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Even though combining surgery with chemotherapy has significantly improved the prog-
nosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are 
often non-responsive to chemotherapy, making development of novel efficient therapeu-
tic methods an urgent need. Adoptive immunotherapy has the potential to be a useful 
non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, 
including immunotherapies using naturally occurring or genetically modified T cells, have 
been found to hold promise in the treatment of hematologic malignancies and solid 
tumors. In this review, we will discuss possible T-cell-based therapies against osteosar-
coma with a special emphasis on combination strategies to improve the effectiveness of 
adoptive T cell transfer and, thus, to provide a rationale for the clinical development of 
immunotherapies.
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iNTRODUCTiON

Osteosarcoma (OS) is an aggressive malignancy of bone thought to originate from mesenchymal 
stem cells (1). It is a rare tumor that predominantly affects children and young adults (2). The most 
common sites of metastases are lung (>85%) and bone (3). Current treatment for newly diagnosed 
osteosarcoma includes three main components: preoperative chemotherapy, surgical resection, and 
postoperative chemotherapy (4). This management strategy has improved the outcome of patients 
with localized osteosarcoma. However, patients with advanced, metastatic, and recurrent osteo-
sarcomas continue to experience a quite poor prognosis (5). After aggressive treatment with both 
surgery and chemotherapy, the 5-year survival rate for osteosarcoma patients with localized disease 
is about 65% (3), whereas it is less than 20% for patients with metastases (6, 7). The use of adjuvant 
chemotherapy provides no survival advantage for patients with pulmonary metastases (8).

Therefore, novel therapies for osteosarcoma are urgently needed and of great interest in oncol-
ogy. It is thought that one class of new therapies, involving cellular immunotherapy, is likely to be 
effective in osteosarcoma (9, 10). For instance, although dendritic cell (DC) vaccination might not 
induce T-cell response to osteosarcoma (11), it can be combined with antibodies against certain 
immunoregulatory molecules (e.g., GITR) to enhance antitumor effects in osteosarcoma (12). 
However, recent evidence reveals that using DC immunotherapy may elicit cytotoxic T cell response 
in preclinical osteosarcoma models (13). Inoculating bacterial products into unresectable tumors 
has been found to stimulate patients’ immune response and inhibit tumor growth (14–16). At this 
time, the pivotal role of the immune system in antitumor responses is widely accepted. T cells play 
an essential role in mediating potent tumor-specific immune responses, and may provide a rational 
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basis for tumor immunotherapies, such as adoptive cell transfer 
(ACT), a quite promising option (17). For example, cluster of dif-
ferentiation 19 (CD19)-chimeric antigen receptor (CAR)-T cell 
therapy can mediate potent anti-leukemic activity in children and 
young adults with chemotherapy-resistant acute lymphoblastic 
leukemia (18). Importantly, robust cancer regressions have been 
achieved in patients with metastatic melanoma after using T-cell 
transfer immunotherapy (19). This suggests a possible role and 
significant efficacy of T cell-mediated treatment of other solid 
tumors, including osteosarcoma. Indeed, promising results have 
been reported recently in studies of adoptive T cell therapy in 
osteosarcoma (20–24). Results from studies of other solid malig-
nancies, such as melanoma, can point to new immunotherapeutic 
strategies that may improve survival of patients with advanced 
osteosarcoma, prevent metastases, and reduce relapse rates in 
patients with resected tumors.

In this article, we briefly review T-cell-based immunothera-
pies, discuss their challenges, and consider corresponding solu-
tions. Furthermore, we discuss novel therapeutic strategies for 
treatment of osteosarcoma, based on our current understanding 
of the adoptive transfer of unmodified or gene-engineered T cells.

ADOPTive T CeLL TRANSFeR FOR 
OSTeOSARCOMA

Treating patients with cell populations that have been isolated, 
manipulated, expanded ex vivo and reinfused into patients 
is defined as ACT. Immunologists generally use one form of 
adoptive immune cell transfer, notably, adoptive T cell transfer 
(ATCT). In this process, T cells are infused back into a patient 
after ex vivo expansion, and then migrate to the tumor site and 
mediate an antitumor effect. The fundamental requirements for 
successful ATCT have become technically feasible in recent years, 
and ATCT has become a promising option for cancer treatment, 
because it has several advantages compared with other forms of 
immunotherapy. T cells with desired specificities and enhanced 
functionality for potent antitumor responses can be selected and 
collected in vitro, consequently avoiding adverse reactions in vivo. 
In addition, interleukin-2 (IL-2) can promote T lymphocyte 
growth ex vivo without functional loss of effector T cells (25). This, 
and other advances in cell culture, have made ATCT technically 
feasible, because it is now possible to generate sufficient quantities 
of human T cells for subsequent infusion. And most importantly, 
tumor microenvironments can now be manipulated to make 
the lesions more susceptible before the administration of ATCT. 
These manipulations can include blocking mechanisms of immu-
nosuppression (such as eliminating T-regulatory lymphocytes) 
that represents a unique advantage of ATCT (26, 27). At this 
time, the two most pressing questions appear to be: (1) Can new 
T cell sources be developed, to replace autologous cell production 
and overcome histocompatibility barriers? (2) What is the best 
method to minimize on-target or off-target toxic effects of ATCT?

