
September 2016 | Volume 7 | Article 3601

Original research
published: 15 September 2016

doi: 10.3389/fimmu.2016.00360

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Duncan Howie,  

University of Oxford, UK

Reviewed by: 
Bruce Milne Hall,  

University of New South Wales, 
Australia  

David William Scott,  
Unversity of the Health Sciences, 

USA

*Correspondence:
Olivier Boyer  

olivier.boyer@chu-rouen.fr

Specialty section: 
This article was submitted to 

Immunological Tolerance,  
a section of the journal  

Frontiers in Immunology

Received: 18 July 2016
Accepted: 02 September 2016
Published: 15 September 2016

Citation: 
Martinet J, Bourdenet G, Meliani A, 

Jean L, Adriouch S, Cohen JL, 
Mingozzi F and Boyer O (2016) 

Induction of Hematopoietic 
Microchimerism by Gene-Modified 

BMT Elicits Antigen-Specific B and T 
Cell Unresponsiveness toward Gene 

Therapy Products.  
Front. Immunol. 7:360.  

doi: 10.3389/fimmu.2016.00360

induction of hematopoietic 
Microchimerism by gene-Modified 
BMT elicits antigen-specific B and 
T cell Unresponsiveness toward 
gene Therapy Products
Jérémie Martinet1, Gwladys Bourdenet1, Amine Meliani2,3, Laetitia Jean1, Sahil Adriouch1, 
Jose L. Cohen4, Federico Mingozzi2,3 and Olivier Boyer1*

1 Normandie University, UNIROUEN, Pathophysiology and Biotherapy of Inflammatory and Autoimmune Diseases, INSERM, 
CHU Rouen, Rouen, France, 2 U974, INSERM, University Pierre and Marie Curie, Paris, France, 3 Genethon, Evry, France, 
4 U955 Team 21, Inserm, Créteil, France

Background: Gene therapy is a promising treatment option for hemophilia and other 
protein deficiencies. However, immune responses against the transgene product rep-
resent an obstacle to safe and effective gene therapy, urging for the implementation 
of tolerization strategies. Induction of a hematopoietic chimerism via bone marrow 
transplantation (BMT) is a potent means for inducing immunological tolerance in solid 
organ transplantation.

Objectives: We reasoned, here, that the same viral vector could be used, first, to trans-
duce BM cells for inducing chimerism-associated transgene-specific immune tolerance 
and, second, for correcting protein deficiencies by vector-mediated systemic production 
of the deficient coagulation factor.

Methods: Evaluation of strategies to induce B and T cell tolerance was performed using 
ex vivo gene transfer with lentiviral (LV) vectors encoding coagulation factor IX (FIX) or the 
SIINFEKL epitope of ovalbumin. Following induction of microchimerism via BMT, animals 
were challenged with in vivo gene transfer with LV vectors.

results: The experimental approach prevented humoral immune response against 
FIX, resulting in persistence of therapeutic levels of circulating FIX, after LV-mediated 
gene transfer in vivo. In an ovalbumin model, we also demonstrated that this approach 
effectively tolerized the CD8+ T cell compartment in an antigen-specific manner.

conclusion: These results provide the proof-of-concept that inducing a microchime-
rism by gene-modified BMT is a powerful tool to provide transgene-specific B and T cell 
tolerance in a gene therapy setting.
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FigUre 1 | lentiviral vectors design. Schematic representation of the LV-GFP, LV-OVA, and LV-FIX lentiviral vectors.
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inTrODUcTiOn

