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Alloimmunity driving rejection in the context of solid organ transplantation can be grossly 
divided into mechanisms predominantly driven by either T cell-mediated rejection 
(TCMR) and antibody-mediated rejection (ABMR), though the co-existence of both 
types of rejections can be seen in a variable number of sampled grafts. Acute TCMR 
can generally be well controlled by the establishment of effective immunosuppression 
(1, 2). Acute ABMR is a low frequency finding in the current era of blood group and 
HLA donor/recipient matching and the avoidance of engraftment in the context of 
high-titer, preformed donor-specific antibodies. However, chronic ABMR remains a 
major complication resulting in the untimely loss of transplanted organs (3–10). The 
close relationship between donor-specific antibodies and ABMR has been revealed by 
the highly sensitive detection of human leukocyte antigen (HLA) antibodies (7, 11–15). 
Injury to transplanted organs by activation of humoral immune reaction in the context of 
HLA identical transplants and the absence of donor specific antibodies (17–24), strongly 
suggest the participation of non-HLA (nHLA) antibodies in ABMR (25). In this review, we 
discuss the genesis of ABMR in the context of HLA and nHLA antibodies and summarize 
strategies for ABMR management.

Keywords: HLA antibody, donor-specific HLA antibody, non-HLA antibody, antibody-mediated rejection, humoral 
immune system, in vitro B cell assay

iNTRODUCTiON

Organ transplantation improves the quality of life of patients with terminal dysfunction of organs, 
such as the kidney and pancreas, and is the most effective life support treatment for patients with 
heart, lung, and liver failure.

Although short-term prognoses for transplanted organs have improved significantly, long-term 
prognosis after 5–10 years remains insufficient, and reportedly reflects injury from chronic, indolent 
injury from sub-clinical antibody-mediated rejection (ABMR) (3–5, 15). Acute ABMR is a declining 
problem in organ transplantation as donor/recipient matching has improved (7, 16) and early acute 
ABMR is seen usually only in the context of ABO incompatible organ transplants (17, 18), and 
transplantation in highly sensitized patients with preformed donor-specific HLA antibodies (DSAs). 
Accordingly, preformed DSA are more likely to be produced before transplantation with histories of 
complications, such as pregnancy, previous transplant, blood transfusion, and prior organ transplan-
tation (7, 19, 20). Hyper acute rejection, which can occur in the presence of preformed DSA, can be 
controlled using recently developed desensitization therapies (7).

Rejection due to de novo DSAs remains a major cause of transplanted organ loss, in the context of 
sub-clinical, chronic ABMR (21–24). Moreover, ABMR has also been reported in the absence of DSAs, 
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FigURe 1 | The pathway of naïve B-cell differentiation into DSA-specific PCs. Naïve B cells differentiate into DSA-specific plasma cells (PCs) via germinal 
centers following exposure to antigens, herpes virus entry mediator; HVEM.
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leading to the discovery of specific non-HLA (nHLA) antigens 
that activate humoral immune responses in the graft. Potentially, 
nHLA antibody-mediated humoral immune responses develop 
acutely and chronically following transplantation and these anti-
bodies may influence prognoses by participating in the onset and 
sequelae of rejection (16–18, 25–33). Although graft rejection has 
been reported among patients with nHLA antigens, one of chal-
lenges has been the discovery of the identity of these novel nHLA 
antigens and to correlate their presence and titers with ensuing 
mechanisms of transplant rejection.

MOLeCULAR PATHOPHYSiOLOgY

During ABMR, antibodies for donor antigens are produced 
following activation of humoral immune responses, involving 
activated T cells and complement pathways.

