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During infections, the first reaction of the host against microbial pathogens is carried 
out by innate immune cells, which recognize conserved structures on pathogens, 
called pathogen-associated molecular patterns. Afterward, some of these innate cells 
can phagocytose and destroy the pathogens, secreting cytokines that would modulate 
the immune response to the challenge. This rapid response is normally followed by the 
adaptive immunity, more specific and essential for a complete pathogen clearance in 
many cases. Some innate immune cells, usually named antigen-presenting cells, such 
as macrophages or dendritic cells, are able to process internalized invaders and present 
their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, 
the traditional boundary of separated roles between innate and adaptive immunity has 
been blurred by several studies, showing that very specialized populations of lympho-
cytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. 
These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, muco-
sal-associated invariant T cells, marginal zone B cells, and innate response activator 
cells, and together with the newly described innate lymphoid cells are able to rapidly 
respond to bacterial infections. Strikingly, our recent data suggest that conventional 
CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like 
behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T 
cells digest internalized bacteria like professional phagocytes and secrete large amounts 
of proinflammatory cytokines, protecting for further bacterial challenges. In the present 
review, we will focus on the data showing such innate-like behavior of lymphocytes 
following bacteria encounter.

Keywords: innate-like lymphocytes, conventional T cells, unconventional T cells, gamma delta T cells, B cells, 
bacteria–lymphocyte interactions

iNTRODUCTiON

Classically, the immune system is classified into innate and adaptive immunity. During pathogen 
challenges, the first host defense involves the innate immune system that provides an immediate 
response. Innate immune systems are widely spread in nature and can be found in all plants and 
animals (1). Cells of the innate immune system include mast cells, eosinophils, basophils, natural 
killers (NKs), and phagocytes [macrophages, neutrophils, and dendritic cells (DCs)]. These 
cells recognize conserved structures, shared by different pathogens, called pathogen-associated 
molecular patterns (PAMPs) by their pattern-recognition receptors (PRRs). Afterward, they 
eliminate pathogens, either by combating through contact or by engulfing them. Some of these 
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phagocytes are also antigen-presenting cells (APCs), such as 
DCs, and after engulfment pathogens, they are able to process 
and present the invader antigens to activate the cells of the 
adaptive immunity, the lymphocytes. Albeit both innate and 
adaptive immunity can distinguish between self and non-self 
molecules, adaptive immunity is defined by its capacity to spe-
cifically recognize a large amount of different antigens, defined 
by any non-self substance that can be recognized by the immune 
system. Theoretically, more than 1013 different antigens could be 
recognized by the adaptive immunity (2). This highly specific 
adaptive response takes more time to occur and generates 
memory, i.e., a second exposition to the same antigen results in 
faster and more potent response.

B and T cells are the major types of lymphocytes within the 
adaptive response and need to be activated by professional APCs 
during the antigen presentation. Regarding T cell activation, pro-
cessed antigens are presented into the major histocompatibility 
complex (MHC) molecules on the membrane of APCs. There are 
two main subtypes of T cells: helper T cells (CD4+) and cytotoxic 
T cells (CD8+). Activation of CD4+ T cells occurs by the recogni-
tion of antigens coupled to class II MHC molecules (MHC-II) 
by T cell receptor (TCR). Typically, MHC-II molecules expose 
antigens degraded into lysosomal compartments (i.e., “foreign” 
antigens). On the other hand, CD8+ T cells are activated by the 
detection of antigens coupled to class I MHC (MHC-I). MHC-I 
molecules present antigens from the cytoplasm (i.e., self-antigens, 
or viral antigens), but DCs, are also able to present foreign anti-
gens, degraded the lysosome, in their MHC-I by a process called 
cross-presentation, which is of the major relevance in antibacte-
rial and antitumor fight. B cells express B cell receptors (BCRs) 
that recognize soluble molecules from pathogens with no need 
for antigen processing. It has been shown, however, that B cell 
activation requires presentation by professional APCs in vivo (3). 
This presentation does not require MHC molecules.

Antigen presentation by APCs triggers activation and dif-
ferentiation of naïve lymphocytes to effector cells. B cells suffer 
immunoglobulin isotype switching and somatic hypermutation, 
which increase the affinity of the antibodies, and T cells develop 
distinct effector functions (for example, the secretion of a different 
array of cytokines or cytolytic activity). This textbook view of the 
innate and adaptive immunity role separation is being blurred by 
the discovery of lymphoid cells behaving in an innate-like man-
ner (4, 5). Similarly, there exists an increasing body of evidences 
showing that cells of the innate immunity present adaptive-like 
behavior developing memory-like characteristics, termed 
“trained immunity.” Trained monocytes respond more efficiently 
to a second exposition of the same (and different) challenges (6).

In this review, we will focus on the innate-like role of lymphoid 
cells. These innate-like lymphocytes include specialized popula-
tions of lymphocytes, i.e., unconventional (γδ) T cells, invariant 
NKT cells (iNKT), mucosal-associated invariant T (MAIT) 
cells, B-1 cells, marginal zone (MZ) B cells, innate response 
activator (IRA) B cells, and the innate lymphoid cells (ILCs) (4). 
Surprisingly, we have recently shown that conventional αβ CD4+ 
T cells, paradigm of adaptive immune cells, are able to capture 
bacteria from DCs in a process called transinfection and contrib-
ute to the early immune response (7). Here, we discuss in some 

detail the innate-like functions performed by different types of 
lymphocytes during bacteria encounter.

γδ T Cells
These T cells, expressing the unconventional γδ TCR, were 
discovered from the accidental identification of the TCRγ chain 
(8). γδ TCRs and αβ TCRs have qualitatively distinct modes of 
antigen recognition; γδ TCRs are not restricted to the recognition 
of peptides bound to MHC molecules (9). Unlike conventional αβ 
T cells, cytokine stimulation, or bacterial contact, is sufficient for 
activation γδ T cells, making these cells rapid and potent media-
tors of inflammation.

They are much less abundant than classical αβ T cells (1–4%) 
in thymus and lymphoid organs of adult mice, but they are in 
highest abundance in mucosal sites, being ~20–40% of the 
intestinal intraepithelial T cells, ~10–20% of total T cells in the 
reproductive tracks, and ~50–70% of skin dermal T cells (10).

In humans, the population of peripheral blood γδ T cells is 
increased in response to infections (11). Initial characterization 
of human γδ T cells suggested that antigens recognized by γδ 
T cells were small, non-peptide compounds that contained 
critical phosphate residues (12). The mainstream γδ T cells in 
human peripheral blood express the TCR Vγ9Vδ2, and they can 
recognize (E)-4-hydroxy-3-methyl-but-2enyl pyrophosphate 
(HMBPP), which are usually referred as phosphoantigens, 
derived from various bacteria (13). Moreover, human Vγ2Vδ2+ 
T cells can expand 2- to 10-fold during infections and recog-
nize primary alkylamines derived from microbes, releasing 
interleukine-2 (IL-2) (14). Lysates or culture supernatants from 
many bacteria (including mycobacteria, other Gram-negative 
and Gram-positive cocci, protozoal parasites, and even plants 
extracts) stimulate Vγ2Vδ2+ T cells (15). Thus, human peripheral 
blood γδ T cells can respond to specific antigens from bacteria 
[e.g., Mycobacterium tuberculosis (16) and Listeria monocytogenes 
(17)]. Non-peptidic mycobacterial ligands in human Vγ9Vδ2+ 
T cells induce massive tumor necrosis factor (TNF) production 
(18). Moreover, Vγ2Vδ2+ T cells respond to non-peptide bacte-
rial antigens predominantly producing Th1 cytokines such as 
interferon-γ (IFN-γ), although few of them (<5%) also produce 
IL-4 (15). It has been reported that Helicobacter pylori can directly 
interact with human peripheral γδ T cells in vitro, upregulating 
the activation molecule CD69, TNF-α, IFN-γ, and chemokines, 
such as MIP-1β and RANTES, favoring an inflammatory envi-
ronment (19).

In mice, γδ T cells expand dramatically after challenge with 
Mycobacteria, Listeria, and Salmonella spp. (20–22), rapidly 
 producing cytokines. They are able to produce IFN-γ after 
L. monocytogenes infection and IL-4 in response to Nippostrongylus 
brasiliensis (23). Moreover, it has also been reported that γδ 
T cells are the major IL-17 producers during infections (24, 25).

Toll-Like Receptors in γδ T Cells
Recognition of bacterial PAMPs by innate immune cells is 
driven mainly by TLRs, a type of PRRs that recognize bacte-
rial patterns including peptidoglycan and bacterial lipopep-
tides (TLR1, 2, and 6), lipopolysaccharide (LPS) (TLR4), or 
flagellin (TLR5), others recognize nucleic acid including 
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double-stranded viral RNA (TLR3), single-stranded RNA 
(TLR7 and 8), or unmethylated bacterial DNA (TLR9). Both 
human and mouse γδ T cells express functional TLRs. There 
are several studies showing TLR2 expression on γδ T cells 
in mice (26, 27) and humans (28), supporting a role in early 
responses to bacterial infections.

In mice, it has been shown that CCR6+IL-17-producing γδ T 
cells, but not other γδ T cells, express TLR1 and TLR2, as well 
as dectin-1, and could directly interact with certain pathogens. 
Toll-like receptor (TLR) stimulation in synergy with IL-23 results 
in cell expansion, IL-17 production, and further recruitment of 
neutrophils in  vivo (29). In addition, the expression of TLR1, 
TLR2, TLR-6, TLR-9, and even TLR-4 by mice γδ T cells has 
been confirmed (30). Furthermore, it has been shown that IL-23 
stimulation of splenic γδ, but not αβ, T cells leads to enhanced 
TLR1, -2, and -4 mRNA expression. TLR2 agonist Pam3CSK4, 
but not IL-23, stimulates splenic γδ T cell expansion in  vitro 
(30). However, TLR agonist Pam3CSK4 and other pathogen 
products alone do not stimulate dermal γδ T cell proliferation, 
which require IL-23 (31). Additionally, TLR agonists Pam3CSK4 
(TLR2), Gardiquimod (TLR7), and CpG (TLR9), but not LPS 
(TLR4) or dectin-1 ligand curdlan, stimulate dermal γδ T cells to 
produce IL-17, which is enhanced in the presence of IL-23 (31). 
It has also been reported that TLR4 is involved in the production 
of IL-17 and IFN-γ by γδ T cells during experimental autoim-
mune encephalomyelitis (EAE) induction (32).

In humans, the two major γδ T cell subsets, Vδ1 and Vδ2, 
express TLR1, TLR2, and TLR3 (33). Indeed, it has been dem-
onstrated that human γδ T cells isolated from blood express high 
levels of TLR2, and its engagement promotes the release of IFNγ 
(28). Furthermore, the expression of TLR3 on human γδ cells 
has been verified by flow cytometry and confocal microscopy 
(34). Human γδ T cells secrete IFN-γ and upregulate CD69 
after stimulation via TCR in the presence of poly (I:C), a TLR-3 
agonist, without APC engagement (34).

In brief, γδ T cells rapidly respond after bacteria encounter 
secreting cytokines regulating the immune response, similarly to 
cells of the innate immunity (Figure 1A). Interestingly, human 
γδ T cells, after activation, express molecules typically found in 
APCs, involved in antigen presentation, such as MHC-II and 
CD86 (33, 35), and it has been shown that they are able to present 
soluble antigens activating conventional T cells. Furthermore, 
some reports have also shown that human γδ T cells are able to 
phagocytose-opsonized beads and bacteria (36), presenting bac-
terial antigens on MHC class II (in vitro), highlighting the innate 
immune role of γδ T cells. However, it remains to be elucidated 
whether the γδ T cell-mediated antigen presentation occurs 
in vivo during the course of bacterial infections and the relevance 
of such antigen presentation. Moreover, it is not clear if they could 
elicit a memory response.

invariant NKT
Invariant NKT cells express an invariant TCRα chain and 
recognize lipid and glycolipid antigens presented by CD1d, a 
non-polymorphic MHC class I molecule (37). They also express 
several receptors, such as NK1.1 (in some mouse strains), and 
members of the Ly49 family that are typical of the NK cell 

lineage. iNKT cells are most abundant in liver, thymus, spleen, 
and bone marrow, but are also found in lymph nodes, peripheral 
blood, adipose tissue, skin, and mucosal surfaces of intestine 
and lungs.