A major complication of enzyme replacement therapy in 
hemophilia and other genetic defects is the development of 
immune responses toward the recombinant therapeutic protein 
(1–3). Similarly, a potential important concern for gene therapy 
is represented by the risk of immunization against the therapeutic 
transgene product, as shown in animal models of hemophilia B 
(4–8). In particular, while factor IX (FIX) gene therapy using 
adeno-associated or lentiviral (LV) vectors in vivo is a promising 
treatment option for hemophilia B (9, 10), humoral and cell-medi-
ated immune responses triggered by the transgene may result in 
lack of therapeutic efficacy (11, 12). Only few tolerizing strategies 
have been investigated to tackle this issue, mostly by targeting FIX 
expression to the liver (5, 13) or detargeting transgene expression 
from antigen-presenting cells (11). Some other approaches have 
also been proposed to induce tolerance to factor VIII (FVIII) in 
hemophilia A, i.e., administration of B cell blasts transduced by 
FVIII-immunodominant domains using a retrovirus-mediated 
gene transfer (14) or intraosseous infusion of LV encoding FVIII 
under the control of platelet-specific promoters (15).

Induction of a hematopoietic chimerism is a potent means 
for inducing immunological tolerance in solid organ transplanta-
tion. For instance, transplantation of alloantigen-expressing BM 
cells results in a strong state of tolerance in allogeneic (16) or 
syngeneic gene-modified settings (17). In hemophilia, expres-
sion of coagulation factors at therapeutic levels by transduced 
BM cells has been shown to provide FVIII- or FIX-specific 
tolerance in settings where transgene expression is restricted to 
the hematopoietic compartment (18–22). Here, we evaluated 
the hypothesis that induction of a microchimerism (<0.5%) by 
grafting LV-modified BM may be sufficient to elicit transgene-
specific tolerance and to sustain transgene expression after 
subsequent systemic LV administration or LV injection to an 
extra-hematopoietic tissue.

MaTerials anD MeThODs

lentiviral Vectors and gene Transfer
We developed LV-OVA and LV-FIX vectors by replacing the 
GFP gene of the PGK promoter-driven LV-GFP vector (23) by 
a SIINFEKL/β2-microglobulin/H-2Kb fusion construct (24) 

or human FIX cDNA (25), respectively (Figure  1). LV titers 
(expressed as transducing units, TU/mL) were determined by 
flow cytometry for LV-OVA and LV-GFP (26) and by qPCR for 
LV-FIX (10). BM cells from female Ly5.1 C57BL/6 (Ly5.1 B6) 
mice (Charles River Laboratories) were transduced with LV at a 
multiplicity of infection of 1 (17).

induction of BM chimerism
Animal experiments were approved by an ethics committee accord-
ing to French legislation (authorization N/35-11-12/58/11-15).

Ly5.2 C57BL/6 (B6) mice (Charles River Laboratories) were 
sub-lethally irradiated (5 Gy) using an X-ray Faxitron apparatus. 
BM cells from Ly5.1 B6 mice, transduced by LV and 107 cells, were 
injected IV into irradiated recipients. Two months after injection, 
BM cells from transplanted mice were stained with APC-labeled 
anti-CD45.1 and PerCP-Cy5.5-labeled anti-CD45.2 monoclonal 
antibodies (eBioscience). The percentage of CD45.1+ donor-type 
among CD45.2+ recipient-type BM cells was determined by flow 
cytometry (FACS CantoII, Becton Dickinson).

In LV-OVA experiments, transduction efficacy was determined 
by flow cytometry after staining with the 25-D1.16 monoclonal 
antibody recognizing the H-2Kb-OVA complex (eBioscience).

Transgene Persistence
Mice received intramuscular injection of LV-OVA (4 × 109 TU/
mouse) or IV injection of LV-FIX (109 TU/mouse). LV-OVA 
mRNA was quantified from injected muscles by qPCR with SYBR 
green (Roche) using a LightCycler480 Roche, as described (27, 
28). Relative amounts of LV-Ova mRNA were determined using 
a standard curve (serial dilutions of plasmid) and normalized by 
the amount of Eef2. Alternatively, FIX production was measured 
in plasma by ELISA (29).