Recent reports of excellent efficacy of ATCT for cancer in 
early clinical trials have led to increased interest in developing 
T cell therapy (18, 28, 29). In this section, we primarily examine 
the current landscape of various T-cell-based immunotherapies 
for cancer, especially for osteosarcoma. We discuss potentially 

promising antigen targets or immune checkpoints, which may 
lead to improved modalities for treatment of osteosarcoma.

Tumor-infiltrating Lymphocytes
In the complex microenvironment of neoplasms, tumor-
infiltrating lymphocytes (TILs) play a crucial role in regulating 
development and growth of the lesions. One key feature of TILs 
is their ability to migrate into or infiltrate tumors, while other 
T cells may not traffic to tumor sites due to deletion of chemokine 
receptors (30). Moreover, TIL populations comprise a vari-
able ratio of CD4+ and CD8+ T cells (24), and these TILs have 
stronger antitumor effects than peripheral blood lymphocytes. 
Additionally, recent evidence suggests that most TILs are directed 
to non-self-antigens that are only expressed in tumor tissues, 
instead of known antigens, reducing the risk of autoimmunity 
from TIL therapy (31).

Many studies indicate that increased TIL density can improve 
clinical outcome in patients with advanced cancers (32–34), 
suggesting potent antitumor reaction of TILs. When encounter-
ing tumor antigens, these TILs can directly kill tumor cells and 
release cytokines, such as IFN-γ, IL-2, and TNF, which are known 
to mediate antitumor immune responses (35, 36). Adoptive 
transfer of TILs is the earliest known form of efficacious T-cell 
therapy for solid tumors and has been predominately developed 
in patients with melanoma (37, 38). Furthermore, combining TIL 
transfer with lymphodepleting chemotherapy and radiation has 
achieved impressive clinical outcomes in patients with metastatic 
melanoma, and has expanded the use of experimental TIL 
therapy to patients with other types of cancer (19, 39). Isolating 
and expanding TILs ex vivo from patients with osteosarcoma is 
not an established clinical technique at present, and the presence 
of TILs in sarcomas positively correlates with a good prognosis 
(40–42). This suggests that TIL therapy may have potential as 
an effective treatment of osteosarcoma. In any case, there are 
no clinical reports of use of ATCT with TILs for osteosarcoma 
yet, because at this time, isolation and expansion of TILs from 
osteosarcoma tissues is unreliable. However, recent advances in 
genetic engineering may lead to new strategies that will make this 
therapeutic approach feasible. Higher levels of PD-L1 expression 
in tumor cells are found to be positively correlated with TILs in 
osteosarcoma, whereas PD-1 expression is shown to be correlated 
with progression of the osteosarcomas (43, 44). Increased TIL 
density and PD-L1 levels predict better outcome of other cancers 
(32, 34, 45). Thus, more studies addressing ATCT with TILs are 
urgently needed to elucidate the biology and improve the treat-
ment of osteosarcoma.

Recently, the first successful isolation of neoantigen-reactive 
or mutation-reactive T cells from TILs and peripheral blood has 
been reported, which potentially could lead to development of 
personalized immunotherapies to treat patients with advanced 
cancer (46). In the future, the effectiveness of TIL therapy may be 
further increased, if coupled with the flexible feature of specifi-
cally targeting diverse tumor antigens through antigen receptor 
gene engineering with CARs or T cell receptors (TCRs). Strategies 
that target mutated tumor-specific antigens (TSAs) are superior 
to those that target non-mutated self-antigens. The most distinct 
advantage is that T cells recognizing mutated (“foreign”) antigens 
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FiGURe 1 | Basic procedure of adoptive transfer T cells from 
tumor-infiltrating lymphocytes (TiLs).
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are independent of central tolerance and, thus, may potentially 
express higher-affinity TCR than do those targeting self-antigens 
(47, 48). However, the frequency of neoantigen-reactive T cells 
in TIL cultures may potentially limit the effectiveness of this 
approach. To address this issue, purifying tumor-reactive T cells 
from bulk TILs and peripheral blood is currently performed via 
using MHC tetramers generated by candidate neoepitopes identi-
fied by whole-exome sequencing (46). Furthermore, recent evi-
dence has shown that neoantigen-specific T cell reactivity can be 
enhanced by anti-CTLA-4 treatment (47). Therefore, combining 
checkpoint inhibitors with adoptively transferred neoantigen-
specific T cells from TILs or peripheral blood may also represent 
an effective treatment option for osteosarcoma patients who pro-
gress following treatment with individual therapies (Figure 1).