As shown in Figure  1, naïve B cells differentiate into DSA-
specific plasma cells (PCs) via germinal centers following expo-
sure to antigens. This process involves initial uptake and surface 

presentation of donor antigens on antigen-presenting cells (APC) 
in response to an encounter of donor antigens, leading to activa-
tion of CD4+ effector T cells (34) and successive promotion of 
class-switching of naïve B cells and differentiation of memory B 
cells into PCs (35). Transmission of CD4+ effector T cell signals to 
B cells primarily involves association of major histocompatibility 
complex 1 (MHC-I) with T cell receptors (36). In addition, sub-
ordinate signaling pathways are activated by binding of CTLA4 
(CD152), CD28, and CD40 ligand (CD40L) on T cell surfaces 
to the B7 (CD80/86) complex and CD40 on B-cell surfaces. 
Although CTLA-4 binds to B7, it reportedly downregulates T cell 
activity by binding to B7 with much greater affinity than CD28 
(37–40). Intracellular CTLA-4 was closely related to the suppres-
sor function of regulatory T cells (41–43) and reported the close 
relationship with autoimmune disease, including Graves’ disease, 
type 1 diabetes mellitus (DM) (44–48).

CD28 is expressed on CD4+ effector T cells and naive T cells 
(47), and promotes interleukin (IL)-2 production from B cells 
following binding to B7 complexes (48), leading to sustained 
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naïve B cell differentiation into memory B cells (49). Conversely, 
CD40L mediates the class-switch of B cells in the germinal center 
by binding to CD40 expressing B cells (50) and support CD4+ 
effector T cells to help B cell differentiation (51, 52). Previous 
studies by Ettinger et  al. (53) also showed that IL-21 induced 
PC phenotypes of human naïve and memory B cells following 
stimulation through B cell receptor (BCR) and CD40. Therefore, 
DSA-specific PCs developed and produced DSAs.

THe ROLe OF COSTiMULATORY 
PATHwAY iN THe CLiNiCAL FieLD

CTLA-4Ig (immunoglobulin) binds to B7 and then suppresses 
the engagement of CD28. CTLA-4Ig can suppress the function 
of activated T cells through regulatory T cells, which may help 
suppress established chronic inflammatory disease (54).

In the field of transplantation, Belatacept, which links to the 
extracellular domain of CTLA-4, has been approved for the 
treatment of acute kidney rejection. In addition, an important 
problem in the field is to control antigen-specific memory B cells 
differentiation into PCs. The infusion of Belatacept might suppress 
DSAs development in a T-cell-independent manner because it 
has been reported that the infusion of CTLA-4Ig 1 week or more 
after transplantation could prevent DSAs development in a fully 
mismatched mouse cardiac transplant model but did not affect 
T-cell function (55). In addition, in the recent clinical BENEFIT 
trial of Belatacept induction by Vincenti et al. (56), there was a 
significant lower incidence of DSA development with Belatacept 
induction, when compared to the standard CNI arm, despite the 
higher incidence of acute rejection seen early with Belatacept 
induction.

The results might indicate that CTLA-4Ig could inhibit the 
growth and survival of DSA-specific memory B cells or PCs in 
a human model. About the other suppressive receptors related 
to CD28, PD-1 (programed death-1) has been reported to be 
expressed on the surface of T cells, and B and T lymphocyte attenu-
ator (BTLA) has been reported to be expressed on the surface of 
both B and T cells, both of which have also been attracting atten-
tion as targets for treating autoimmune diseases and cancer (57).

In the field of autoimmune disease, the involvement of 
signaling through CD40–CD40L interaction in autoimmune 
diseases has been reported and dysregulation of CD40 may 
induce macrophage-mediated coronary artery disease (CAD); 
the blockade of CD40L may, thus, be an attractive therapeutic 
target to improve CAD (58). Recent studies have also implicated 
altered regulation of the CD40 axis and generation of pathogenic 
activating anti-CD40 antibody for the generation of podocyte 
injury in focal segmental glomerulosclerosis (FSGS) recurrence 
after kidney transplantation (59, 60). Further research is needed 
to better elucidate how the CD40 axis may help control other 
autoimmune diseases.

HUMAN LeUKOCYTe ANTigeN 
ANTiBODieS

Histocompatibility analyses using cross-match, human leukocyte 
antigen (HLA) typing, and antibody tests are widely performed 

prior to transplantation in many laboratories, and are an accepted 
approach for limiting organ rejection. Recent developments in 
laboratory procedures, survey equipment, and technologies have 
led to highly sensitive detection of HLA antibodies.