It has been described that iNKT cells participate in the 
response to microbial pathogens in mice (38, 39) (Figure 1B). 
Upon activation, they produce cytokines such as IL-4 and IFN-γ. 
iNKTs can be activated by TCR stimulation with microbial anti-
gens presented by CD1d (direct activation) or with endogenous 
antigens and/or cytokines (indirect activation) produced by 
APCs. The glycosphingolipid (GSL) α-galactosyl ceramide (α 
GalCer) was the first antigen identified recognized by mouse 
[Vα14 (40)] and human [Vα24 (41)] iNKT cells. Recently, it 
has been described a novel GSL antigen for iNKT cells, DB06-1, 
which induces preferentially IFN-γ in vivo in mice (42).

It has been reported that mouse iNKTs recognize cell wall 
GSL expressed by Sphingomonas spp., which are Gram-negative 
bacteria and have abundant GSLs, similar to α GalCer (43). 
Mice deficient of Vα14 iNKT cells present reduced spirochete 
clearance and are more susceptible to chronic inflammation fol-
lowing Borrelia burgdorferi infection (44). Furthermore, iNKTs 
recognize glycolipids expressed by Helicobacter pilori (45) and 
diacylglycerol-containing glycolipids from Streptococcus pneu-
moniae and group B Streptococcus (46). After infection of mice 
with S. pneumoniae, Vα14 iNKT cells produce IFN-γ, through 
TCR engagement (46). Recently, it has been shown that respira-
tory infection with Francisella tularensis, Gram-negative faculta-
tive intracellular bacteria that cause lethal pulmonary tularemia, 
activates iNKT cells which produce IFN-γ and propagates a 
sepsis-like proinflammatory response (47).

On the other hand, it has been demonstrated in both humans 
and mice that the responses by iNKT to some bacteria, such as 
Salmonella typhimurium, is due to indirect recognition of endog-
enous lysosomal GSL expressed by activated DCs combined with 
TLR activation (43, 48).

TLRs in iNKT Cells
It has been found that mouse iNKT cells activated by TCR resulted 
in increased expression of TLRs (49). In this regard, TLR4 engage-
ment is required for production of IL-4 to further stimulate B-1 
cells (50). The expression of TLR3 and 9 has been confirmed at 
protein level, and it has been shown that TLR signaling enhances 
iNKT activation. TLR stimulation of iNKT cells leads to IFN-γ, 
IL-4, and TNF-α production (51). On the other hand, although 
human iNKT cells express all TLRs, except from TLR8, they do 
not respond directly to TLR ligands (52).

MAiT Cells
Mucosal-associated invariant T cells express a semi-invariant 
TCRα chain that recognizes small molecules, pterin analogs, and 
riboflavin metabolites, presented by the non-polymorphic MHC 
class I-related molecule, MR1 (53). MR1 is highly conserved (90% 
gene sequence identity between mouse and human), allowing 
for considerable species cross-reactivity of MAIT cells. Human 
MAIT cells develop effector capacity before exiting the thymus, 
in contrast to conventional T cells that remain naïve until antigen 
stimulation in the periphery (54, 55). Human MAIT cells are 
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found principally in lungs, liver, and blood (56, 57), but they are 
less abundant in common laboratory mouse strains. Recently, it 
has been discovered that MAIT cells are more frequent in inbred 
CAST/EiJ mice than in C57BL/6 (58).

The role of MAIT cells in the control of bacterial infection 
was observed due to the absence of peripheral MAIT cells in 
germ-free mice and its expansion after microbial colonization 
(59). Both human and mouse MAIT cells can recognize bacterial 
(and fungi) infected cells in an MR1-dependet manner (56, 60). 
Human MAIT cells produce proinflammatory cytokines, e.g., 
IFN-γ and TNF in response to infection with Mycobacterium 
smegmatis, Escherichia coli, Salmonella enterica, or Staphylococcus 
aureus (56). However, not all microorganisms tested can activate 
MAIT cells. Several bacteria, such as Enterococcus faecalis, group A 
Streptococcus, and L. monocytogenes, do not stimulate human and 
mouse MAIT cells, neither do viruses (56, 60). Indeed, only the 
microorganisms that can synthetize riboflavin metabolites which 
bind MR1 are able to activate MAIT cells (i.e., most bacteria and 
some fungi) (53, 61). In agreement, MAIT cells accumulation in 
lungs of mice infected with S. typhimurium depends on microbial 
riboflavin synthesis (62). However, despite the fact the viruses 
do not produce riboflavin, viral infections (e.g., HIV) can reduce 
the numbers of peripheral MAIT cells (by mechanisms that are 
not totally understood), therefore increasing the susceptibility to 
opportunistic infections of bacteria and fungi (63). Nevertheless, 
an open question remains to be elucidated is how MAIT cells 
are able to recognize specific pathogens. Recently, using MR1 
tetramers, it has been identified populations of MR1-restricted 
cells which assist to have different antigen recognition in humans 
(64) and mice (65).

In addition to the secretion of inflammatory cytokines, 
human MAIT cells achieve antibacterial immunity destroying 
infected cells by secretion of cytotoxic granzyme and perforin 
(66, 67). The role of MAIT cells during an infection in  vivo 
has been demonstrated using MR1-deficient mice. These mice 
infected with Klebsiella pneumoniae develop higher bacterial 
burden, hypothermia, and have increased mortality in the 
first 4  days of infection compared with infected WT mice 
(68). In other infection model, using Mycobacterium bacillus 
Calmette–Guérin (BCG), MR-1 deficient mice also show higher 
bacterial burden in the lung compared to the WT mice (69). 
In both models, protection by mouse MAIT cells occurs within 
the first days of the infection, suggesting that they act as innate 
lymphocytes (Figure 1A).

Finally, it remains unresolved whether MAIT cells expressed 
TLRs influencing its activation or function upon stimulation.

B Lymphocytes
It is well known that B-lymphocytes, components of the adap-
tive response and responsible for humoral immunity, are also 
APCs. They can capture soluble antigens or antigens exposed 
by macrophages, DCs, and follicular (FO) DCs (70). There are 
several subtypes of B cell lymphocytes that include B-1 (B-1a and 
B-1b) and conventional B-2 cells that comprise two populations 
designated as MZ and FO B cells.

B-1 Cells
B-1 cells are not considered part of the adaptive immune system, 
as they do not develop into memory cells. B-1 cells have been 
identified in both human and mouse, but due to the logistical 
difficulties in isolating B-1 cells of humans, the vast majority 
of the studies have been performed in mouse models (71). B-1 
resides principally in the peritoneal and pleural cavities but is in 
a minor fraction in lymph nodes and spleen (72). B-1 cells in 
the peritoneal cavity express CD11b (Mac-1) and are subdivided 
based on the expression of CD5.

B-1 cells play a relevant role in innate immunity by their 
contribution in the first line of defense against bacterial infection. 
B-1 cells alter their normal migration patterns (73), accumulat-
ing rapidly in the omentum, lymph nodes, and spleen, following 
activation by stimuli, such as IL-10, IL-5 (74), TLR agonists, 
such as LPSs (73, 75), or even whole bacteria, such as S. pneu-
moniae (76) or Borrelia hermsii (77). The exit of these cells from 
peritoneal cavity in response of LPS or bacteria is controlled by 
myeloid differentiation primary response protein 88 (MyD88), a 
key adaptor for TLRs signaling, that downregulates the expres-
sion of integrins and CD9, thereby promoting cell migration (73). 
After migration, B-1 cells differentiate and secrete rapidly large 
amount of IgM and/or IgA (73, 75). They are able to produce 
antibodies in response to T-cell-independent type 2 antigens 
(mainly repetitive structures from encapsulated bacteria) along 
with MZ B cells (76).

Regarding the phagocytic capacity of B-1 cells after bacteria 
encounter, there are several reports showing that B-1 cells are 
able to phagocyte S. aureus, E. coli, and polystyrene fluores-
cent microspheres (78, 79). Upon phagocytosis, B-1 cells kill 
internalized bacteria via phagolysosomes and present bacterial 
antigens in MHC-II molecules (78, 79). Salmonella spp. has been 
shown to be degraded through both proteasomal and lysosomal 
processing, resulting in MHC-I antigen presentation (80). On 
the other hand, not all bacteria are killed; some Salmonella can 
survive within B cells, using therefore B cells as Trojan horses to 
disseminate through the infected host (81), similarly to what has 
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been observed in myeloid cells (82). It has been also described 
that B-1 cells undergo differentiation to acquire a mononuclear 
phagocyte phenotype in  vitro (B-1CDP), and they are able to 
phagocytose Coxiella burnetii and kill them more effectively than 
peritoneal macrophages and bone marrow-derived macrophages 
(BMMf) (83). Moreover, it has been demonstrated that B-1 cell 
differentiation into phagocytes occurs also in  vivo (84). These 
results revealed that mammalian B-1 cells have phagocytic and 
microbicidal abilities to strengthen the innate nature of these cells 
(Figure 1B). In agreement with the innate behavior of B1 cells, 
a recent report shows that during aging, mouse B1 cells express 
high levels of the costimulatory molecule CD86 and become 
potent activators of CD8+ T cells, a role deserved for specialized 
populations of APCs (85).

Conventional B-2 Cells
The current consensus is that B-1 cells are phagocytic, whereas 
the phagocytic abilities of mouse conventional B cells and the 
mechanisms for bacterial uptake are less clear (79). BCR-blocking 
antibodies do not alter the internalization of bacteria, indicating 
that BCR is not involved in bacteria entry. In contrast to these 
data, it has been demonstrated that mouse liver B cells (both B-1 
and B-2 cells) actively phagocytose and kill bacteria, such as E. 
coli, in a complement-dependent manner (86). Accordingly, it has 
been shown that splenic mouse B cells can internalize opsonized 
Brucella abortus (87), but B. abortus can survive inside B cells. 
In addition, it has also been reported that S. typhimurium are 
able to infect and survive within both mouse splenic B-1 and 
B-2 cell subpopulations. Salmonella infection stimulates expres-
sion of PD-L1 on mouse B cells, suggesting that PD-1/PD-L1 
pathway may be involved in turning off the cytotoxic effector 
response during persistent infection (80). Furthermore, it has 
been reported that human primary B cells are able to internalize 
S. typhimurium (88). This process is BCR mediated and leads to 
efficient antigen loading into MHC-II, inducing CD4+ T cell help 
to boost Salmonella-specific antibody production. Salmonella-
specific B cells that phagocytose Salmonella upon BCR ligation 
reactivate human memory CD8+ T cells via cross-presentation 
(89). Additionally, it has been demonstrated that both human 
peripheral blood and mouse splenic B-lymphocytes serve as a 
niche for intracellular Salmonella promoting systemic spreading 
of infection (81).

Conventional B-2 cells are divided into two populations 
designated as MZ and FO B cell. MZ B cells are a special popula-
tion of mostly non-recirculating B cells enriched primarily in 
the MZ of the spleen. They are one of the first cells that take 
contact with blood-borne pathogens, supporting the first line of 
host defense. Pathogens trapped in the MZ activate MZ B cells, 
which maturate to plasma cells secreting IgM or to APCs. It 
has been reported that MZ B cells capture, process, and present 
antigens to T cells more efficiently than FO B cells both in vitro 
(90) and in vivo (91). MZ B cells appear, therefore, as excellent 
APCs, which, together with lymphoid DCs, play essential roles 
in the initial steps of in vivo T-cell activation. Consequently, they 
participate in T-cell-dependent (TD) immune response through 
the capture and import of blood-borne antigens to FO areas of 
the spleen (91).

Mice depleted of MZ B cells and infected with B. burgdor-
feri show elevated pathogen burden and reduced levels of B. 
burgdorferi-specific IgG and IgM, correlated with diminished 
splenic CD4+ T-cell responses (92). Similarly, these mice show 
an increased susceptibility to S. aureus (93). The clearance of the 
bacteria L. monocytogenes depends on the interactions between 
marginal zone macrophages (MZ M) and MZ B cells (94). MZ 
M bind pathogens and capture antigens through various PRRs, 
including scavenger receptors and C-type lectin receptors (CLRs) 
(95), and then, they expose native antigens and establish direct 
cell–cell contact for the activation of MZ B cells (96) that are 
required for potent responses (94).