Unmodified CD8+ T Lymphocytes
Adoptive transfer of tumor-reactive CD8+ cytotoxic T lympho-
cytes (CTLs) is another promising immunotherapy for treatment 
of solid tumors (Figure 2). Evidence suggests CTLs have a leading 
role in immune surveillance of patients with osteosarcoma (49). 
Finding a TSA that can be reasonably targeted by CD8+ T cells 
is a key step for the development of adoptive immunotherapy for 
osteosarcoma. One of the optimal candidates as TSAs for CD8+ 
T cell recognition is cancer/testis antigen family (CTAs). CTAs 
are protein antigens, most of which are normally expressed only 
in human germ line cells, stem cells, and during embryogenesis 
(50, 51). Due to loss of CTA expression in most normal tissues, 
these antigens theoretically could elicit immune responses in can-
cer patients with CTA overexpression. Moreover, CTAs are more 
often expressed in advanced cancers, indicating that an increased 
expression of CTAs can be associated with a poor outcome (52). 
CTAs seem to have important functions in oncogenesis and 
survival of malignant cells (51). Furthermore, several CTAs, such 
as the MAGE-A family proteins and LAGE-1/NY-ESO-1, are 
known to be expressed in osteosarcoma (53, 54). Therefore, CTAs 
may be promising antigen targets in sarcomas (55, 56).

The specificity of CTAs makes them potential epitopes for 
antigen-specific adoptive T-cell transfer, and clinical trials using 
NY-ESO-1 or MAGE-A3 specific lymphocytes against soft-tissue 
tumors and lung cancer have achieved initial success (57–59). 
Nevertheless, the level of CTA expression is quite variable among 

different tumor types. In osteosarcoma, some CTA genes are 
silenced, complicating the use of CTA-based immunotherapy. 
However, promising results have been reported in our study eval-
uating adoptive CD8+ T cell transfer therapy in osteosarcoma. 
Expression of MAGE-A family and NY-ESO-1 in osteosarcoma 
cell line U2OS and HOS can be increased following demethylat-
ing treatment with decitabine (5-aza-2′-deoxycytidine, DAC). 
When in  vitro generated CTA-specific CD8+T cells were rein-
fused into the osteosarcoma animal models, there was a dramatic 
antineoplastic reaction and distinct shrinkage of tumors (21). The 
key for excellent conditions for CTA-specific immunotherapy 
was increased tumor immunogenicity via elevated CTA expres-
sion in the osteosarcoma. Thus, the strategy of using synergistic 
effects from combining demethylating treatment and specific 
immunotherapy for control of osteosarcoma should be pursued 
in clinical trials.

One major drawback of adoptive transfer of CTLs against 
osteosarcoma is MHC-dependent (limited to patients with 
certain HLA-haplotypes). Tumor antigens must be presented by 
HLA to generate effective target recognition (60). Patients with 
osteosarcoma expressing HLA Class I showed superior overall 
and event-free survival compared with HLA class I-negative 
patients. However, deletion or downregulation of HLA class 
I expression was detected in about half of the osteosarcoma 
specimens (49). Hence, upregulating HLA, especially HLA 
class I expression, enhances the antitumor effect of CTLs and 
can prolong the survival time of patients. Previous studies have 
revealed that the expression of HLA molecules can be regulated 
by epigenetic mechanisms (61, 62). Recently, treatment with DAC 
has also been shown to induce the expression of HLA Class I and/
or II molecules in osteosarcoma cell lines (63), further supporting 
the combination of demethylating treatment and ATCT therapy. 
When expanding and activating T cells in  vitro, DCs pulsed 
tumor lysates or tumor-associated antigens (TAAs) are usually 
used to co-culture with them. The HLA Class I presenting tumor 
lysates or TAAs must be compatible with that of CTLs. The design 
and generation of TAA-specific CTLs should entail HLA com-
patibility, which is key for the feasibility of clinical applications. 
HLA expression in common human osteosarcoma cell lines, is 
summarized in Table 1 (source from www.jaci.jp/HLA.htm).

Until recently, the adoptive transfer of unmodified CD8+ 
T cells for osteosarcoma was restricted to preclinical mouse tumor 
models. Clinical application of T cell therapy for osteosarcoma 
faces several obstacles before it can be introduced into clinical 
practice. These include: (1) required production with stringent 
GMP (good manufacturing practice) procedures in dedicated 
facilities; (2) necessity of lymphodepleting preparative treat-
ment; and (3) advocate combination of different immunotherapy 
approaches and integration with conventional treatments (64).

γδ T Cells
γδ T lymphocytes represent a subset of human lymphocytes 
involved in the innate immune system (Table  2). The peculiar 
capacity of γδ T cells to directly recognize and lyse osteosarcoma 
cells was initially documented by Kato et  al. (65). The use of 
adoptive γδ T cell transfer in cancer immunotherapy is a new 
treatment, especially with regard to osteosarcomas. The main 
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TABLe 2 | evaluations of γδ T cell therapy in OS.

Ancillary therapy Study type Comment

None In vitro (65) Markedly enhanced cytotoxicity against 
the antigen-pulsed tumor cells as 
compared with untreated tumor cells

ZA In vitro (75) Potent antitumor activity and the 
enhanced immunosensitivity of OS cell 
lines to γδ T cells

IFN-γ In vitro (22) Enhancement of susceptibility of tumor 
cell lines, HOS and U2OS, to the 
cytotoxicity of γδ T cells

ZA In vitro and  
in vivo (78)

More efficient ability to inhibit tumor 
growth and potent antitumor activity

Trastuzumab + ZA In vitro (77) Enhancement of cytotoxicity of γδ 
T cells against ZA-sensitized OS cells

TABLe 1 | HLAs expression in the common human OS cell lines.