Therefore, we could detect a very small amount of HLA 
antibodies and determine these antibody specificities; trace 
quantities of HLA antibodies recently provided useful prognostic 
information for ABMR and transplanted organ outcome and a 
judgment of transplant evaluation (61–65).

Major histocompatibility complex 1 class 1 (HLA-A, -B, and 
-C) and MHC class 2 (HLA-DR, -DP, and -DQ) have been identi-
fied as HLA antigens, and HLA antibodies can be detected in 
sera using FlowPRA® Class I & II Screening Tests (One Lamda) 
to identify Class I or/and Class II HLA antibodies. In further 
analyses, positive cases should be identified using HLA LAB 
Screen HLA Class I or/and Class II single antigen beads (One 
Lambda) with Luminex technology, which determines antibody 
profiles against HLA Class I or Class II and indicates the presence 
or absence of DSAs.

THe ROLe OF PReFORMeD DSA iN THe 
PATHOgeNiCiTY OF gRAFT iNJURY

Donor-specific HLA antibodies that cause ABMR have been 
classified as those that are present before transplantation as 
well as those de novo that are produced after transplantation. 
Previous studies on kidney, heart, lung, and liver transplanta-
tion indicate that poor-prognosis is associated with the presence 
of DSAs before transplantation. We will next discuss the role 
of preformed DSAs in each organ transplant. With regard to 
kidney transplants, preformed DSAs have been recognized as 
one reason of hyper acute rejection. DSAs with high threshold 
MFI and DSAs with cross match-positive could predict ABMR 
onset after transplantation (7). With regard to pancreas trans-
plants, we found a report describing that preformed DSAs did 
not affect graft prognosis (66) but DSAs could be detected from 
the sera with significantly higher probability than in recipients 
without a history of preformed DSAs after transplant. As a 
result, recipients sensitized by DSA before transplant had 
a history of DM more than 10  years after the transplant, so 
we should pay more attention to postoperative management, 
including blood sugar management (67).

With regard to liver, heart, and lung transplants, it is already 
known that preformed DSAs could affect graft outcome and 
patient mortality. In addition, preformed C1q binding DSAs have 
been reported to affect graft prognosis in liver and heart trans-
plants and preformed DSAs with MFI ≥5000 and IgG3 DSAs 
could be risk factors for ABMR onset in liver transplant cases 
(19, 68, 69). Indeed, additional risk factors for ABMR in these 
patients include ABO incompatible and cross match-positive sta-
tus, cases with a history of previous transplants, pregnancy, and 
blood transfusions (19, 70, 71). With regard to lung transplants, 
preformed DSAs have been reported to promote de novo DSA 
development early after transplant and patient survival (72–75). 
Therefore, these data on clinical correlations of DSA and rejection 
in different organ transplants suggests that improved screening 
and therapies, such as desensitization before transplant, may be 
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of benefit across different types of solid organ transplants to limit 
subsequent postoperative complications (76).

Mechanisms of Onset of ABMR by 
Preformed DSA
Antibody-mediated rejection caused by preformed DSAs mani-
fests as hyper acute rejection immediately after transplantation, 
leading to failure of the transplanted organ within several 
hours. In these cases, DSAs immediately bind to all capillary 
endothelium surfaces in the transplanted organ, and concomi-
tant complement activation leads to the formation of fibrin clots 
and acceleration of blood coagulation. Subsequently, rapid 
peripheral circulation incompetence causes necrosis of vascular 
walls, intense bleeding of the transplant, and necrosis in neigh-
boring tissues. Finally, inflammatory cells, such as neutrophils, 
infiltrate capillary endothelial surfaces, and further undermine 
the transplant (6, 77).