TLRs in B Cells
B cells can interact with bacteria via BCRs or TLRs. The expression 
and functionality of TLRs in B cells has been well characterized 
during last years. Both mouse and human B cells express a variety 
of TLRs (TLR1–10) (97, 98), but mouse TLR10 is not functional.

Bacterial proteins can regulate the expression of TLR in 
mouse B cells, such as Shigella dysenteriae porin, which increases 
the levels of TLR2, -4, and Myd88 on peritoneal B-1 cells (99). 
Stimulation of TLR in B cells can modify many effectors func-
tions, and the effects depend on the development phase of B 
cell. TLR4 and 9 engagements at the immature and transitional 
B cell stage promote proliferation and survival (100). The 
proliferation of peritoneal B-1 cells in response to TLR stimula-
tion is lower than splenic B-2 cells (101). On the other hand, 
TLR stimulation of mature B cells promotes proinflammatory 
cytokines production (102, 103); MZ B cells produce IL-6 and 
IL-10, FO B cells secrete IFN-γ and IL-6 (98), and peritoneal 
B-1 cells produce high levels of IL-10, limiting the clearance of 
B. hermsii infection (101). Moreover, many surface proteins are 
expressed in response to TLR signaling in B cells such as the 
receptors for B cell-activating factor belonging to the TNF fam-
ily (BAFF), an important B cell survival factor in the periphery, 
and APRIL (97, 104).

Toll-like receptor signaling in B cells can also result in differen-
tiation into plasma cells or influence class switching and affinity 
maturation (105). TLR agonists stimulate the proliferation of 
mouse MZ B cells and their phenotypic maturation process, 
increasing MHC-II, CD40, and CD86 molecules. Depending on 
TLR agonist, they also secrete a distinct cytokine profile (106). TLR 
agonists also activate MZ B cells in vivo and promote the migration 
from the MZ, accelerating the Ag-specific IgM response (107). It 
is shown that p110δ activity mediates TLR-induced proliferation 
and antibody responses by MZ B cells (108). Recently, it has been 
described that TLR4 stimulation can promote activation-induced 
cell death (AICD) in MZ B cells, increasing FasL and Fas expres-
sion, regulating T-cell-independent B cell responses (109).

In humans, TLR ligands can promote the differentiation of 
transitional B cells into MZ-like B cells, and patients with defec-
tive TLR signaling have reduced numbers of MZ B cells (110).

Therefore, TLR signaling in B cells induces functional 
responses including cytokine, immunoglobulin production, 
antigen presentation, proliferation, and modulation of several 
surface receptors. These responses depend on the B cell develop-
ment stage.
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innate Response Activator Cells
Innate response activator (IRA) B cells have recently been 
described as a B cell population that protects against microbial 
sepsis in mice. They are accumulated in the spleen in a mouse 
model of sepsis and in response to E. coli infection, indicating 
that IRA B cell expansion is an overall characteristic of the body’s 
reaction to bacteria (111). IRA B cells are different phenotypically 
and functionally from other B cell populations. They contain 
large amounts of intracellular IgM and spontaneously secrete 
IgM, but not IgA or IgG1. In addition, they are able to secrete 
granulocyte macrophage colony-stimulating factor (GM-CSF) 
and IL-3 (Figure 1B). IRA B cells derived from B-1 cell precur-
sors are activated by TLR stimuli, and they protect against septic 
shock by controlling neutrophil-dependent bacterial clearance 
(111).

B-1a cells migrate to the lung in response to microbial airway 
infection, producing IgM. This process is depended on IRA B cells, 
which controls IgM production via autocrine GM-CSF signaling, 
conferring a first-line defense against bacteria in the lungs (112).

Recently, it has been described IRA B cells in humans. They 
reside in tonsils, within FO areas, which are the first route of 
defense from infection of the upper respiratory tract and are able 
to phagocyte bacteria, such as S. aureus, at least in vitro (113).

Therefore, IRA B cells seem to play important roles in bacte-
rial clearance, but further work is required to clarify its function 
in vivo, and it remains to be studied whether IRA B cells directly 
interact with infecting bacteria and the nature of such interactions.

innate Lymphoid Cells
Innate lymphoid cells are a recently identified member of the 
lymphoid lineage, which are enriched at epithelial barriers, such 
as skin, intestine, and lung, where contacts with microorganisms 
normally occur (114, 115). These innate lymphocytes mediate 
immune responses against infections and regulate homeostasis 
and inflammation (116, 117). They neither express TCRs or BCRs 
nor respond in an antigen-specific manner.

Innate lymphoid cells are divided into three subsets: group 
1 ILCs (ILC1s and NK cells), group 2 ILCs (ILC2s), and group 
3 ILCs (ILC3s and LTi cells). This nomenclature was unified to 
classify these emerging cell populations, which had been called 
by different terms including NK-22 cells, LTi-like cells, natural 
helper cells, nuocytes, and innate helper cells (118). ILCs are 
crucial in the protective immunity against bacteria (ILC1s and 
ILC3s) (119–121), intracellular parasites (ILC1s) (122), fungi 
(ILC3) (123), and parasitic worms (ILC2s) (124, 125).

Group 1 ILCs
Group 1 ILCs consisted of ILC1 and NK cells that produce IFN-γ 
and TNF-α after stimuli (when stimulated by IL-12, IL-15, or IL-18) 
(126) and had the T-box transcription factor (T-bet) as a key tran-
scription factor (122, 127, 128). NKs were first described as innate 
lymphocytes with cytotoxic activity (129) that kills target cells. 
However, ILC1s are barely cytotoxic and seems to emerge from 
ILC3s (130) and are accumulated in inflamed mucosa tissue (131).

ILC1 populations have an important role in promoting defense 
against intracellular pathogens (Figure 1A). They secrete IFN-γ 

and TNF-α in mice infected with oral pathogen Toxoplasma gon-
dii, recruiting myeloid cells that cease infection (122).

However, recently, it has been demonstrated that ILC1s also 
are important in promoting immunity to extracellular bacteria 
such as Clostridium difficile (119).

The deficiency of IFN-γ or T-bet-expressing ILC1s in Rag1−/− 
mice increases susceptibility to C. difficile (119). Furthermore, it 
has been shown that Nfil3, an important transcription factor for 
the development of NKs and ILC1s, plays a role in the intestinal 
innate immune defense against acute bacterial infection with 
Citrobacter rodentium and C. difficile (132). Nfil3 deficiency 
results in more susceptibility to both intestinal pathogens but also 
corresponds to severely reduction of ILC3s and ILC2s, revealing 
a general requirement for this transcription factor in the develop-
ment of all ILC lineages (132).

Group 2 ILCs
Group 2 ILCs, also referred as natural helper cells, noucytes, 
or innate helper 2 cells, are innate lymphocytes that produce 
IL-5 and IL-13 when stimulated with IL-25, IL-33, or thymic 
stromal lymphopoietin (TSLP) (133, 134). They were discovered 
after administration of IL-25 intranasally in Rag2−/− mice, which 
lack conventional B and T cells (135, 136). ILC2s have been 
identified in fat tissue, spleen, nasal tissue, lung, intestine, and 
skin (137). ILC2 populations protect against helminth such as 
N. brasiliensis secreting IL-13 after infection (124, 133). IL-13 is 
necessary for the elimination of the parasite from the gastroin-
testinal tract, and transferring ILC2s into IL-13-deficient mice 
shows that IL-13 production by ILC2s is sufficient to resolve 
helminth infection (125). Moreover, it has been reported that 
ILC2s can promote IL-13-mediated immunity to other parasites 
in mice (138).

Group 3 ILC: ILC3s
Three groups characterized ILC3s in intestine as ILCs almost 
simultaneously (120, 139, 140). ILC3 populations secrete 
IL-17A, IL-22, TNF-α, and GM-CSF when activated (140–142). 
The transcription factor RORγt is an important regulator of this 
population (140). ILC3s are referred as NCR22 cells, NKp46+ 
ILCs, ILC22s, and NKR-LTi cells in the literature. This family is 
described in mucosal tissues, particularly in the intestinal tract, 
where they mediate the balance between the immune system and 
the symbiotic microbiota (120). It has been recently shown that 
mouse ILC3 cells form a functional unit together with glial cells 
that sense the gut environment in a MyD88-dependent manner 
and control the immune response via IL-22 secretion (143) 
(Figure  1A). ILC3 populations rapidly respond to infection of 
mice either extracellular bacteria (120, 121, 144) or fungi (123). 
ILC3s produce IL-22 after C. rodentium challenge in mice (140, 
145), which is essential for host protection (146). IL-22 stimulates 
intestinal epithelial cells (IECs) to produce antimicrobial peptides 
and mucus, limiting the replication, dissemination, and tissue 
damage induced by pathogenic bacteria (116).

Similarly, ILC3s located in the oral mucosa produce IL-17 and 
IL-22 promoting immunity in mice against the fungal pathogen 
Candida albicans (123, 147). IL-17 acting alone or synergistically 
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with IL-22 induces the recruitment of neutrophils to the site of 
infection. Moreover, it is shown that ILC3s also regulate neutro-
phils in neonatal mice, important for resistance to sepsis with 
Gram-negative opportunistic bacteria (148).

The production of IFN-γ by T-bet-expressing ILC3 contrib-
utes to the protection of the epithelial barrier during against S. 
typhimurium infection in mice (149). On other hand, it has been 
described that the expression of IL-17 and IFN-γ from ILC3s has 
been involved to drive inflammation in Helicobacter hepaticus-
induced colitis (150), a mouse model of colitis. However, deple-
tion of IL-22-producing ILCs localized in intestinal tissue results 
in peripheral dissemination of commensal bacteria, such as 
Alcaligenes species, promoting systemic inflammation (121). 
Consequently, these data indicate that ILCs regulate selective 
containment of lymphoid-resident bacteria to prevent systemic 
inflammation associated with chronic diseases.

ILC1s together with ILC3s mediate the recovery from C. dif-
ficile infection in mice (119). Previously, it has been suggested 
that ILC3s could play a role in the infection of these extracellular 
bacteria because the deficiency of the transcription factor Nfil3 
resulted in a reduction of ILC3s with an increased of susceptibility 
to C. difficile infection (132). Nonetheless, it has been also dem-
onstrated that ILC3s mediate protection against S. pneumoniae in 
respiratory tract (151).

Group 3 ILCs: LTi Cells
They are closely related to ILC3s, but their relationship is still con-
troversial (114). LTi cells were first described in fetal and neonatal 
lymph nodes (152, 153), where they also showed that were crucial 
for lymphoid organogenesis. They are able to produce IL-17A and 
IL-22 mediating immunity to enteric pathogens (154, 155).

TLRs in ILCs
Mouse splenic ILC3s can produce IL-17 and IL-22 in vivo after 
contact with TLR2 ligands (154). Indeed, it has been shown that 
human RORγt+ ILCs (LTi-like ILC) express functional TLR2, 
and its stimulation with agonists induces IL-5, IL-13, and IL-22 
expression in a nuclear factor κ B (NF-κB)-dependent manner 
(142). Recently, it has been reported that human ILCs isolated 
from duodenum biopsies express TLR2, 3, and 9, but only TLR3 
agonists stimulate them to produce TNF-α and IFN-γ (156).

The expression of TLRs in ILC2s has yet to be identified. There 
is a report showing that TLRs stimulation of purified ILC2s does 
not induce IL-9 (157), but further studies must be done to verify 
the expression and functionality of TLRs in these cells.

Natural killer cells and NCR+RORγt+ ILCSs (ILC3s) may 
interact directly with bacteria through natural cytotoxicity recep-
tors (NCRs), such as NKp44 and NKp46, which can be activated 
by components derived form commensal bacteria (158, 159).