OS cell line HLA class i A HLA class i B HLA class i C

HOS 0211/– 5201/– 1202/–
U2OS 0201/3201 4402/– 0501/0704
MG63 0101/– 0801/– 0701/–
SaOS-2 0201/2402 1302/4402 0602/0704

FiGURe 2 | Tumor-specific T-cell-based immunotherapy. Unmodified CD8+ T cells are ex vivo expanded and do not need genetic modification, while both 
TCR-engineered CD8+ T cells and CAR-T cells need specific modifications to obtain targeting abilities. Unmodified CD8+ T cells need antigen processing and MHC 
presentation via antigen-presenting cells, such as dendritic cells. TCR-engineered CD8+ T cells can directly recognize intact target molecules expressed on tumor 
cell surface in an MHC-dependent fashion, while CAR-T cells are MHC-independent.
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advantages and disadvantages of adoptive γδ T cell transfer immu-
notherapy are summarized below: (1) it is MHC-independent 
(all patients may benefit); (2) it is not affected by immune-escape 
MHC-downregulation; (3) it is not restricted to any precise 
sarcoma histotype; (4) it has high rates of ex vivo expansion with 
simple protocols; (5) it has limited persistence in vivo; and (6) 
its recognition is limited to extracellular targets (64). Unlike αβ 
T cells, γδ T cells can naturally recognize tumor antigens in an 
MHC-independent manner without antigen processing. The 
particular antigens that γδ T cells recognize are non-peptide, 
phosphoantigens instead of protein antigens (66). Their recogni-
tion and interaction with target cells mostly rely on γδ TCR and 
other receptors such as NKG2D/NKG2D-L, TRAIL/TRAIL-R, 
FAS/FAS-L, and TNF/TNF-R (67) (Figure  3). Indirect activity 
may be mediated through secretion of Th1 and Th2 activating 
cytokines (68–70).

Two different immunotherapeutic strategies can be used to 
harness γδ T cells for cancer immunotherapy: adoptive transfer of 
ex vivo expanded γδ T cells, or combination of γδ T cells and agents, 

such as aminobisphosphonates (NBPs). Zoledronic acid (ZA), 
the most potent NBPs, can act on tumor cells by inhibiting tumor 
cell adhesion to mineralized bone as well as tumor cell invasion 
and proliferation (71, 72). Moreover, the antitumor effect of NBPs 
in bone cancer metastases due to prostate cancer, lung cancer, and 
other solid tumors has been documented, supporting the clini-
cal utility of NBPs in the treatment of bone metastases (73, 74). 
In vitro and in vivo studies show that ZA significantly enhances 
the killing activity of γδ T lymphocytes against osteosarcoma 
cells (65, 75, 76). Furthermore, combination of Trastuzumab [an 
anti-HER-2 monoclonal antibody (mAb)] and Vγ9Vδ2 T cells 
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FiGURe 3 | Mechanism of γδ T cells recognizing and killing 
osteosarcoma cells.
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can enhance the cytotoxicity against ZA-sensitized osteosarcoma 
cells (77). A central mechanism mediating this activity utilizes 
the Fas/Fas-L pathway, and it was demonstrated that expression 
of Fas-L may be modulated in osteosarcoma by IFN-γ. Thus, 
combination of adoptive transfer of γδ T cells and IFN-γ may 
enhance anti-osteosarcoma activity and provide a new approach 
to the therapy of osteosarcoma (22). In the future, the role of γδ 
T cell immunotherapy combined with other modalities needs to 
be elucidated.

Clinical trials studying the effects of γδ T cell immunotherapy 
for both hematological malignancies and solid tumors show 
promise for cellular therapy of these cancers (78). Although 
many studies suggest potential use of γδ T cells to treat osteo-
sarcoma, only preclinical studies using osteosarcoma cell lines 
have been done so far (75, 79). These studies document potential 
anti-osteosarcoma activity of γδ T cells and justify evaluating γδ 
T cells in clinical trials of osteosarcoma. Such clinical studies now 
seem to be technically feasible, as a result of the recent advances 
in ex vivo expansion of γδ T cells (80).

Gene-engineered Tumor-Specific T Cells
Genetic engineering of T lymphocytes can endow them with 
new antitumor specificities, and may facilitate the successful 
clinical adoption of immunotherapy techniques. Progress in 
gene-transfer technology has made it possible to impart precise 
and functionally active TCRs or CARs into conventional T cells 
(Figure 2). This means that recognition of TSAs may be acquired 
through inducing the cytomembrane expression of transgene-
encoded TCRs or CARs. Here, we will focus on TCR or CAR 
redirected T cells as possible pivotal treatments for osteosarcoma 
that may be developed in the near future.

TCR-Engineered T Cells
To a great extent, ex vivo expansibility of antitumor lymphocytes 
has so far confined the clinical translation of many adoptive 
immunotherapy approaches in solid tumors. However, advances 
in the ability to effectively engineer T lymphocytes may actually 

address this challenge through introducing tumor-specific TCR 
genes into T cells (81–83). T cells with transgenic T-cell recep-
tors (tgTCRs) and a matched endogenous CD3 complex can be 
activated upon encountering their respective antigen presented 
by HLA molecules and then specifically target tumor cells. The 
success of adoptive transfer TCR gene-transduced T cells from 
recent preclinical and clinical studies mainly depends on (1) the 
expression level of tgTCRs on the cell surface; (2) the intrinsic 
affinity of the intended tgTCRs; and (3) the differentiation state 
of the modified T cells (84–87).