Management of ABMR by Preformed DSA
Improvements in desensitization therapy have enabled manage-
ment of high risk recipients, such as those with cross match-
positive phenotypes and high organ transplantation sensitivity; 
as a result, the prevalence of severe hyper acute rejection by 
preformed DSAs has decreased significantly (7). Accordingly, 
Ng et al. summarized desensitization protocols and complica-
tions using rituximab, bortezomib, eculizumab, and alemtu-
zumab, and reported promising graft survival in patients across 
various institutes (78). However, complications included anemia 
and thrombocytopenia, likely reflecting myelosuppression 
by these agents. In addition, various infections in some cases 
were detected, including cytomegalovirus (CMV), BK virus, 
and Epstein–Barr virus (EBV), indicating that desensitization 
therapy disposes patients to an increased risk of opportunistic 
viral infections. In addition, it was reported that induction with 
T-cell depleting agents (anti-thymocyte globulin) was closely 
associated with CMV, EBV, and BK polyomavirus (BKV) 
infections in comparison with IL-2a receptor antagonists (anti-
CD25) (79). Therefore, the use of T-cell depleting agents should 
be avoided as an immunosuppressive reagent or induction. If 
possible, the use of IL-2a receptor antagonists or no induction 
should be considered (79,  80). Additionally, it was expected 
that these virus infection may contribute to the activation of 
immune responses in transplanted organs, and dose reductions 
of immunosuppressive agents may activate immune reactions 
to graft antigens.

To address this issue, prediction and early detection of viral 
infections is critical, and could be used to inform doses reduc-
tions of immunosuppressive agents. Concomitant administration 
of preventive and therapeutic antiviral agents is also critical in the 
management of these patients.

Desensitization Therapy
Prior to the introduction of rituximab, plasmapheresis and sple-
nectomy were long recommended as desensitization therapies for 
patients with ABO incompatible kidney transplants. Subsequently, 

rituximab was shown to inhibit the onset of ABMR without sple-
nectomy. Rituximab is a monoclonal antibody (mAb) against the 
protein CD20, which is expressed in immature and mature B cells. 
However, because CD20 is not expressed on PCs, rituximab may 
not inhibit the production of DSAs by PCs. In addition, recent 
studies show varying effects of rituximab on B cell phenotypes, 
with higher sensitivity of naïve B cells than memory B cells (81). 
Thus, although rituximab suppresses immune activation and 
may not provide protection from infection, memory B cells may 
remain viable.

In addition, posterior reversible encephalopathy syndrome 
(PRES) and acute respiratory distress syndrome (ARDS) was 
reportedly increased in patients treated with rituximab as severe 
adversity effect (82). These data warrant further clarification of 
the depletion mechanisms of rituximab in B cells.

Bortezomib is a proteasome inhibitor that was developed as 
a treatment for multiple myeloma, and the effectiveness of this 
agent against transplant rejection was reported in 2008. These 
studies showed downregulated immune responses to donor 
antigens, recovery of graft function, and long-term suppression 
of serum antibody levels. However, inhibition of the proteasome 
by bortezomib may be detrimental to healthy cells (83–88).

As an alternative, eculizumab is a recombinant humanized 
monoclonal IgG2/4 antibody that suppresses complement 
activation and inhibits production of C5, which is the final 
product of the complement pathway and activates inflammatory 
responses and ultimately results in apoptosis of infected cells (89). 
Accordingly, treatments with this agent led to severe infectious 
diseases, including meningitis (90).

Finally, alemtuzumab is a recombinant DNA-derived human-
ized IgG1 kappa mAb that is directed toward CD52 and is used 
is used to treat B-cell chronic lymphocytic leukemia (B-CLL) 
and multiple sclerosis patients, warranting consideration for the 
treatment of ABMR. As adverse effect, it has been associated with 
infusion-related events (91, 92).

infection as a Trigger of Rejection
Cytomegalovirus Infection as a Trigger of Rejection
Cytomegalovirus is among the most common infections 
after solid-organ transplantation, and results in significant 
morbidity, graft loss, and adversity. Although numbers of 
CMV-seronegative (R−) cases have increased recently in healthy 
subjects, those with organ transplants from CMV-seropositive 
donors (D+) are at the highest risk of primary CMV disease, 
which can easily become serious causing the reactivation of 
latent virus transmitted in the allograft (93, 94). Additionally, 
a close relationship between CMV infection and allograft 
rejection has been reported in CMV D+/R− liver and kidney 
transplant patients (93, 95).