Conventional T Cells
In addition to the specialized lymphocyte populations with innate 
functions described above, we have recently described that conven-
tional CD4+ T cells, the paradigm of the adaptive immunity, also 
play innate-like roles during bacterial infections, contrary to the 
current view of immunology (7). CD4+ T cells of both mouse and 
human origin are able to internalize different bacteria (pathogenic 

and non-pathogenic) such as L. monocytogenes, S. aureus, E. coli, 
and S. enterica from infected DCs, in a process called transinfec-
tion. Bacteria play a passive role in this process, driven by T cells 
(7); therefore, it would be more appropriate to term it transphago-
cytosis. Transphagocytic (ti) CD4+ T cells kill internalized bacte-
ria in a manner reminiscent of innate immune cells and secrete 
proinflammatory Th-1 cytokines (IFN-γ, TNF-α, and IL-6) in a 
rapid innate-like response (Figure 1B). Furthermore, tiCD4+ T 
cells protect against bacterial infections in vivo, highly reducing 
the bacterial load found in liver and spleen 24 and 48  h after 
infections, contributing to the early innate immune response (7). 
This route of bacterial capture by T cells could be used for some 
pathogenic bacteria to spread. In this regard, it has been shown 
that T cells can serve as reservoir of bacteria in vivo (160–162). 
Moreover, Shigella flexneri manipulates the migration capacity of 
infected T cells in a type III secretion system-dependent manner 
(161–163). Transphagocytosis depends on T cell cytoskeleton, but 
the molecular mechanisms of how T cells can capture bacteria 
remain largely unknown. T cells are unable to directly capture 
bacteria (7); transphagocytosis requires T cell/DC intimate 
contact, and it is enhanced by antigen recognition by the TCR. 
On the other hand, T cells are unable to uptake latex beads from 
DCs, indicating that bacterial PAMPs are also involved in the 
transphagocytic process and suggest a role of T cell TLRs in this 
recently discovered process of bacterial uptake by CD4+ T cells.

TLRs in Conventional T Cells
The expression of almost all TLRs in CD4+ T cells, which would 
recognize bacterial PAMPs, has been identified at the mRNA 
level in CD4+ T cells (164, 165). However, it has been shown that 
activated mouse CD4+ T cells express TLR-3 and TLR-9 but not 
TLR-2 and TLR-4. Stimulation of TLR3 and 9 enhances survival 
in a NF-κB activation and is associated with Bcl-xL upregula-
tion, without increased proliferation (166). On the contrary, it 
has been shown that TLR2 engagement induces Th1 activation 
in the absence of TCR stimulation, activating cell proliferation, 
cell survival, and IFN-γ production. IL-2 or IL-12 significantly 
enhances TLR-2-mediated IFN-γ production through the 
augmented activation of MAPKs (167). Furthermore, it has 
been described that TLR2 stimulation by porin of S. dysente-
riae directly promotes CD4+ T cell survival and proliferation 
in mouse cells (168). Human-activated CD4+ T cells express 
TLR2 and TLR4 mRNA, but only activated cells show quan-
tifiable surface expression of either TLR by flow cytometry 
(169). TLR2 activation, but not TLR4, promotes proliferation 
and IFN-γ, IL-2, and TNF-α production in activated CD4+ T 
cells, indicating its costimulatory nature. In memory CD4+ T 
cells, TLR2 expression is constitutive, and its activation leads to 
proliferation and IFN-γ production (169). On the other hand, 
TLR2 stimulation promotes Th17 differentiation both in  vivo 
and in vitro, inducing proliferation and IL-17 production (30, 
170). TLR9 stimulation in mouse CD4+ T cells induces NF-κB-
dependent survival (166) and provides costimulation to T cells 
(171). TLR9 engagement, in combination with TCR activation, 
reduces irradiation-induced apoptosis in mouse CD4+ T cells 
and increases the rate of DNA repair (172). TLR9 stimulation 
in human effector CD4+ T cells promotes cell cycle entry (173). 
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TLR3 stimulation also induces NF-κB, MAPK, and the survival 
of CD4+ T cells (166). On the other hand, TLR5 engagement in 
combination with TCR activation results in increased prolifera-
tion and production of IL-2 in human CD4+ T cells (174). TLR5 
and TLR7/8 act also as costimulators, upregulating prolifera-
tion and IFN-γ, IL-8, and IL-10, but not IL-4, production by 

human CD4+ T cells (175). Moreover, engagement of TLR7 in 
human CD4+ T cells prevents cell cycle entry and proinflamma-
tory cytokines production, by increasing intracellular calcium 
concentrations, which leads to dephosphorylation of NFATc2 
and its translocation to the cell nucleus; this activates an anergic 
gene expression program (176).

FiGURe 2 | innate behaviors by lymphoid cells. Summary of different innate conducts by distinct populations of lymphoid cells.
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CONCLUSiON AND FUTURe 
PeRSPeCTiveS
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killing by phagocytosis, and antigen presentation (Figure  2). 
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of lymphocytes, i.e., gamma delta (γ/δ) T, iNKT, MAIT, B-1, 
MZ B, and IRA B cells, behave in an innate-like manner, rapidly 
responding upon bacteria encounter. Surprisingly, it has been 
demonstrated that conventional lymphocytes (both B and T 
cells) can internalize bacteria in an innate-like manner. CD4+ 
T cells can capture and kill bacteria by transphagocytosis from 
infected DCs. A similar way of bacteria capture from one 
infected cell to another has been also recently described for 
macrophages (177), and it is known from long as a mechanism 
from viral spread (i.e., HIV and hepatitis C virus) (178). The 
precise role of the CD4+ T cell-dependent bacterial clearance 
during infections in  vivo remains to be determined, as the 
number of bacteria directly cleared by transphagocytosis seems 
to be low, suggesting other mechanisms for the reduction of 
bacterial load (i.e., cytokine release or antigen presentation). 
In agreement with this hypothesis, transphagocytic T cells 
secrete large amounts of proinflammatory cytokines, mounting 
a potent Th-1 response.

One of the hallmarks of the innate immunity is the antigen-
presentation capacity of phagocytes; it has been proposed that 
gamma delta T cells are able to present antigen from degraded 
bacteria, and whether this occurs in  vivo, and its role during 
infections, remains unknown. B1 cells (and B2) have the capacity 

of present antigens and this ability, in addition to play a major 
role during infections, has been used for years to study the 
molecular mechanisms of T cell activation occurring during the 
immunological synapse in  vitro. Whether recently discovered 
transphagocytic T cells (7) are able to present antigens from 
engulfed and killed bacteria remains unsolved and deserve fur-
ther investigations. Indeed, it has been demonstrated that human 
T cells can process and present soluble antigens to stimulate other 
T lymphocytes (179, 180).

A major issue of the lymphocyte’s innate-like responses is 
bacteria recognition. It is not fully clear which cellular receptors 
are involved in this process. TLRs are membrane-bound PRR 
involved in the recognition of extracellular PAMPs, initially 
characterized in innate immune cells. The expression of several 
TLRs has been found in the different subsets of lymphocytes, even 
in conventional T and B cells. Therefore, TLRs seem to be the 
best candidates for innate-like recognition of bacteria by lym-
phocytes. Bacterial recognition by lymphocytes during innate-
like responses and the role that TLRs would play deserve future 
research. Due to the similarities in TLRs activation between 
bacterial PAMPs and danger signals found in malignant cells, 
the study of lymphocyte activation by bacteria could improve the 
immunotherapies against cancer.

AUTHOR CONTRiBUTiONS

Both EV and AC-A contribute equally to this work. Both are also 
co-corresponding authors.

ACKNOwLeDGMeNTS

This work was supported by the grants from the Spanish Ministry 
of Science and Technology (MICINN; BFU2011-29450) to EV 
and Ministry of Economy and Competitiveness (MINECO; 
SAF2014-58895-JIN to AC-A and SAF2014-56716-REDT and 
BFU2014-59585-R to EV).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1038/nri1712
http://dx.doi.org/10.1038/nri1292
http://dx.doi.org/10.1038/nri1292
http://dx.doi.org/10.1016/j.immuni.2007.06.007
http://dx.doi.org/10.1016/j.immuni.2007.06.007
http://dx.doi.org/10.1038/nri3389
http://dx.doi.org/10.1016/j.cell.2016.02.048
http://dx.doi.org/10.1038/ni.3178
http://dx.doi.org/10.1016/j.chom.2014.04.006
http://dx.doi.org/10.1038/309757a0
http://dx.doi.org/10.1038/nri3384
http://dx.doi.org/10.3389/fimmu.2016.00210
http://dx.doi.org/10.1172/JCI115837
http://dx.doi.org/10.1016/1074-7613(95)90178-7
http://dx.doi.org/10.1038/cmi.2012.46
http://dx.doi.org/10.1016/S1074-7613(00)80081-3
http://dx.doi.org/10.1016/S1074-7613(00)80081-3


11

Cruz-Adalia and Veiga Lymphocytes Participate in the Innate Immunity

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 405

15. Morita C, Lee H, Leslie D, Tanaka Y, Bukowski J, Märker-Hermann E. 
Recognition of nonpeptide prenyl pyrophosphate antigens by human 
gammadelta T cells. Microbes Infect (1999) 1:175–86. doi:10.1016/S1286- 
4579(99)80032-X 

16. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, et al. 
Stimulation of human gamma delta T cells by nonpeptidic mycobacterial 
ligands. Science (1994) 264:267–70. doi:10.1126/science.8146660 

17. Guo Y, Ziegler HK, Safley SA, Niesel DW, Vaidya S, Klimpel GR. Human 
T-cell recognition of Listeria monocytogenes: recognition of listeriolysin O 
by TcR alpha beta+ and TcR gamma delta+ T cells. Infect Immun (1995) 
63:2288–94. 

18. Lang F, Peyrat MA, Constant P, Davodeau F, David-Ameline J, Poquet Y, et al. 
Early activation of human V gamma 9V delta 2 T cell broad cytotoxicity and 
TNF production by nonpeptidic mycobacterial ligands. J Immunol (1995) 
154:5986–94. 

19. Romi B, Soldaini E, Pancotto L, Castellino F, Del Giudice G, Schiavetti F. 
Helicobacter pylori induces activation of human peripheral γδ+ T lympho-
cytes. PLoS One (2011) 6:e19324. doi:10.1371/journal.pone.0019324 

20. Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, Matsumoto K, 
et  al. A protective role of gamma/delta T cells in primary infection with 
Listeria monocytogenes in mice. J Exp Med (1992) 175:49–56. doi:10.1084/
jem.175.1.49 

21. Emoto M, Danbara H, Yoshikai Y. Induction of gamma/delta T cells 
in murine salmonellosis by an avirulent but not by a virulent strain of 
Salmonella choleraesuis. J Exp Med (1992) 176:363–72. doi:10.1084/jem.176. 
2.363 

22. Janis EM, Kaufmann SH, Schwartz RH, Pardoll DM. Activation of gamma 
delta T cells in the primary immune response to Mycobacterium tuberculosis. 
Science (1989) 244:713–6. doi:10.1126/science.2524098 

23. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H. 
Differential production of interferon-gamma and interleukin-4 in response 
to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 
(1995) 373:255–7. doi:10.1038/373255a0 

24. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al. Fate map-
ping of IL-17-producing T cells in inflammatory responses. Nat Immunol 
(2011) 12:255–63. doi:10.1038/ni.1993 

25. Sheridan BS, Romagnoli PA, Pham Q-M, Fu H-H, Alonzo F, Schubert W-D, 
et al. γδ T cells exhibit multifunctional and protective memory in intestinal 
tissues. Immunity (2013) 39:184–95. doi:10.1016/j.immuni.2013.06.015 

26. Mokuno Y, Matsuguchi T, Takano M, Nishimura H, Washizu J, Ogawa T, et al. 
Expression of toll-like receptor 2 on gamma delta T cells bearing invariant V 
gamma 6/V delta 1 induced by Escherichia coli infection in mice. J Immunol 
(2000) 165:931–40. doi:10.4049/jimmunol.165.2.931 

27. Schwacha MG, Daniel T. Up-regulation of cell surface toll-like receptors 
on circulating gammadelta T-cells following burn injury. Cytokine (2008) 
44:328–34. doi:10.1016/j.cyto.2008.09.001 

28. Deetz CO, Hebbeler AM, Propp NA, Cairo C, Tikhonov I, Pauza CD. 
Gamma interferon secretion by human Vgamma2Vdelta2 T cells after stim-
ulation with antibody against the T-cell receptor plus the toll-like receptor 
2 agonist Pam3Cys. Infect Immun (2006) 74:4505–11. doi:10.1128/IAI. 
00088-06 

29. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-
producing gammadelta T cells selectively expand in response to pathogen 
products and environmental signals. Immunity (2009) 31:321–30. 
doi:10.1016/j.immuni.2009.06.020 

30. Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, et al. Toll-
like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 
responses and regulates the pathogenesis of autoimmune disease. Immunity 
(2010) 32:692–702. doi:10.1016/j.immuni.2010.04.010 

31. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-
producing γδ T cells in skin inflammation. Immunity (2011) 35:596–610. 
doi:10.1016/j.immuni.2011.08.001 

32. Reynolds JM, Martinez GJ, Chung Y, Dong C. Toll-like receptor 4 signaling in 
T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A (2012) 
109:13064–9. doi:10.1073/pnas.1120585109 

33. Kress E, Hedges JF, Jutila MA. Distinct gene expression in human Vδ1 and 
Vδ2 γδ T cells following non-TCR agonist stimulation. Mol Immunol (2006) 
43:2002–11. doi:10.1016/j.molimm.2005.11.011 

34. Wesch D, Beetz S, Oberg H-H, Marget M, Krengel K, Kabelitz D. Direct 
costimulatory effect of TLR3 ligand poly(I:C) on human gamma delta 
T lymphocytes. J Immunol (2006) 176:1348–54. doi:10.4049/jimmunol. 
176.3.1348 

35. Brandes M, Willimann K, Moser B. Professional antigen-presentation func-
tion by human gammadelta T cells. Science (2005) 309:264–8. doi:10.1126/
science.1110267 

36. Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, et al. Human T 
cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol 
(2009) 183:5622–9. doi:10.4049/jimmunol.0901772 

37. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MCJ, Pellicci DG, Koh R, et  al. 
CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. 
Nature (2007) 448:44–9. doi:10.1038/nature05907 

38. Ranson T, Bregenholt S, Lehuen A, Gaillot O, Leite-de-Moraes MC, 
Herbelin A, et al. Invariant V alpha 14+ NKT cells participate in the early 
response to enteric Listeria monocytogenes infection. J Immunol (2005) 
175:1137–44. doi:10.4049/jimmunol.175.2.1137 

39. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. Innate invariant 
NKT cells recognize Mycobacterium tuberculosis-infected macrophages, pro-
duce interferon-gamma, and kill intracellular bacteria. PLoS Pathog (2008) 
4:e1000239. doi:10.1371/journal.ppat.1000239 

40. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, et  al. CD1d-
restricted and TCR-mediated activation of valpha14 NKT cells by 
glycosylceramides. Science (1997) 278:1626–9. doi:10.1126/science.278. 
5343.1626 

41. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Takahashi T, Nakamura H, et al. 
Activation of human Valpha24NKT cells by alpha-glycosylceramide in a 
CD1d-restricted and Valpha24TCR-mediated manner. Hum Immunol (1999) 
60:10–9. doi:10.1016/S0198-8859(98)00100-1 

42. Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, et al. 
A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ 
production. J Immunol (2015) 195:924–33. doi:10.4049/jimmunol.1500070 

43. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C, Zhou D, et al. Exogenous 
and endogenous glycolipid antigens activate NKT cells during microbial 
infections. Nature (2005) 434:525–9. doi:10.1038/nature03408 

44. Tupin E, Benhnia MR-E-I, Kinjo Y, Patsey R, Lena CJ, Haller MC, et  al. 
NKT cells prevent chronic joint inflammation after infection with Borrelia 
burgdorferi. Proc Natl Acad Sci U S A (2008) 105:19863–8. doi:10.1073/
pnas.0810519105 

45. Chang Y-J, Kim HY, Albacker LA, Lee HH, Baumgarth N, Akira S, et  al. 
Influenza infection in suckling mice expands an NKT cell subset that protects 
against airway hyperreactivity. J Clin Invest (2011) 121:57–69. doi:10.1172/
JCI44845 

46. Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, et al. Invariant natural 
killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. 
Nat Immunol (2011) 12:966–74. doi:10.1038/ni.2096 

47. Hill TM, Gilchuk P, Cicek BB, Osina MA, Boyd KL, Durrant DM, et al. Border 
patrol gone awry: lung NKT cell activation by Francisella tularensis exacer-
bates tularemia-like disease. PLoS Pathog (2015) 11:e1004975. doi:10.1371/
journal.ppat.1004975 

48. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB. Mechanism of CD1d-
restricted natural killer T cell activation during microbial infection. Nat 
Immunol (2003) 4:1230–7. doi:10.1038/ni1002 

49. Kulkarni RR, Villanueva AI, Elawadli I, Jayanth P, Read LR, Haeryfar SMM, 
et al. Costimulatory activation of murine invariant natural killer T cells by 
toll-like receptor agonists. Cell Immunol (2012) 277:33–43. doi:10.1016/j.
cellimm.2012.06.002 

50. Askenase PW, Itakura A, Leite-de-Moraes MC, Lisbonne M, Roongapinun S, 
Goldstein DR, et  al. TLR-dependent IL-4 production by invariant 
Valpha14+Jalpha18+ NKT cells to initiate contact sensitivity in  vivo. 
J Immunol (2005) 175:6390–401. doi:10.4049/jimmunol.175.10.6390 

51. Villanueva AI, Haeryfar SMM, Mallard BA, Kulkarni RR, Sharif S. Functions 
of invariant NK T cells are modulated by TLR ligands and IFN-α. Innate 
Immun (2015) 21:275–88. doi:10.1177/1753425914527327 

52. Moreno M, Mol BM, Mensdorff-Pouilly von S, Verheijen RHM, de Jong EC, 
Blomberg von BME, et al. Differential indirect activation of human invariant 
natural killer T cells by toll-like receptor agonists. Immunotherapy (2009) 
1:557–70. doi:10.2217/imt.09.30 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1016/S1286-4579(99)80032-X
http://dx.doi.org/10.1016/S1286-4579(99)80032-X
http://dx.doi.org/10.1126/science.8146660
http://dx.doi.org/10.1371/journal.pone.0019324
http://dx.doi.org/10.1084/jem.175.1.49
http://dx.doi.org/10.1084/jem.175.1.49
http://dx.doi.org/10.1084/jem.176.2.363
http://dx.doi.org/10.1084/jem.176.2.363
http://dx.doi.org/10.1126/science.2524098
http://dx.doi.org/10.1038/373255a0
http://dx.doi.org/10.1038/ni.1993
http://dx.doi.org/10.1016/j.immuni.2013.06.015
http://dx.doi.org/10.4049/jimmunol.165.2.931
http://dx.doi.org/10.1016/j.cyto.2008.09.001
http://dx.doi.org/10.1128/IAI.00088-06
http://dx.doi.org/10.1128/IAI.00088-06
http://dx.doi.org/10.1016/j.immuni.2009.06.020
http://dx.doi.org/10.1016/j.immuni.2010.04.010
http://dx.doi.org/10.1016/j.immuni.2011.08.001
http://dx.doi.org/10.1073/pnas.1120585109
http://dx.doi.org/10.1016/j.molimm.2005.11.011
http://dx.doi.org/10.4049/jimmunol.176.3.1348
http://dx.doi.org/10.4049/jimmunol.176.3.1348
http://dx.doi.org/10.1126/science.1110267
http://dx.doi.org/10.1126/science.1110267
http://dx.doi.org/10.4049/jimmunol.0901772
http://dx.doi.org/10.1038/nature05907
http://dx.doi.org/10.4049/jimmunol.175.2.1137
http://dx.doi.org/10.1371/journal.ppat.1000239
http://dx.doi.org/10.1126/science.278.5343.1626
http://dx.doi.org/10.1126/science.278.5343.1626
http://dx.doi.org/10.1016/S0198-8859(98)00100-1
http://dx.doi.org/10.4049/jimmunol.1500070
http://dx.doi.org/10.1038/nature03408
http://dx.doi.org/10.1073/pnas.0810519105
http://dx.doi.org/10.1073/pnas.0810519105
http://dx.doi.org/10.1172/JCI44845
http://dx.doi.org/10.1172/JCI44845
http://dx.doi.org/10.1038/ni.2096
http://dx.doi.org/10.1371/journal.ppat.1004975
http://dx.doi.org/10.1371/journal.ppat.1004975
http://dx.doi.org/10.1038/ni1002
http://dx.doi.org/10.1016/j.cellimm.2012.06.002
http://dx.doi.org/10.1016/j.cellimm.2012.06.002
http://dx.doi.org/10.4049/jimmunol.175.10.6390
http://dx.doi.org/10.1177/1753425914527327
http://dx.doi.org/10.2217/imt.09.30


12

Cruz-Adalia and Veiga Lymphocytes Participate in the Innate Immunity

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 405

53. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 
presents microbial vitamin B metabolites to MAIT cells. Nature (2012) 
491:717–23. doi:10.1038/nature11605 

54. Gold MC, Ehlinger HD, Cook MS, Smyk-Pearson SK, Wille PT, 
Ungerleider RM, et  al. Human innate Mycobacterium tuberculosis-reactive 
alphabeta TCR+ thymocytes. PLoS Pathog (2008) 4:e39. doi:10.1371/ 
journal.ppat.0040039 

55. Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, 
et al. Human thymic MR1-restricted MAIT cells are innate pathogen-reac-
tive effectors that adapt following thymic egress. Mucosal Immunol (2013) 
6:35–44. doi:10.1038/mi.2012.45 

56. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, et al. 
Human mucosal associated invariant T cells detect bacterially infected cells. 
PLoS Biol (2010) 8:e1000407. doi:10.1371/journal.pbio.1000407 

57. Jeffery HC, van Wilgenburg B, Kurioka A, Parekh K, Stirling K, Roberts S, 
et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahe-
patic MAIT cells through MR1. J Hepatol (2016) 64:1118–27. doi:10.1016/j.
jhep.2015.12.017 

58. Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, et al. 
Mucosal-associated invariant T cell-rich congenic mouse strain allows func-
tional evaluation. J Clin Invest (2015) 125:4171–85. doi:10.1172/JCI82424 

59. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. 
Selection of evolutionarily conserved mucosal-associated invariant T cells by 
MR1. Nature (2003) 422:164–9. doi:10.1038/nature01433 

60. Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, et  al. 
Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 
(2010) 11:701–8. doi:10.1038/ni.1890 

61. Soudais C, Samassa F, Sarkis M, Le Bourhis L, Bessoles S, Blanot D, et al. 
In vitro and in vivo analysis of the Gram-negative bacteria-derived riboflavin 
precursor derivatives activating mouse MAIT cells. J Immunol (2015) 
194:4641–9. doi:10.4049/jimmunol.1403224 

62. Chen Z, Wang H, D’Souza C, Sun S, Kostenko L, Eckle SBG, et al. Mucosal-
associated invariant T-cell activation and accumulation after in vivo infection 
depends on microbial riboflavin synthesis and co-stimulatory signals. 
Mucosal Immunol (2016). doi:10.1038/mi.2016.39 

63. Saeidi A, Ellegård R, Yong YK, Tan HY, Velu V, Ussher JE, et al. Functional 
role of mucosal-associated invariant T cells in HIV infection. J Leukoc Biol 
(2016) 100:305–14. doi:10.1189/jlb.4RU0216-084R 

64. Gherardin NA, Keller AN, Woolley RE, Le Nours J, Ritchie DS, Neeson PJ, 
et  al. Diversity of T cells restricted by the MHC class I-related molecule 
MR1 facilitates differential antigen recognition. Immunity (2016) 44:32–45. 
doi:10.1016/j.immuni.2015.12.005 

65. Sakala IG, Kjer-Nielsen L, Eickhoff CS, Wang X, Blazevic A, Liu L, et  al. 
Functional heterogeneity and antimycobacterial effects of mouse muco-
sal-associated invariant T cells specific for riboflavin metabolites. J Immunol 
(2015) 195:587–601. doi:10.4049/jimmunol.1402545 

66. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, 
et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. 
PLoS Pathog (2013) 9:e1003681. doi:10.1371/journal.ppat.1003681 

67. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, et al. 
MAIT cells are licensed through granzyme exchange to kill bacterially sen-
sitized targets. Mucosal Immunol (2015) 8:429–40. doi:10.1038/mi.2014.81 

68. Georgel P, Radosavljevic M, Macquin C, Bahram S. The non-conventional 
MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in 
mice. Mol Immunol (2011) 48:769–75. doi:10.1016/j.molimm.2010.12.002 

69. Chua W-J, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. 
Polyclonal mucosa-associated invariant T cells have unique innate func-
tions in bacterial infection. Infect Immun (2012) 80:3256–67. doi:10.1128/
IAI.00279-12 

70. Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells 
after synapse formation. Nature (2001) 411:489–94. doi:10.1038/35078099 

71. Tangye SG. To B1 or not to B1: that really is still the question! Blood (2013) 
121:5109–10. doi:10.1182/blood-2013-05-500074 

72. Hayakawa K, Hardy RR, Herzenberg LA, Herzenberg LA. Progenitors for 
Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med (1985) 
161:1554–68. doi:10.1084/jem.161.6.1554 

73. Ha S-A, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, et al. Regulation 
of B1 cell migration by signals through toll-like receptors. J Exp Med (2006) 
203:2541–50. doi:10.1084/jem.20061041 

74. Nisitani S, Tsubata T, Murakami M, Honjo T. Administration of interleukin-5 
or -10 activates peritoneal B-1 cells and induces autoimmune hemolytic 
anemia in anti-erythrocyte autoantibody-transgenic mice. Eur J Immunol 
(1995) 25:3047–52. doi:10.1002/eji.1830251110 

75. Murakami M, Tsubata T, Shinkura R, Nisitani S, Okamoto M, Yoshioka H, 
et  al. Oral administration of lipopolysaccharides activates B-1 cells in the 
peritoneal cavity and lamina propria of the gut and induces autoimmune 
symptoms in an autoantibody transgenic mouse. J Exp Med (1994) 180:111–
21. doi:10.1084/jem.180.1.111 

76. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the 
early response against T-independent blood-borne particulate antigens. 
Immunity (2001) 14:617–29. doi:10.1016/S1074-7613(01)00129-7 

77. Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, 
Gerstein  RM. B1b lymphocytes confer T cell-independent long-lasting 
immunity. Immunity (2004) 21:379–90. doi:10.1016/j.immuni.2004.06.019 

78. Gao J, Ma X, Gu W, Fu M, An J, Xing Y, et al. Novel functions of murine 
B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol (2012) 
42:982–92. doi:10.1002/eji.201141519 

79. Parra D, Rieger AM, Li J, Zhang Y-A, Randall LM, Hunter CA, et al. Pivotal 
advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal 
capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol 
(2012) 91:525–36. doi:10.1189/jlb.0711372 

80. Lopez-Medina M, Pérez-López A, Alpuche-Aranda C, Ortiz-Navarrete  V. 
Salmonella induces PD-L1 expression in B cells. Immunol Lett (2015) 
167:131–40. doi:10.1016/j.imlet.2015.08.004 

81. Souwer Y, Griekspoor A, de Wit J, Martinoli C, Zagato E, Janssen H, et al. 
Selective infection of antigen-specific B lymphocytes by Salmonella mediates 
bacterial survival and systemic spreading of infection. PLoS One (2012) 
7:e50667. doi:10.1371/journal.pone.0050667 

82. Cohen TS, Hilliard JJ, Jones-Nelson O, Keller AE, ODay T, Tkaczyk C, 
et  al. Staphylococcus aureus toxin potentiates opportunistic bacterial lung 
infections. Sci Transl Med (2016) 8:ra31–329. doi:10.1126/scitranslmed. 
aad9922 

83. Popi AF, Zamboni DS, Mortara RA, Mariano M. Microbicidal property of 
B1 cell derived mononuclear phagocyte. Immunobiology (2009) 214:664–73. 
doi:10.1016/j.imbio.2008.12.007 

84. Popi AF, Osugui L, Perez KR, Longo-Maugéri IM, Mariano M. Could a 
B-1 cell derived phagocyte “be one” of the peritoneal macrophages during 
LPS-driven inflammation? PLoS One (2012) 7:e34570. doi:10.1371/journal.
pone.0034570 

85. Lee-Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, et al. Aging 
converts innate B1a cells into potent CD8+ T cell inducers. J Immunol (2016) 
196:3385–97. doi:10.4049/jimmunol.1502034 

86. Nakashima M, Kinoshita M, Nakashima H, Habu Y, Miyazaki H, Shono S, 
et al. Pivotal advance: characterization of mouse liver phagocytic B cells in 
innate immunity. J Leukoc Biol (2012) 91:537–46. doi:10.1189/jlb.0411214 

87. Goenka R, Guirnalda PD, Black SJ, Baldwin CLB. Lymphocytes provide 
an infection niche for intracellular bacterium Brucella abortus. J Iinfect Dis 
(2012) 206:91–8. doi:10.1093/infdis/jis310 

88. Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J, et al. 
B cell receptor-mediated internalization of Salmonella: a novel pathway for 
autonomous B cell activation and antibody production. J Immunol (2009) 
182:7473–81. doi:10.4049/jimmunol.0802831 

89. de Wit J, Souwer Y, Jorritsma T, Klaasse Bos H, Brinke ten A, Neefjes J, et al. 
Antigen-specific B cells reactivate an effective cytotoxic T cell response 
against phagocytosed Salmonella through cross-presentation. PLoS One 
(2010) 5:e13016. doi:10.1371/journal.pone.0013016.g005 

90. Oliver AM, Martin F, Kearney JF. IgMhighCD21high lymphocytes enriched 
in the splenic marginal zone generate effector cells more rapidly than the bulk 
of follicular B cells. J Immunol (1999) 162:7198–207. 

91. Attanavanich K, Kearney JF. Marginal zone, but not follicular B cells, are 
potent activators of naive CD4 T cells. J Immunol (2004) 172:803–11. 
doi:10.4049/jimmunol.172.2.803 

92. Belperron AA, Dailey CM, Booth CJ, Bockenstedt LK. Marginal zone B-cell 
depletion impairs murine host defense against Borrelia burgdorferi infection. 
Infect Immun (2007) 75:3354–60. doi:10.1128/IAI.00422-07 

93. Tanigaki K, Han H, Yamamoto N, Tashiro K, Ikegawa M, Kuroda K, et al. 
Notch-RBP-J signaling is involved in cell fate determination of marginal zone 
B cells. Nat Immunol (2002) 3:443–50. doi:10.1038/ni793 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1038/nature11605
http://dx.doi.org/10.1371/journal.ppat.0040039
http://dx.doi.org/10.1371/journal.ppat.0040039
http://dx.doi.org/10.1038/mi.2012.45
http://dx.doi.org/10.1371/journal.pbio.1000407
http://dx.doi.org/10.1016/j.jhep.2015.12.017
http://dx.doi.org/10.1016/j.jhep.2015.12.017
http://dx.doi.org/10.1172/JCI82424
http://dx.doi.org/10.1038/nature01433
http://dx.doi.org/10.1038/ni.1890
http://dx.doi.org/10.4049/jimmunol.1403224
http://dx.doi.org/10.1038/mi.2016.39
http://dx.doi.org/10.1189/jlb.4RU0216-084R
http://dx.doi.org/10.1016/j.immuni.2015.12.005
http://dx.doi.org/10.4049/jimmunol.1402545
http://dx.doi.org/10.1371/journal.ppat.1003681
http://dx.doi.org/10.1038/mi.2014.81
http://dx.doi.org/10.1016/j.molimm.2010.12.002
http://dx.doi.org/10.1128/IAI.00279-12
http://dx.doi.org/10.1128/IAI.00279-12
http://dx.doi.org/10.1038/35078099
http://dx.doi.org/10.1182/blood-2013-05-500074
http://dx.doi.org/10.1084/jem.161.6.1554
http://dx.doi.org/10.1084/jem.20061041
http://dx.doi.org/10.1002/eji.1830251110
http://dx.doi.org/10.1084/jem.180.1.111
http://dx.doi.org/10.1016/S1074-7613(01)00129-7
http://dx.doi.org/10.1016/j.immuni.2004.06.019
http://dx.doi.org/10.1002/eji.201141519
http://dx.doi.org/10.1189/jlb.0711372
http://dx.doi.org/10.1016/j.imlet.2015.08.004
http://dx.doi.org/10.1371/journal.pone.0050667
http://dx.doi.org/10.1126/scitranslmed.aad9922
http://dx.doi.org/10.1126/scitranslmed.aad9922
http://dx.doi.org/10.1016/j.imbio.2008.12.007
http://dx.doi.org/10.1371/journal.pone.0034570
http://dx.doi.org/10.1371/journal.pone.0034570
http://dx.doi.org/10.4049/jimmunol.1502034
http://dx.doi.org/10.1189/jlb.0411214
http://dx.doi.org/10.1093/infdis/jis310
http://dx.doi.org/10.4049/jimmunol.0802831
http://dx.doi.org/10.1371/journal.pone.0013016.g005
http://dx.doi.org/10.4049/jimmunol.172.2.803
http://dx.doi.org/10.1128/IAI.00422-07
http://dx.doi.org/10.1038/ni793


13

Cruz-Adalia and Veiga Lymphocytes Participate in the Innate Immunity

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 405

94. Aichele P, Zinke J, Grode L, Schwendener RA, Kaufmann SHE, Seiler P. 
Macrophages of the splenic marginal zone are essential for trapping of blood-
borne particulate antigen but dispensable for induction of specific T cell 
responses. J Immunol (2003) 171:1148–55. doi:10.4049/jimmunol.171.3.1148 

95. Kang Y-S, Do Y, Lee H-K, Park SH, Cheong C, Lynch RM, et al. A dominant 
complement fixation pathway for pneumococcal polysaccharides initiated 
by SIGN-R1 interacting with C1q. Cell (2006) 125:47–58. doi:10.1016/j.
cell.2006.01.046 

96. Bergtold A, Desai DD, Gavhane A, Clynes R. Cell surface recycling of inter-
nalized antigen permits dendritic cell priming of B cells. Immunity (2005) 
23:503–14. doi:10.1016/j.immuni.2005.09.013 

97. Treml LS, Carlesso G, Hoek KL, Stadanlick JE, Kambayashi T, Bram RJ, 
et  al. TLR stimulation modifies BLyS receptor expression in follicular 
and marginal zone B cells. J Immunol (2007) 178:7531–9. doi:10.4049/
jimmunol.178.12.7531 

98. Barr TA, Brown S, Ryan G, Zhao J, Gray D. TLR-mediated stimulation of 
APC: distinct cytokine responses of B cells and dendritic cells. Eur J Immunol 
(2007) 37:3040–53. doi:10.1002/eji.200636483 

99. Ray A, Karmakar P, Biswas T. Up-regulation of CD80-CD86 and IgA on 
mouse peritoneal B-1 cells by porin of Shigella dysenteriae is toll-like recep-
tors 2 and 6 dependent. Mol Immunol (2004) 41:1167–75. doi:10.1016/j.
molimm.2004.06.007 

100. Wechsler-Reya RJ, Monroe JG. Lipopolysaccharide prevents apoptosis and 
induces responsiveness to antigen receptor cross-linking in immature B cells. 
Immunology (1996) 89:356–62. doi:10.1046/j.1365-2567.1996.d01-749.x 

101. Sindhava V, Woodman ME, Stevenson B, Bondada S. Interleukin-10 mediated 
autoregulation of murine B-1 B-cells and its role in Borrelia hermsii infection. 
PLoS One (2010) 5:e11445. doi:10.1371/journal.pone.0011445 

102. Agrawal S, Gupta S. TLR1/2, TLR7, and TLR9 signals directly activate human 
peripheral blood naive and memory B cell subsets to produce cytokines, 
chemokines, and hematopoietic growth factors. J Clin Immunol (2011) 
31:89–98. doi:10.1007/s10875-010-9456-8 

103. Silva-Barrios S, Smans M, Duerr CU, Qureshi ST, Fritz JH, Descoteaux A, 
et al. Innate immune B cell activation by Leishmania donovani exacerbates 
disease and mediates hypergammaglobulinemia. Cell Rep (2016) 15:2427–37. 
doi:10.1016/j.celrep.2016.05.028 

104. Ng LG, Ng C-H, Woehl B, Sutherland APR, Huo J, Xu S, et  al. BAFF 
costimulation of toll-like receptor-activated B-1 cells. Eur J Immunol (2006) 
36:1837–46. doi:10.1002/eji.200635956 

105. Bekeredjian-Ding I, Jego G. Toll-like receptors – sentries in the B-cell response. 
Immunology (2009) 128:311–23. doi:10.1111/j.1365-2567.2009.03173.x 

106. Bialecki E, Paget C, Fontaine J, Capron M, Trottein F, Faveeuw C. Role of 
marginal zone B lymphocytes in invariant NKT cell activation. J Immunol 
(2009) 182:6105–13. doi:10.4049/jimmunol.0802273 