This approach, nevertheless, faces many fundamental chal-
lenges, including (1) low affinity of the TCR binding its peptide/
MHC complex; (2) decrease in TCR expression of the introduced 
and endogenous TCRs; (3) mispairing of the introduced α/β 
chains with endogenous α/β TCR chains; and (4) potential risks 
of autoimmune responses and toxicities. Not only may new 
encoded α/β chains form undesired dimers with the endogenous 
TCR chains lowering the expression and the efficacy of the 
intended antitumor tgTCR, but also can give rise to unintended 
recognition of different antigens with potential risks of autoim-
mune responses and toxicities (88, 89). Strategies being explored 
to address these limits include structural modifications of TCRs 
(90–92), transduction of γδ T cells or hematopoietic stem cells 
later differentiated into T cells (93, 94), construction of single-
chain antitumor TCRs (95) and silencing the expression of the 
endogenous TCR (96, 97). On the other hand, some research 
teams focus on entirely bypassing the MHC restrictions through 
producing another artificial design, the CAR (38). It is important 
to note that, relative to TCR affinity, “the more, the better” may be 
untenable. Artificially induced high affinity of TCR may eventu-
ally impair the functions of antitumor T cells and generate side 
effects (82).

Despite these obstacles, MART-1-, gp100-, or NY-ESO-1-
specific TCR T cells have been evaluated in melanoma patients 
with favorable outcomes (59, 85, 98). Tumor regression in 
patients with metastatic synovial cell sarcoma can be achieved 
by using gene-engineered lymphocytes reactive with NY-ESO-1; 
this study represented the first demonstration of the successful 
treatment of a non-melanoma tumor using TCR-transduced 
T cells (59). These observations indicate that TCR-based gene 
therapies directed against NY-ESO-1 can represent a new and 
effective therapeutic approach for solid tumors. By coincidence, 
NY-ESO-1 in osteosarcoma cell line U2OS and HOS can be 
elevated following demethylating treatment with DAC (21). 
Although data about the usage of tgTCR T cells in treating osteo-
sarcoma patients is not available, studies of this issue are critical, 
as suggested by the encouraging results with NY-ESO-1-specific 
TCR T cells.

Chimeric Antigen Receptor-Engineered T Cells
Emerging strategies with CAR-engineered T cells, based on 
principles of synthetic biology are hypothesis-generating and 
thought-provoking, and have ushered in what may prove to be 
major advances in T-cell-based immunotherapy. In general, the 
CAR consists of three parts: an extracellular antigen recogni-
tion domain [a single-chain variable fragment (scFv) from a 
mAb], a hinge, and an intracellular signaling domain (99). 
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Existing CARs use the CD3ζ chain as the signaling domain and 
additionally contain other signaling domains involved in T cell 
activation or costimulation (83). In contrast to the TCR, the 
scFv domain of CAR binds directly to recognize intact target 
molecules expressed on cell surfaces in an MHC-independent 
fashion. This approach can be applied to all patients regardless of 
their HLA-haplotype. The limitation of CAR-engineered T cells 
is their inability to target intracellular antigens. CAR-based 
strategies can bypass the need for MHC-restricted antigen pres-
entation and are, thus, insensitive to tumor escape mechanism 
related to HLA downmodulation (100). Moreover, CARs also 
overcome most of the T cell triggering limitations due to low 
epitope density, since the scFv of the mAb is characteristic of 
high affinity for the antigen target. For instance, adoptive trans-
fer of HER2-specific T cells can overcome low levels of HER2 
expression in osteosarcoma (23).

Chimeric antigen receptor-T therapy was initially investigated 
for treatment of hematologic malignancies, partly because of 
deep understanding of the lineage-restricted surface expression 
of antigens and easy delivery of modified T cells to tumor sites 
within the blood. CD19 is viewed as one of the most successful 
antigen targets to date. CD19-CAR-T cell therapy, proven to be 
feasible and safe, mediates potent anti-leukemic responses both 
in children and young adults with hematologic cancers (18). 
Additionally, considerable effort has been spent by several groups 
to explore the use of CAR-T therapy in preclinical models to treat 
sarcomas by targeting interleukin-11 receptor α-chain (IL-11Rα), 
NK receptor ligands (NKG2D-L), and fetal acetylcholine recep-
tors (101–103). Based on these studies, CAR-T therapy has 
the potential in clinical application in  vivo both as a primary 
treatment for sarcoma and as a complementary modality for 
sarcoma in the future. For instance, human epidermal growth 
factor receptor 2 (HER2) is expressed by the majority of human 
osteosarcomas. HER2 could potentially become a prognostic 
marker and therapeutic target for osteosarcomas (104). Unlike 
breast cancers, HER2 expression is quite low in osteosarcoma 
cells and non-engineered T cell therapy cannot effectively target 
it. However, the adoptive transfer of HER2-specific CAR-T cells 
can circumvent this limitation and cause regression of osteosar-
coma in preclinical models of loco-regional lesions as well as 
experimental models of pulmonary metastases (23). In clinical 
trials, adoptive transfer of HER2-CAR-T cells in patients with 
osteosarcoma indicates that these cells can persist for 6  weeks 
without evident toxicities. Hence, combination of HER2-CAR-T 
cells and other immunotherapies should be pursued to promote 
their expansion and persistence (20).