Laboratory Diagnosis of CMV
Nucleic Acid Testing. Nucleic acid testing (NAT) is widely used 
to detect and quantify CMV RNA and DNA.

Serology. Serological analyzes allow risk stratification of patients 
during the pre-transplant screening phase on the basis of tests for 
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CMV IgG antibodies in both donors and recipients, and can indi-
cate the presence of latent infection.

Antigenemia. The antigenemia assay detects the CMV pp65 
antigen in infected leukocytes from peripheral blood, and has 
been used for rapid diagnosis of CMV infections in transplant 
recipients (96).

Treatment of CMV
In a previous study, valganciclovir was found to be more effec-
tive than oral ganciclovir at preventing CMV disease in solid 
organ transplant recipients (97), suggesting that extension of 
valganciclovir prophylaxis to 200 days may benefit high risk (D+/
R−) kidney recipients. Following transplantation, CMV disease is 
predominantly treated using intravenous (IV) ganciclovir (5 mg/
kg every 12 h) and oral valganciclovir (900 mg twice daily) (98).

BK Polyomavirus Infection as a Trigger of Rejection
More than 90% of healthy subjects become infected with BKV 
(99, 100), which is the major cause of polyomavirus-associated 
nephropathy (Py-VAN) and presents a 1–15% risk of allograft 
failure in kidney transplant patients (101–106). And it has been 
reported that BKV-activated antibody reactivity in recipients at the 
onset of immunosuppression (107). However, although number 
of BKV-seronegative (R−) cases has increased recently in healthy 
subjects, these patients are the most susceptible to BKV disease 
following transplantation from BKV seropositive donors (D+) 
(108, 109).

Laboratory Diagnosis
Screening for BKV replication should be performed at least every 
3 months during the first 2 years after transplantation, and then 
annually until the fifth year.

Nucleic Acid Testing. Nucleic acid testing in polymerase chain 
reaction (PCR) is used to detect amplifications of BK DNA.

Urine Cytology. Urine cytology is sufficient to detect decoy cells, 
which are associated with BKV induced organ failure.

Treatment of BKV
First, reduction of immunosuppression should be considered  
(110, 111). In patients with sustained high-level plasma BKV loads 
despite dose reductions of immunosuppression agents, administra-
tion of antiviral agents (Cidofovir), and a replacement for mycophe-
nolic acid (Leflunomide), intravenous immunoglobulin (IVIG), 
and anti-mycotic agents (Fluoroquinolones) should be considered.

Epstein–Barr Virus Infection as a Trigger of Rejection
Epstein–Barr virus contributes to the pathogenesis of post-
transplant lymphoproliferative disease (PTLD) occurring cases 
early after transplantation in more than 90% of the cases, and 
small intestine transplantations are associated with higher risks 
than heart, lung, and liver transplantations (112, 113). The close 
relationship between EBV infection and ABMR has been reported 
in heart transplantation (114).

Laboratory Diagnosis
Nucleic Acid Testing. Epstein–Barr virus DNA monitoring for 
EBV D+/R− recipients should be recommended, with contin-
ued EBV load screening every 3–6 months until 2–3 years after 
transplantation. This monitoring is particularly important for 
EBV-seropositive recipients with intestinal transplants, and mon-
itoring of EBV DNA every 2–4 weeks in the first 3 months should 
be performed, monthly until 6 months post-transplantation, and 
then every 3 months until the end of the first year.

Treatment of EBV
Antiviral prophylaxis for high risk patients (EBV D+/R−) is con-
sidered in some centers (99).

Treatment with acyclovir, ganciclovir, and IVIGs has shown 
some benefits in the prevention of PTLD among EBV-seronegative 
recipients who their donors are EBV-seropositive (113).