immune response toward the  
Transgene Product
Subcutaneous injection of 20  μg human FIX (LFB, Les Ulis, 
France) emulsified in complete Freund’s adjuvant (Sigma) was 
carried out on the day of IV injection of LV-FIX to provoke 
immunization, as classically performed (10). The level of FIX-
specific antibodies was measured in plasma by ELISA (30).
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FigUre 2 | non-lethally irradiated mice grafted with BM cells transduced by lV-FiX are tolerized toward human FiX. (a) Non-lethally irradiated (5 Gy) B6 
mice (Ly5.2) were transplanted with BM cells transduced ex vivo with LV-FIX (or control LV-GFP) from Ly5.1 congenic B6 mice. One month after transplantation, 
chimeric mice were immunized by subcutaneous (SC) injection of recombinant FIX in complete Freund’s adjuvant and injected IV with the FIX-LV. (B) One month 
later, production of FIX in blood was evaluated by ELISA. Results are from two independent experiments using N = 4 mice per group. (c) Anti-FIX antibodies were 
titrated by ELISA.
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CD8+ T cells recognizing the OVA-specific SIINFEKL 
peptide were numerated by flow cytometry after staining with 
PE-conjugated H-2Kb/SIINFEKL dextramers (Immudex).

resUlTs

We, first, evaluated whether inducing microchimerism by 
transplantation of gene-modified BM could be sufficient for 
inhibiting the production of transgene-specific antibodies in a 
gene therapy setting. For this purpose, we attempted to tolerize 
non-lethally irradiated Ly5.2 B6 mice against FIX by injecting 
BM cells from Ly5.1 congenic animals that had been trans-
duced ex vivo with LV-FIX or LV-GFP as control (Figure 2A). 
One month after BM graft, mice were tested for human FIX 
expression in plasma. No circulating human FIX was found 
in both groups, demonstrating that the low frequency of 
LV-FIX expressing BM cells after non-lethal conditioning is 

not enough to produce circulating human FIX. Then, mice 
were challenged using a strong immunogenic regimen (FIX in 
complete Freund’s adjuvant) to induce both cell-mediated and 
humoral responses to FIX antigens, as described (5). At the 
same time, mice were injected IV with 109  TU of LV-FIX to 
promote the endogenous expression of human FIX. One month 
later, we observed a mixed BM chimerism where donor Ly5.1+ 
cells represented 21 ± 2.1% of the total BM cells. In mice that 
had received LV-FIX-modified BM cells, there was expression 
of human FIX at therapeutic level in plasma (612  ±  591  ng/
mL, Figure  2B). In contrast, no circulating human FIX 
(<1.5 ng/mL) was found in controls that had received LV-GFP 
BM. These results indicate that the tolerization regimen had 
prevented mice from mounting an anti-FIX humoral immune 
response. Indeed, no FIX-specific antibodies were found in 
tolerized mice, whereas there was a strong humoral response 
in controls (Figure 2C).
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We, next, evaluated the effect of this strategy on the cytotoxic cellu-
lar immune response in another model where the transgene product 
is membrane-bound and expressed from muscle. 5-Gy-conditioned 
B6 recipient mice were tolerized by grafting BM cells derived from 
Ly5.1 congenic donor mice transduced with a LV expressing the 
SIINFEKL immunodominant peptide of ovalbumin (OVA257–264) 

fused to H-2Kb (LV-OVA) or a control LV-GFP (Figure 3A). One 
month post-grafting, mice from the LV-OVA and LV-GFP tolerized 
groups both received LV-OVA intramuscularly for studying the 
OVA-specific cellular response and transgene persistence.

One month after LV-OVA challenge, the mixed chimerism 
could be confirmed and Ly5.1 donor cells represented 20 ± 3% 
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FigUre 3 | non-lethally irradiated mice grafted with lV-OVa transduced BM cells are tolerized toward a membrane-bound transgene product. (a) 
Irradiated (5 Gy) B6 mice were transplanted with Ly5.1 B6 BM cells that had been transduced ex vivo with a LV expressing the SIINFEKL immunodominant peptide 
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of BM cells. Gene-modified cells only represented a minority of 
BM cells after conditioning, i.e., 1.0 ± 0.6% (GFP) or 0.3 ± 0.1% 
(OVA) (Figure 3B).