The CAR-T therapy is actually closely related to immuno-
therapy based on mAbs. The main advantage of mAbs over 
CAR-T approach is their convenient storage and easy usage. 
While CAR-T therapy needs advanced expertise (105). When 
antigen presentation and TIL burden are low, immunomodu-
lating mAbs may not induce a strong antitumor response. 
But CAR-T cells are not inhibited by these barriers (106). 
Furthermore, other therapeutic challenges concerning CAR-T 
cell include persistence and expansion, trafficking, tumor 
microenvironment and efficacy in solid tumors (99). Here, we 
must point out that the usage of CAR-T cells may result in the 

development of expected or unexpected toxicities. Therefore, 
selecting a target antigen for engineering a CAR is crucial. For 
example, if the target antigen is not only expressed on tumors 
but also on normal tissues, the possibility for on-target toxicities 
to occur can be predicted. On-target toxicities result from the 
recognition of an intended molecular target expressed both on 
tumors and normal tissues, whereas in the case of off-target 
toxicities, T cells recognize an unintended structure due to 
antigenic mimicry or cross-reactivity. On-target toxic events 
were relatively mild. For example, dose-limiting liver toxicity was 
observed in patients receiving anti-CAIX CAR-T lymphocytes 
for renal cell carcinoma (107). Besides the relatively manageable 
events, recent trials have also reported the occurrence of fatal 
on-target off-tumor toxicities. A severe lung toxicity, cytokine 
storm and subsequent multi-organ failure occurred shortly after 
the CAR-engineered T cell infusion, likely due to recognizing of 
low HER2 expression levels in normal lung cells. It was demon-
strated that a marked increase in IFN-γ, GM-CSF, TNF-α, IL-6, 
and IL-10 occurred shortly after the lymphocyte infusion (108). 
Incorporation of suicide genes or engineering of multi-specific 
CAR-T cells to limit their activation to tumor sites might allow 
control of adverse events (109). In summary, adoptive transfer 
of CAR-T cells appears to be an attractive therapeutic option 
for experimental osteosarcoma therapy, but further research 
will be required to develop comprehensive measures to avoid 
adverse side effects.

Further studies are needed to identify unique antigens 
expressed on tumor cells and not in normal tissues. So far, 
several candidate antigens have been identified that are either 
aberrantly expressed by tumors (e.g., CTAs, such as MAGE fam-
ily or NY-ESO-1, in the formation of peptide/HLA complex) or 
overexpressed in tumors compared with normal tissues (such as 
HER2) (52, 110, 111). In view of these target antigen candidates, 
clinical trials with osteosarcoma-specific TCR or CAR-redirected 
T lymphocytes are planned for the coming years.

FUTURe OUTLOOK

Theoretically, T cells are capable of eliciting an effective antitumor 
response and causing significant tumor regression. However, 
ATCT for osteosarcoma presents unique challenges, including 
the inherent heterogeneity of the tumor itself, the complexity 
and importance of the tumor microenvironment, and the limited 
therapeutic accessibility to tumor site. In order to address these 
challenges, we will consider the following three issues.

Promising Molecular Targets
The clinical benefit of T-cell-based immunotherapeutics in the 
control of a diverse set of human cancers occurs, mainly as a 
result of the selection of therapeutic targets. Selecting a promising 
molecular target is required for the successful adoptive transfer 
T cell therapy. For osteosarcoma, potential therapeutic molecular 
targets are summarized in Table 3. CTA (MAGE-A family and 
NY-ESO-1) and HER2 were discussed in detail above. Another 
antigen target (IL-11Rα), two immunomodulatory targets 
(PD-L1 and CTLA-4 checkpoint inhibitor) and one target axis 
(NKG2D-NKG2D-L) should also be considered.
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TABLe 3 | Promising molecular targets for OS immunotherapy.

Molecular target Target site Prognostic marker Antibody immunotherapy T-cell-based immunotherapeutics

CTA (MAGE-A family 
and NY-ESO-1)

Tumor cell Unknown None Combining demethylating treatment and CD8+ T cells 
in OS animal models (21)

PD-L1 Tumor cell Unknown (but PD-1 
is correlated with 
progression of OS) (44)

Blockade of PD-1/PD-L1 
interactions in OS mouse 
models (114)

None

HER2 Tumor cell Yes (98) Trastuzumab (77) γδ T cells against zoledronate-sensitized OS cells (77); 
HER2-specific CAR-T therapy in OS mouse models (23)

IL-11Rα Tumor cell Unknown None IL-11Rα-CAR+ T cells successfully killing human OS 
cells and inducing the regression of OS with lung 
metastases (96)

CTLA-4 T cell Unknown Combining CTLA-4 blockade and 
tumor lysate-pulsed DCs or PD-L1 
blockade in murine OS (127, 128)