THe ROLe OF DE NOVO DSA iN THe 
PATHOgeNiCiTY OF gRAFT iNJURY

Recent reports show that DSAs play an important role in ABMR 
onset, and this has been shown by highly sensitive monitoring 
of HLA antibodies in the sera (11–13). However, DSAs may be 
absorbed into transplanted organs during the early phases of anti-
body production (115) (Figure 2). Accordingly, in the Guidelines 
of the Transplantation Society (TTS), post-kidney transplant DSA 
monitoring is not recommended for all patients beyond the first 
year (116). Hence, to avoid the influence of absorption, antibody 
production from PCs has been analyzed in vitro, because these 
antibodies may not be influenced by the absorption and provide 
us with further detailed illustrations that are available to clarify 
how these antibodies are produced in organ recipients. However, 
PCs are seldom found in blood and predominate in bone marrow 
and secondary lymphoid tissues, techniques for differentiating 
B cells into PCs, are required to investigate antibody production 
(117–119).
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In Vitro B Cell Assays
Determination of HLA antibodies in supernatants of cultured 
B cells can better inform ABMR management than those in sera. 
Therefore, some researchers have suggested that if peripheral 
B cells could be differentiated into PCs in vitro, then the in vitro 
differentiation of peripheral B cells into PCs may facilitate the 
control of ABMR. However, unlike in vitro T cell assays that have 
long been used to control T cell-mediated rejection (TCMR), pri-
mary cultures of B cells are difficult to maintain and in vitro B cells 
assays have not long been established. Although memory B cells 
were reportedly differentiated into APC in vitro (120), these short 
comings require further improvements in the ease and conveni-
ence of B cell culture, and subsequent assay development that can 
be used to detect HLA antibodies in B cell culture supernatants to 
ultimately prevent transplant rejection.

Moreover, there are important points to detect HLA antibod-
ies from the B cell culture supernatant. Peripheral B cells include 
naïve B cells and memory B cells (121, 122); and these B cells 
derived from PCs survive for varying durations and produce 
antibodies. However, HLA antibodies that cause ABMR are 
mainly produced by memory B cells (123–125), warranting 
establishment of in vitro B cell assays in which memory B cells 
are selectively differentiated into PCs in  vitro and are used to 
produce antibodies. In addition, many reports have showed that 
long-lived PCs, which produce antibodies in the bone marrow 
for long periods, play an important role in ABMR (126–129). 
Therefore, to monitor the progression of antibody-mediated dis-
eases, in vitro culture systems, in which B cells are differentiated 
to their terminal stage (long-lived PCs), are urgently required. 
On using a clinical specimen, the volume of B cells in peripheral 
blood is very low following immunosuppression or particularly 
when we could collect B cells from recipients who experienced 
desensitization therapy.

However, feeder cells can strongly activate human B cells 
to proliferate and differentiate in a cell–cell contact-dependent 
manner in these cases. Thus, in vitro B cell assays of HLA antibod-
ies from the cultured supernatants may lead to drug sensitivity 
tests that are similar to those for T cells, may contribute to clinical 
applications of personalized immunosuppression, and the devel-
opment of new immunosuppressant agents that control ABMR.

In Vitro Memory B Cell Assays
We found a report about immunosuppressive agent susceptibility 
for the differentiation of human B (CD19+) cells in vitro with a com-
bination of IL-21, phosphorothioate CpG-oligodeoxynucleotide 
(CpG-ODN), histidine-tagged soluble recombinant human 
CD40 L and anti-polyhistidine mAb (130). IL-21 is produced 
by follicular helper T cells (131), which synergistically induce 
maximum Blimp-1 upregulation and optimal PC differentiation 
with CD40 L (132). TLR9 agonist CpG-ODN activates B cells 
proliferation and promotes PCs differentiation (133). This cul-
ture system induced IgG production but could not sustain the 
survival of PCs for a long period. It might indicate that the other 
cytokines play an important role in human B cells differentiation 
into mature PCs in vitro, because other groups have reported that 
APRIL and the B cell activating factor (BAFF) would support 