The cellular immune response was quantified by evaluating the 
percentage of SIINFEKL-specific CD8+ T cells in lymph nodes. In 
control mice that had received LV-GFP BM cells, specific CD8+ 
T  cells expanded to reach 1.2  ±  0.5%, whereas they remained 
below the level of detection in tolerized mice that had received 
LV-OVA BM cells (Figure  3C). Hence, induction of microchi-
merism using gene-modified BM cells also prevented mice from 
mounting a transgene-specific cellular immune response.

To evaluate whether this state of immunological unrespon-
siveness also supported transgene persistence, we determined the 
level of transgene expression in the injected muscle. In control 
LV-GFP-tolerized mice, there was no detectable expression, 
indicating that transduced cells had been rejected by the CD8+ 
cytotoxic response (Figure 3D). In contrast, mice that had been 
tolerized by LV-OVA BM cells still expressed significant levels 
of transgenic mRNA 1 month after the intramuscular LV-OVA 
challenge.

DiscUssiOn

One of the major causes of FIX replacement therapy failure in 
hemophilia B is the development of inhibitors, i.e., anti-FIX anti-
bodies (3). Similarly, development of antibodies in protein- and 
gene-replacement therapy represents an important potential com-
plication in the treatment of many diseases (1–3). Furthermore, 
transgene-specific T CD8+ lymphocytes can destroy transduced 
cells and provoke failure of gene therapy as seen in preclinical 
animal models of hemophilia B (31, 32) and in clinical trials of 
gene therapy for muscular dystrophy (33).

Here, we demonstrated that expression of a transgene in a 
minority of BM cells after a non-lethal conditioning regimen 
is able to tolerize mice in an antigen-specific manner. With this 
intervention, we were able to prevent both humoral and CD8+ 
T  cells responses, allowing for sustained transgene expression 
after subsequent systemic or tissue-specific in vivo gene transfer.

Induction of tolerance by transplantation of syngeneic 
BM cells that had been transduced by an alloantigen-specific 
transgene was previously explored (17). The underlying mecha-
nisms involved T cell negative selection in the thymus, leading to 
a robust and lasting central T cell tolerance (34). Another study 
showed that grafting alloantigen-expressing BM cells is able to 
induce regulatory T cells, leading to peripheral tolerance (35). 
It is presumable that such mechanisms are also involved in the 
approach described, herein.

Oral tolerance or liver gene transfer has been used to tolerize 
mice to transgene products. Oral tolerance can be efficient in the 

context of gene therapy, but requires repeated oral administration 
of high doses of the tolerogen (28). Liver gene transfer is able 
to reduce the level of FIX-specific inhibitors and sustain long-
term transgene expression (10, 13, 31, 36), but cannot be applied 
for other organs gene therapy. Notably, the approach proposed 
herein could be proposed for liver, muscle, or other organ gene 
transfer to improve transgene tolerance and long-term expression 
after a unique administration of a low number of gene-modified 
BM cells.

The present results are consistent with that of other stud-
ies in which FIX was expressed from transduced BM cells for 
both tolerization and therapeutic purposes. However, a high 
level of transduction was required to achieve tolerance and 
to also produce therapeutic levels of FIX (18–22). Here, we 
show that, with the current strategy, only a low frequency of 
LV-modified BM cells (less than 0.5%) is sufficient to tolerize 
mice. Importantly, this approach is compatible with different 
gene therapy settings, i.e., injecting the vector in blood, muscle, 
or potentially other extra-hematopoietic tissues. Therefore, it 
may prove useful for providing transgene-specific tolerance 
in the context of gene therapy of monogenic diseases beyond 
hemophilia.

In conclusion, the present results provide proof-of-concept of 
induction of tolerance via syngeneic microchimerism in a clini-
cally translatable gene therapy setting. The use of LV-transduced 
BM cells after reduced intensity conditioning (37, 38) may repre-
sent a feasible candidate approach for augmenting the probability 
of success of different indications of gene therapy, by preventing 
detrimental humoral and cellular immune responses to the thera-
peutic transgene whatever its mode of expression.
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