None

NKG2D-L Tumor cell Unknown None None
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Interleukin-11, a member of the Jak–STAT activating family of 
cytokines, binds to IL-11Rα and transduces the gp130–Jak–STAT 
signaling pathway, promoting tumorigenesis (112, 113). Increased 
expression of IL-11Rα occurs in prostate cancer and has been 
suggested as a candidate target for metastatic prostate cancer 
lesions (114). Additionally, overexpression of IL-11Rα occurs in 
both metastatic breast cancer and prostate cancer, implying the 
involvement of IL-11Rα in bone metastases (114, 115). Additional 
evidence has demonstrated that IL-11Rα was overexpressed in 
primary and metastatic osteosarcoma, but not expressed in the 
adjacent normal lung tissue (102, 116), or in major organs, such 
as brain, heart, and kidney. Moreover, IL-11Rα-CAR+ T cells 
successfully killed human osteosarcoma cells and induced the 
regression of osteosarcoma with lung metastases (102). So it is 
a possible ligand-directed target in osteosarcoma, and especially 
for metastatic osteosarcoma. Conceivably, combining IL-11Rα-
CAR+ T cells with other therapies may produce a clinically 
beneficial response in patients with osteosarcoma.

Programed death 1 (PD-1) is a receptor expressed on the 
surface of T and B lymphocyte subsets, as well as other immune 
cells. It can mediate T-cell inhibition upon binding with its ligand, 
which was named programed cell death ligand 1 or B7 homolog 
1 (PD-L1 or B7-H1). Recent clinical trials of inhibitory anti-
bodies (aimed at PD-1 or PD-L1) have induced durable tumor 
regression and continued stabilization of disease in patients with 
advanced cancers, such as melanoma, renal cell carcinoma, and 
non-small cell lung cancer (117–119). Currently, three different 
phase II clinical trials studying the effect of checkpoint inhibitors 
are ongoing in osteosarcoma patients. One of them is based on 
anti-PD-1 antibody Pembrolizumab (NCT02301039), and the 
other two are utilizing anti-PD-1 antibody Nivolumab with or 
without anti-CTLA-4 antibody Ipilimumab (NCT02304458 and 
NCT02500797). The results of these three clinical trials will, at 
least to some extent, elucidate the efficacy of checkpoint inhibitors 
in patients with osteosarcoma. Evidence reveals that the percent-
age of PD-1 is significantly upregulated on both peripheral blood 
CD4+ and CD8+ T lymphocytes from osteosarcoma patients 
and PD-1 is involved in the progression of osteosarcoma (44). 
Additionally, high levels of PD-L1 expression both in human 

osteosarcoma cell lines and tumor samples have also been deter-
mined via RNA-based assay for the first time (43). Therefore, 
inhibition of PD-1/PD-L1 is an interesting therapeutic target that 
may restore immune system function against osteosarcoma cells. 
The efficacy of osteosarcoma-reactive CTLs in vitro and in vivo is 
significantly enhanced via blockade of PD-1/PD-L1 interactions, 
resulting in decreased tumor burden and increased survival in 
the osteosarcoma metastasis models (120). Therefore, the com-
bination of adoptive CD8+ T cell and blockade of PD-1/PD-L1 
interactions should be pursued, as it is a promising therapeutic 
strategy for osteosarcomas. In the tumor microenvironment, IFN-
γ can increase efficient antigen processing for MHC-mediated 
antigen presentation and enhance immune response (121). But 
the combination of PD-1/PD-L1 blockade and IFN-γ needs to be 
further explored since IFN-γ may simultaneously upregulate the 
expression of PD-L1 in peripheral tissues and immune cells and, 
thus, suppress the immune response (122–124).

CTLA-4 (CD152), expressed on activated T cells, can attenu-
ate the antitumor response by downregulating T-cell activation. 
However, CTLA-4 also may be expressed on tumors, inducing 
apoptosis of neoplastic cells (125). Therefore, blockade of the 
inhibitory effects of CTLA-4 or combination of NY-ESO-1 vac-
cination with CTLA-4 blockade can enhance antitumor response 
in metastatic melanoma patients, resulting in clinical benefits 
(126, 127). It is interesting that long-term survival of patients with 
advanced melanoma has been achieved by using Tremelimumab, 
an anti-CTLA-4 antibody (128). Currently, several meta-analyses 
consistently show that CTLA-4 is significantly associated with 
osteosarcoma risk, and might play an important role in carcino-
genesis of osteosarcoma (129–132). To prevent immune-escape 
and obtain complete control of a carcinoma, combination immu-
notherapy of CTLA-4 and PD-L1 blockades was investigated in 
animal models of metastatic osteosarcoma (133). Combining 
anti-CTLA-4 antibody and tumor lysate-pulsed DCs can promote 
antitumor reaction in murine osteosarcomas (134). These data 
indicate that combination of CTLA-4 blockade with other immu-
notherapies against osteosarcoma shows great clinical promise.

