were transferred into naive mice and challenged, 
they did form resident memory cells in large numbers in all 
mucosal organs tested, albeit in lower numbers than MCMV-
specific cells derived from naive T cells (34). Additionally, 
a short in  vitro peptide pulse was sufficient to increase the 
migration and differentiation of circulating MCMV-specific 
T cells into the salivary gland (34). Thus, while at steady 
state the vast majority of circulating inflationary T cells do 
not traffic through non-lymphoid tissues or become tissue 
residents, in  vitro manipulation prior to adoptive transfer 
may be able to improve that ability. It is not yet clear what 
the relative roles of circulating TEFF and TRM are in controlling 
CMV in non-lymphoid organs either in healthy hosts or in 
immunocompromised patients. However, in either case, the 
success of adoptive immunotherapy strategies may depend 
on ensuring that adoptively transferred T cells can access the 
afflicted organs and differentiate into TRM.

It is also critical to consider how T cells are programmed 
to migrate into different tissues. T cells can be imprinted with 
tissue-specific integrins and chemokine receptors during prim-
ing, which dictates their subsequent migration pattern. This has 
been most thoroughly described for the gut, in which retinoic 
acid expressed by dendritic cells induces the upregulation of the 
α4β7 integrin and the CCR9 receptor on T cells, which mediates 
migration to the gut (110). Other examples have been described 
for the skin and lungs (110–115). Thus, targeting adoptively 
transferred cells to an organ of interest may require specific 
manipulation prior to transfer. Alternatively, the recruitment 
of adoptively transferred T cells to the recipient organ of inter-
est could potentially be improved by treating recipients with 
chemoattractants. Topical application of the chemokine CXCL9 
to the genital tract (108) or the inflammation-inducing hapten 
DNFB to the skin (82) recruited highly activated circulating 
effectors T cells to the site. Whether strategies such as these 
will improve the efficacy of adoptive T cell therapy remains to 
be studied.
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SUMMARY

The optimal control of HCMV and other opportunistic viral 
infections depends on establishing a T cell response that  
incorporates functional effectors, long-term persistence, and 
the ability to migrate to the sites of viral activity. Cytotoxicity 
and cytokine production are typically tested for each adoptive 
transfer protocol reported. However, memory formation and 
migration to affected organs are also important considera-
tions, and it is not clear how they are affected by typical T cell 

isolation protocols. Future work needs to identify the factors 
that will promote the successful and complete reconstitution 
of HCMV-specific immunity throughout the body and to 
develop adoptive transfer methods that will optimize these 
conditions.
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