107. Rubtsov AV, Swanson CL, Troy S, Strauch P, Pelanda R, Torres RM. TLR 
agonists promote marginal zone B cell activation and facilitate T-dependent 
IgM responses. J Immunol (2008) 180:3882–8. doi:10.4049/jimmunol.180. 
6.3882 

108. Durand CA, Hartvigsen K, Fogelstrand L, Kim S, Iritani S, Vanhaesebroeck 
B, et al. Phosphoinositide 3-kinase p110 delta regulates natural antibody pro-
duction, marginal zone and B-1 B cell function, and autoantibody responses. 
J Immunol (2009) 183:5673–84. doi:10.4049/jimmunol.0900432 

109. Figgett WA, Fairfax K, Vincent FB, Le Page MA, Katik I, Deliyanti D, et al. The 
TACI receptor regulates T-cell-independent marginal zone B cell responses 
through innate activation-induced cell death. Immunity (2013) 39:573–83. 
doi:10.1016/j.immuni.2013.05.019 

110. Weller S, Bonnet M, Delagreverie H, Israel L, Chrabieh M, Maródi L, et al. 
IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and 
TIRAP- but not UNC-93B-deficient patients. Blood (2012) 120:4992–5001. 
doi:10.1182/blood-2012-07-440776 

111. Rauch PJ, Chudnovskiy A, Robbins CS, Weber GF, Etzrodt M, Hilgendorf I, 
et al. Innate response activator B cells protect against microbial sepsis. Science 
(2012) 335:597–601. doi:10.1126/science.1215173 

112. Weber GF, Chousterman BG, Hilgendorf I, Robbins CS, Theurl I, 
Gerhardt  LMS, et  al. Pleural innate response activator B cells protect 
against pneumonia via a GM-CSF-IgM axis. J Exp Med (2014) 211:1243–56. 
doi:10.1084/jem.20131471 

113. Chiappini N, Cantisani R, Pancotto L, Ruggiero P, Rosa D, Manetti A, 
et  al. Innate response activator (IRA) B cells reside in human tonsils and 

internalize bacteria in  vitro. PLoS One (2015) 10:e0129879. doi:10.1371/
journal.pone.0129879 

114. Walker JA, Barlow JL, McKenzie ANJ. Innate lymphoid cells – how did we 
miss them? Nat Rev Immunol (2013) 13:75–87. doi:10.1038/nri3349 

115. Sonnenberg GF, Mjösberg J, Spits H, Artis D. Snapshot: innate lymphoid cells. 
Immunity (2013) 39:622.e–622.e. doi:10.1016/j.immuni.2013.08.021 

116. Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation 
and resolution of inflammation. Nat Med (2015) 21:698–708. doi:10.1038/
nm.3892 

117. Cording S, Medvedovic J, Aychek T, Eberl G. Innate lymphoid cells in defense, 
immunopathology and immunotherapy. Nat Immunol (2016) 17:755–7. 
doi:10.1038/ni.3448 

118. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate 
lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol 
(2013) 13:145–9. doi:10.1038/nri3365 

119. Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Sušac B, et al. Innate 
immune defenses mediated by two ILC subsets are critical for protection 
against acute Clostridium difficile infection. Cell Host Microbe (2015) 
18:27–37. doi:10.1016/j.chom.2015.06.011 

120. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, et al. RORgammat 
and commensal microflora are required for the differentiation of mucosal 
interleukin 22-producing NKp46+ cells. Nat Immunol (2009) 10:83–91. 
doi:10.1038/ni.1684 

121. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, 
Kunisawa  J, et  al. Innate lymphoid cells promote anatomical containment 
of lymphoid-resident commensal bacteria. Science (2012) 336:1321–5. 
doi:10.1126/science.1222551 

122. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation 
of type 1 ILCs from a common progenitor to all helper-like innate lymphoid 
cell lineages. Cell (2014) 157:340–56. doi:10.1016/j.cell.2014.03.030 

123. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. 
Cutting edge: IL-17-secreting innate lymphoid cells are essential for host 
defense against fungal infection. J Immunol (2013) 190:521–5. doi:10.4049/
jimmunol.1202924 

124. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et  al. 
Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)
Sca-1(+) lymphoid cells. Nature (2010) 463:540–4. doi:10.1038/nature08636 

125. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, et  al. 
Nuocytes represent a new innate effector leukocyte that mediates type-2 
immunity. Nature (2010) 464:1367–70. doi:10.1038/nature08900 

126. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et  al. 
Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- 
and IL-15-responsive IFN-γ-producing cells. Immunity (2013) 38:769–81. 
doi:10.1016/j.immuni.2013.02.010 

127. Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et  al. 
Transcriptional programs define molecular characteristics of innate lym-
phoid cell classes and subsets. Nat Immunol (2015) 16:306–17. doi:10.1038/
ni.3094 

128. Spits H, Bernink JH, Lanier L. NK cells and type 1 innate lymphoid cells: part-
ners in host defense. Nat Immunol (2016) 17:758–64. doi:10.1038/ni.3482 

129. Kiessling R, Klein E, Pross H, Wigzell H. “Natural” killer cells in the mouse. 
II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. 
Characteristics of the killer cell. Eur J Immunol (1975) 5:117–21. doi:10.1002/
eji.1830050209 

130. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44+IL-22+ 
cells and LTi-like cells constitute a stable RORC+ lineage distinct from 
conventional natural killer cells. J Exp Med (2010) 207:281–90. doi:10.1084/
jem.20091509 

131. Bernink JH, Peters CP, Munneke M, Velde te AA, Meijer SL, Weijer K, et al. 
Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. 
Nat Immunol (2013) 14:221–9. doi:10.1038/ni.2534 

132. Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH, Geary CD, et al. 
Nfil3 is crucial for development of innate lymphoid cells and host protection 
against intestinal pathogens. J Exp Med (2014) 211:1723–31. doi:10.1084/
jem.20140212 

133. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, 
et al. Identification of an interleukin (IL)-25-dependent cell population that 
provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 
(2006) 203:1105–16. doi:10.1084/jem.20051615 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.4049/jimmunol.171.3.1148
http://dx.doi.org/10.1016/j.cell.2006.01.046
http://dx.doi.org/10.1016/j.cell.2006.01.046
http://dx.doi.org/10.1016/j.immuni.2005.09.013
http://dx.doi.org/10.4049/jimmunol.178.12.7531
http://dx.doi.org/10.4049/jimmunol.178.12.7531
http://dx.doi.org/10.1002/eji.200636483
http://dx.doi.org/10.1016/j.molimm.2004.06.007
http://dx.doi.org/10.1016/j.molimm.2004.06.007
http://dx.doi.org/10.1046/j.1365-2567.1996.d01-749.x
http://dx.doi.org/10.1371/journal.pone.0011445
http://dx.doi.org/10.1007/s10875-010-9456-8
http://dx.doi.org/10.1016/j.celrep.2016.05.028
http://dx.doi.org/10.1002/eji.200635956
http://dx.doi.org/10.1111/j.1365-2567.2009.03173.x
http://dx.doi.org/10.4049/jimmunol.0802273
http://dx.doi.org/10.4049/jimmunol.180.6.3882
http://dx.doi.org/10.4049/jimmunol.180.6.3882
http://dx.doi.org/10.4049/jimmunol.0900432
http://dx.doi.org/10.1016/j.immuni.2013.05.019
http://dx.doi.org/10.1182/blood-2012-07-440776
http://dx.doi.org/10.1126/science.1215173
http://dx.doi.org/10.1084/jem.20131471
http://dx.doi.org/10.1371/journal.pone.0129879
http://dx.doi.org/10.1371/journal.pone.0129879
http://dx.doi.org/10.1038/nri3349
http://dx.doi.org/10.1016/j.immuni.2013.08.021
http://dx.doi.org/10.1038/nm.3892
http://dx.doi.org/10.1038/nm.3892
http://dx.doi.org/10.1038/ni.3448
http://dx.doi.org/10.1038/nri3365
http://dx.doi.org/10.1016/j.chom.2015.06.011
http://dx.doi.org/10.1038/ni.1684
http://dx.doi.org/10.1126/science.1222551
http://dx.doi.org/10.1016/j.cell.2014.03.030
http://dx.doi.org/10.4049/jimmunol.1202924
http://dx.doi.org/10.4049/jimmunol.1202924
http://dx.doi.org/10.1038/nature08636
http://dx.doi.org/10.1038/nature08900
http://dx.doi.org/10.1016/j.immuni.2013.02.010
http://dx.doi.org/10.1038/ni.3094
http://dx.doi.org/10.1038/ni.3094
http://dx.doi.org/10.1038/ni.3482
http://dx.doi.org/10.1002/eji.1830050209
http://dx.doi.org/10.1002/eji.1830050209
http://dx.doi.org/10.1084/jem.20091509
http://dx.doi.org/10.1084/jem.20091509
http://dx.doi.org/10.1038/ni.2534
http://dx.doi.org/10.1084/jem.20140212
http://dx.doi.org/10.1084/jem.20140212
http://dx.doi.org/10.1084/jem.20051615


14

Cruz-Adalia and Veiga Lymphocytes Participate in the Innate Immunity

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 405

134. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. 
Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined 
by expression of CRTH2 and CD161. Nat Immunol (2011) 12:1055–62. 
doi:10.1038/ni.2104 

135. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, et al. IL-25 induces IL-4, 
IL-5, and IL-13 and Th2-associated pathologies in  vivo. Immunity (2001) 
15:985–95. doi:10.1016/S1074-7613(01)00243-6 

136. Hurst SD, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, et al. 
New IL-17 family members promote Th1 or Th2 responses in the lung: 
in vivo function of the novel cytokine IL-25. J Immunol (2002) 169:443–53. 
doi:10.4049/jimmunol.169.1.443 

137. Bostick JW, Zhou L. Innate lymphoid cells in intestinal immunity and 
inflammation. Cell Mol Life Sci (2016) 73:237–52. doi:10.1007/s00018-015- 
2055-3 

138. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, et  al. 
Adaptation of innate lymphoid cells to a micronutrient deficiency pro-
motes type 2 barrier immunity. Science (2014) 343:432–7. doi:10.1126/
science.1247606 

139. Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, et al. Influence 
of the transcription factor RORgammat on the development of NKp46+ cell 
populations in gut and skin. Nat Immunol (2009) 10:75–82. doi:10.1038/
ni.1681 

140. Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M, 
Rattis F, et al. Microbial flora drives interleukin 22 production in intestinal 
NKp46+ cells that provide innate mucosal immune defense. Immunity 
(2008) 29:958–70. doi:10.1016/j.immuni.2008.11.001 

141. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, 
Belkaid Y, et al. Microbiota-dependent crosstalk between macrophages and 
ILC3 promotes intestinal homeostasis. Science (2014) 343:1249288–1249288. 
doi:10.1126/science.1249288 

142. Crellin NK, Trifari S, Kaplan CD, Satoh-Takayama N, Di Santo JP, Spits H. 
Regulation of cytokine secretion in human CD127(+) LTi-like innate lym-
phoid cells by Toll-like receptor 2. Immunity (2010) 33:752–64. doi:10.1016/j.
immuni.2010.10.012 

143. Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, 
et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells 
and gut defence. Nature (2016) 535:440–3. doi:10.1038/nature18644 

144. Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Bérard M, Kleinschek 
M, et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by 
integrating negative signals from the symbiotic microbiota. Nat Immunol 
(2011) 12:320–6. doi:10.1038/ni.2002 

145. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. 
AHR drives the development of gut ILC22 cells and postnatal lymphoid 
tissues via pathways dependent on and independent of Notch. Nat Immunol 
(2012) 13:144–51. doi:10.1038/ni.2187 

146. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, et al. Interleukin-22 
mediates early host defense against attaching and effacing bacterial patho-
gens. Nat Med (2008) 14:282–9. doi:10.1038/nm1720 

147. Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D. Pathological 
versus protective functions of IL-22 in airway inflammation are regulated by 
IL-17A. J Exp Med (2010) 207:1293–305. doi:10.1084/jem.20092054 

148. Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O’Leary CE, et al. The micro-
biota regulates neutrophil homeostasis and host resistance to Escherichia coli 
K1 sepsis in neonatal mice. Nat Med (2014) 20:524–30. doi:10.1038/nm.3542 