NKG2D, initially identified on NK cells, is also found to 
be expressed by CD8+ T cells, NKT cells, and γδ T cells. Its 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Wang et al. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities

Frontiers in Immunology | www.frontiersin.org September 2016 | Volume 7 | Article 353

ligands consist of MHC class I-related chains A and B (MICA, 
MICB) and the UL16-binding protein family (ULBP1-6) (135). 
Via NKG2D–NKG2D-L axis, both NK cells and T cells can be 
activated and mediate cytotoxicity (136). It is validated that NK 
cells can target osteosarcoma cells in an NKG2D–NKG2D-L 
dependent manner (137). However, there is a paucity of data 
about T  cell  targeting of osteosarcomas via this mechanism. 
A positive correlation between NKG2D-L expression and 
improved clinical outcomes has been documented in various 
solid tumors (138). In osteosarcoma patients, a deficiency of 
MICA–NKG2D-mediated immunesurveillance is revealed by 
prevalent expression of MICA and higher serum level of soluble 
MICA (139). These data suggest that sustaining or increasing 
NKG2D-L expression on osteosarcoma cells or NKG2D on 
T cells may be a viable strategy for developing effective cancer 
immunotherapy.

It is widely accepted that TSAs, such as CTA, are ideal target 
antigens that are only expressed on tumor tissues but not in nor-
mal tissues. As compared with TAAs, TSAs cannot stimulate the 
immune response toward self, inducing, or exacerbating cancer-
associated autoimmune diseases, which is fundamentally differ-
ent for TCR- and CAR-based strategies. Epidermal growth factor 
receptor vIII mutant (EGFRvIII), a TSA target, is a recurrent 
oncogenic variant found in 25–64% of glioblastomas (140–142). 
Genetically modified T cells have been used to target EGFRvIII, 
only expressed on glioblastoma cells, to establish a basis for future 
clinical application (141, 143, 144). Although EGFR expression is 
common in osteosarcoma tumors, EGFRvIII (the most common 
mutant type of EGFR) (145) is absent from osteosarcoma tumors 
(146). Osteosarcoma is characteristic of genomic rearrangements 
and genomic instability. Chromothripsis (tens to hundreds of 
genomic rearrangements occurring in a one-off cellular crisis) 
is more likely to occur in osteosarcomas than in other tumor 
types. Moreover, evidence shows that chromothripsis can drive 
the development of tumor due to copy number changes and/
or dysregulated gene expression (147). Therefore, new potential 
therapeutic targets may be identified by next-generation sequenc-
ing studies (148).

Tumor Microenvironment
In order to allow for rapid tumor growth, an assortment of 
non-neoplastic cells is recruited to nurture the expanding 
neoplasm. These cells are required to support the development 
of the tumor by synthesizing matrix proteins, cytokines, and 
fabricating the vascular network needed for nutrition and waste 
exchange of the  neoplastic tissues. The tumor microenviron-
ment influences the protein expression of healthy surrounding 
tissues and the process of tumorigenicity (149). This provides 
a possible new paradigm for cancer therapy by targeting the 
“soil” instead of only the “seed” (150). Improved knowledge 
of tumor microenvironments involved in tumor progression, 
invasiveness, and metastasis may improve the efficacy of 
therapeutic strategies, and ultimately have a significant clinical 
impact.

Most solid tumors possess a stromal compartment that pro-
motes tumor growth directly through cell contact or paracrine 
secretion of cytokines, growth factors, and nutrients, thereby 

influencing tumor-induced immunosuppression (150, 151). 
During the process of T cell activation, a parallel inhibitory pro-
gram that will eventually stop the response is also fully activated 
(152). Immunosuppressive mechanisms at play in the tumor 
microenvironment involve the suppressive action of regulatory 
T cells (Tregs), myeloid-derived suppressor cells (MDSCs), 
tumor-associated macrophages (TAMs), stromal fibroblasts, and 
no doubt, other cell types not yet defined. These cells inhibit T cell 
function by upregulating the expression of surface molecules that 
bind inhibitory receptors, such as CTLA-4, PD-1, TIM-3, LAG-
3, and BTLA, as well as through producing immunosuppressive 
cytokines or other soluble factors (153, 154). Early-phase trials 
of antibodies that interfere with the T cell checkpoint molecule 
PD-1 have shown clinical efficacy in diverse tumor types, includ-
ing melanoma, lung cancer, bladder cancer, stomach cancer, 
and renal cell cancer (155). Therefore, targeting components of 
the tumor microenvironment, such as the immunosuppressive 
cytokines, inhibitory receptors on T cells, tumor vasculature, and 
cancer-associated fibroblasts, may be an innovative approach to 
the treatment of osteosarcoma.

Combination Strategy
Chemotherapy, radiation therapy, vaccines, and immune 
checkpoint inhibitors, to name a few, partnered with adoptive 
T-cell transfer and/or components of the tumor niche, may 
yield meaningful clinical benefits. Rational combinations of 
immunotherapies are already showing increased efficacy in 
murine models and human patients (156). Clinical investigations 
of immune checkpoint inhibitors have demonstrated activity in 
multiple types of neoplasms (157). So checkpoint inhibitors may 
be an attractive component of combination strategy for treatment 
of osteosarcoma in the future (158).

CONCLUSiON

Based on recent insights into the biology and immunology of 
osteosarcoma, harnessing the body’s immune system especially 
via ATCT to enhance treatment of osteosarcoma is becoming 
an increasingly attractive option. Monotherapy is insufficient 
to carry a universal cure for tumors and future studies need to 
focus on identifying the optimal combination strategy of immu-
notherapy with surgical therapy, chemotherapy, and/or radiation 
therapy.
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