149. Klose CSN, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, et al. 
A T-bet gradient controls the fate and function of CCR6-RORγt+ innate 
lymphoid cells. Nature (2013) 494:261–5. doi:10.1038/nature11813 

150. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, et al. 
Innate lymphoid cells drive interleukin-23-dependent innate intestinal 
pathology. Nature (2010) 464:1371–5. doi:10.1038/nature08949 

151. Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, et al. Activation 
of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs 
during Streptococcus pneumoniae infection. J Infect Dis (2014) 210:493–503. 
doi:10.1093/infdis/jiu106 

152. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. A developmen-
tal switch in lymphocyte homing receptor and endothelial vascular addressin 
expression regulates lymphocyte homing and permits CD4+ CD3- cells 
to colonize lymph nodes. Proc Natl Acad Sci U S A (1996) 93:11019–24. 
doi:10.1073/pnas.93.20.11019 

153. Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect 
CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and 
follicular cells but not T or B cells. Immunity (1997) 7:493–504. doi:10.1016/
S1074-7613(00)80371-4 

154. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, et  al. 
Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. 
J Exp Med (2009) 206:35–41. doi:10.1084/jem.20072713 

155. Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) 
lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 
(2011) 34:122–34. doi:10.1016/j.immuni.2010.12.009 

156. Marafini I, Monteleone I, Di Fusco D, Cupi ML, Paoluzi OA, Colantoni A, 
et al. TNF-α producing innate lymphoid cells (ILCs) are increased in active 
celiac disease and contribute to promote intestinal atrophy in mice. PLoS One 
(2015) 10:e0126291. doi:10.1371/journal.pone.0126291 

157. Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, et al. An IL-9 
fate reporter demonstrates the induction of an innate IL-9 response in lung 
inflammation. Nat Immunol (2011) 12:1071–7. doi:10.1038/ni.2133 

158. Esin S, Batoni G, Counoupas C, Stringaro A, Brancatisano FL, Colone M, 
et al. Direct binding of human NK cell natural cytotoxicity receptor NKp44 
to the surfaces of Mycobacteria and other bacteria. Infect Immun (2008) 
76:1719–27. doi:10.1128/IAI.00870-07 

159. Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, et al. Direct 
recognition of Fusobacterium nucleatum by the NK cell natural cytotoxic-
ity receptor NKp46 aggravates periodontal disease. PLoS Pathog (2012) 
8:e1002601. doi:10.1371/journal.ppat.1002601 

160. McElroy DS, Ashley TJ, DŁOrazio SEF. Lymphocytes serve as a reservoir 
for Listeria monocytogenes growth during infection of mice. Microb Pathog 
(2009) 46:214–21. doi:10.1016/j.micpath.2009.01.003 

161. Salgado-Pabon W, Celli S, Arena ET, Nothelfer K, Roux P, Sellge G, et  al. 
Shigella impairs T lymphocyte dynamics in vivo. Proc Natl Acad Sci U S A 
(2013) 110:4458–63. doi:10.1073/pnas.1300981110 

162. Telford JL, Baldari CT. Shigella targets T cells. Cell Host Microbe (2011) 
9:253–4. doi:10.1016/j.chom.2011.04.003 

163. Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, Di 
Bartolo V, et  al. The Shigella flexneri type three secretion system effector 
IpgD inhibits T cell migration by manipulating host phosphoinositide 
metabolism. Cell Host Microbe (2011) 9:263–72. doi:10.1016/j.chom.2011. 
03.010 

164. Zarember KA, Godowski PJ. Tissue expression of human toll-like receptors 
and differential regulation of toll-like receptor mRNAs in leukocytes in 
response to microbes, their products, and cytokines. J Immunol (2002) 
168:554–61. doi:10.4049/jimmunol.168.2.554 

165. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdörfer B, Giese T, 
et  al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular 
subsets of human peripheral blood mononuclear cells and sensitivity to 
CpG oligodeoxynucleotides. J Immunol (2002) 168:4531–7. doi:10.4049/
jimmunol.168.9.4531 

166. Gelman AE, Zhang J, Choi Y, Turka LA. Toll-like receptor ligands directly 
promote activated CD4+ T cell survival. J Immunol (2004) 172:6065–73. 
doi:10.4049/jimmunol.172.10.6065 

167. Imanishi T, Hara H, Suzuki S, Suzuki N, Akira S, Saito T. Cutting edge: 
TLR2 directly triggers Th1 effector functions. J Immunol (2007) 178:6715–9. 
doi:10.4049/jimmunol.178.11.6715 

168. Biswas A, Banerjee P, Biswas T. Porin of Shigella dysenteriae directly promotes 
toll-like receptor 2-mediated CD4+ T cell survival and effector function. Mol 
Immunol (2009) 46:3076–85. doi:10.1016/j.molimm.2009.06.006 

169. Komai-Koma M, Jones L, Ogg GS, Xu D, Liew FY. TLR2 is expressed on 
activated T cells as a costimulatory receptor. Proc Natl Acad Sci U S A (2004) 
101:3029–34. doi:10.1073/pnas.0400171101 

170. Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang G-X, 
Constantinescu CS, et al. TLR2 stimulation drives human naive and effector 
regulatory T cells into a Th17-like phenotype with reduced suppressive 
function. J Immunol (2011) 187:2278–90. doi:10.4049/jimmunol.1003715 

171. Bendigs S, Salzer U, Lipford GB, Wagner H, Heeg K. CpG-
oligodeoxynucleotides co-stimulate primary T cells in the absence of 
antigen-presenting cells. Eur J Immunol (1999) 29:1209–18. doi:10.1002/
(SICI)1521-4141(199904)29:04<1209::AID-IMMU1209>3.0.CO;2-J 

172. Zheng L, Asprodites N, Keene AH, Rodriguez P, Brown KD, Davila E. TLR9 
engagement on CD4 T lymphocytes represses gamma-radiation-induced 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1038/ni.2104
http://dx.doi.org/10.1016/S1074-7613(01)00243-6
http://dx.doi.org/10.4049/jimmunol.169.1.443
http://dx.doi.org/10.1007/s00018-015-2055-3
http://dx.doi.org/10.1007/s00018-015-2055-3
http://dx.doi.org/10.1126/science.1247606
http://dx.doi.org/10.1126/science.1247606
http://dx.doi.org/10.1038/ni.1681
http://dx.doi.org/10.1038/ni.1681
http://dx.doi.org/10.1016/j.immuni.2008.11.001
http://dx.doi.org/10.1126/science.1249288
http://dx.doi.org/10.1016/j.immuni.2010.10.012
http://dx.doi.org/10.1016/j.immuni.2010.10.012
http://dx.doi.org/10.1038/nature18644
http://dx.doi.org/10.1038/ni.2002
http://dx.doi.org/10.1038/ni.2187
http://dx.doi.org/10.1038/nm1720
http://dx.doi.org/10.1084/jem.20092054
http://dx.doi.org/10.1038/nm.3542
http://dx.doi.org/10.1038/nature11813
http://dx.doi.org/10.1038/nature08949
http://dx.doi.org/10.1093/infdis/jiu106
http://dx.doi.org/10.1073/pnas.93.20.11019
http://dx.doi.org/10.1016/S1074-7613(00)80371-4
http://dx.doi.org/10.1016/S1074-7613(00)80371-4
http://dx.doi.org/10.1084/jem.20072713
http://dx.doi.org/10.1016/j.immuni.2010.12.009
http://dx.doi.org/10.1371/journal.pone.0126291
http://dx.doi.org/10.1038/ni.2133
http://dx.doi.org/10.1128/IAI.00870-07
http://dx.doi.org/10.1371/journal.ppat.1002601
http://dx.doi.org/10.1016/j.micpath.2009.01.003
http://dx.doi.org/10.1073/pnas.1300981110
http://dx.doi.org/10.1016/j.chom.2011.04.003
http://dx.doi.org/10.1016/j.chom.2011.03.010
http://dx.doi.org/10.1016/j.chom.2011.03.010
http://dx.doi.org/10.4049/jimmunol.168.2.554
http://dx.doi.org/10.4049/jimmunol.168.9.4531
http://dx.doi.org/10.4049/jimmunol.168.9.4531
http://dx.doi.org/10.4049/jimmunol.172.10.6065
http://dx.doi.org/10.4049/jimmunol.178.11.6715
http://dx.doi.org/10.1016/j.molimm.2009.06.006
http://dx.doi.org/10.1073/pnas.0400171101
http://dx.doi.org/10.4049/jimmunol.1003715
http://dx.doi.org/10.1002/(SICI)1521-4141(199904)29:04﻿<﻿1209::AID-IMMU1209﻿>﻿3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1521-4141(199904)29:04﻿<﻿1209::AID-IMMU1209﻿>﻿3.0.CO;2-J


15

Cruz-Adalia and Veiga Lymphocytes Participate in the Innate Immunity

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 405

apoptosis through activation of checkpoint kinase response elements. 
Blood (2008) 111:2704–13. doi:10.1182/blood-2007-07-104141 

173. Funderburg N, Luciano AA, Jiang W, Rodriguez B, Sieg SF, Lederman MM. 
Toll-like receptor ligands induce human T cell activation and death, a 
model for HIV pathogenesis. PLoS One (2008) 3:e1915. doi:10.1371/journal.
pone.0001915 

174. Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK. Human 
CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive 
capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. 
J Immunol (2005) 175:8051–9. doi:10.4049/jimmunol.175.12.8051 

175. Caron G, Duluc D, Frémaux I, Jeannin P, David C, Gascan H, et  al. 
Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and 
R-848 up-regulate proliferation and IFN-gamma production by memory 
CD4+ T cells. J Immunol (2005) 175:1551–7. doi:10.4049/jimmunol.175. 
3.1551 

176. Dominguez-Villar M, Gautron A-S, de Marcken M, Keller MJ, Hafler 
DA. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol (2015) 
16:118–28. doi:10.1038/ni.3036 

177. Steele S, Radlinski L, Taft-Benz S, Brunton J, Kawula TH. Trogocytosis-
associated cell to cell spread of intracellular bacterial pathogens. Elife (2016) 
5:e1000211–3. doi:10.7554/eLife.10625 

178. Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs 
FE, Blanco J, et al. HIV and mature dendritic cells: trojan exosomes riding 
the trojan horse? PLoS Pathog (2010) 6:e1000740. doi:10.1371/journal.
ppat.1000740.g004 

179. Lanzavecchia A, Roosnek E, Gregory T, Berman P, Abrignani S. T cells can 
present antigens such as HIV gp120 targeted to their own surface molecules. 
Nature (1988) 334:530–2. doi:10.1038/334530a0 

180. Barnaba V, Watts C, de Boer M, Lane P, Lanzavecchia A. Professional presen-
tation of antigen by activated human T cells. Eur J Immunol (1994) 24:71–5. 
doi:10.1002/eji.1830240112 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Cruz-Adalia and Veiga. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1182/blood-2007-07-104141
http://dx.doi.org/10.1371/journal.pone.0001915
http://dx.doi.org/10.1371/journal.pone.0001915
http://dx.doi.org/10.4049/jimmunol.175.12.8051
http://dx.doi.org/10.4049/jimmunol.175.3.1551
http://dx.doi.org/10.4049/jimmunol.175.3.1551
http://dx.doi.org/10.1038/ni.3036
http://dx.doi.org/10.7554/eLife.10625
http://dx.doi.org/10.1371/journal.ppat.1000740.g004
http://dx.doi.org/10.1371/journal.ppat.1000740.g004
http://dx.doi.org/10.1038/334530a0
http://dx.doi.org/10.1002/eji.1830240112
http://creativecommons.org/licenses/by/4.0/

	Close Encounters of Lymphoid Cells and Bacteria
	Introduction
	γδ T Cells
	Toll-Like Receptors in γδ T Cells

	Invariant NKT
	TLRs in iNKT Cells

	MAIT Cells
	B Lymphocytes
	B-1 Cells
	Conventional B-2 Cells
	TLRs in B Cells

	Innate Response Activator Cells
	Innate Lymphoid Cells
	Group 1 ILCs
	Group 2 ILCs
	Group 3 ILC: ILC3s
	Group 3 ILCs: LTi Cells
	TLRs in ILCs

	Conventional T Cells
	TLRs in Conventional T Cells


	Conclusion and Future Perspectives
	Author Contributions
	Acknowledgments
	References