the survival of PBs and PCs recently (134–137). In addition, a 
previous report has shown that CD27+ memory B cells could be 
differentiated into long-lived PCs with supernatants from bone 
marrow stromal cell line M2-10B4 (138), which support the long-
term culture of human bone marrow stem cells. The mechanisms 
by which M2-10B4 cells contribute to PCs survival has yet to be 
revealed, but it is suggested that CD27+ memory B cells demand 
well-balanced support from stromal cells (139–142). In addition, 
different environments or signal transmission might be required 
for the differentiation of CD27− naïve and CD27+ memory B cells 
into mature PCs. Therefore, we should improve the in vitro B cell 
assay to sustain CD27+ memory B cell-derived PC survival for 
a long-term selectively. For example, we should examine how 
any humoral factors, including growth factor or any cytokines 
from activated T cells could affect CD27+ memory B cell growth 
and survival in vitro, while referring to the reports that helper 
T-cells may mediate CD27+ memory B cell differentiation into 
PCs in vivo (143).

Risk Factors of ABMR from De Novo DSA
Not all DSAs participate in ABMR and transplanted organ 
prognosis (7), and although C1q binding DSAs are reported risk 
factors for ABMR onset, further studies of DSA characteristics 
are required to identify those with prognostic value. In addition, 
various other factors influence transplanted organ prognoses 
(ABMR onset, graft survival) and require further investigation. 
About the risk factors for graft loss, thrombotic microangiopathy 
(TMA), glomerulopathy, C4d deposition, and chronic injury 
change in histopathological diagnoses were reported.

As other factors besides histopathological findings, a history 
of subclinical ABMR and TCMR and a decline of graft function 
could be risk factors. This might indicate that a graft would fail 
with high probability when the humoral immune response toward 
a donor-specific antigen has proceeded to an irreversible stage.

C1q Binding DSA
C1q appear in the beginning of the classical complement pathway, 
and C1q binds directly to antigens and initiates classical comple-
ment pathway activation. Subsequent C1q-activated reactions 
include (i) antigen binding, (ii) binding to C-reactive protein, 
and (iii) binding to antigen–antibody complexes, and can lead to 
the activation of C3 convertase and the degradation of C3 to C3b 
and C3a (144, 145). Of these, C3b is the main effector of the com-
plement pathway, while C3a activates inflammatory responses. 
Indeed, C1q may play important roles in the activation of 
inflammatory reactions against grafts. Accordingly, C1q binding 
to DSAs reportedly influences the frequency of ABMR onset and 
glomerulopathy in solid organ transplants, leading to increased 
chances of graft failure. Thus, binding of C1q to DSAs may be 
highly predictive of graft prognosis, warranting the development 
of interventions that decrease the presence of C1q binding DSAs. 
The C1qScreen™ (One Lamda) is a reliable tool for distinguishing 
complement-binding antibodies from non-complement-binding 
ones, and is widely applied using Luminex-based LABScan™ 
100 flow fluorescence analyzers to determine relative amounts of 
C1q binding antibodies. The C1qScreen™ in combination with 
the Luminex-based LABScan™ can indicate the relative amount 
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TABLe 1 | various other factors influence transplanted organ prognoses and require further investigation.

Risk factors Out come

Study size Organ ABMR graft loss Reference

226 Kidney Highly sensitized patients ABMR-positive (147)
DSA relative intensity scores greater than 17 Thrombotic microangiopathy (TMA) positive
Presence of both class I and II DSAs at transplant Induction with intravenous immunoglobulin and rituximab

62 C1q-positive C1q-positive (148)
Both of DSA- and C1q-positive
Transplant glomerulopathy
Decline of eGFR

1016 Complement-binding DSA DSA-positive Complement-binding DSA (149)
DSA-positive

1307 Subclinical ABMR (150)
Subclinical TCMR

1365 TCMR TCMR diagnosed after the first year post-transplant (151)
Chronic histological injury
Transplant glomerulopathy

67 (grafts) Late aABMR (152)

885 Capillary C4d-positive (153)

1054 TCMR Higher glomerulitis scores (154)
Higher C4d staining scores

1 Plasma cell-rich rejection (PCRR) with ABMR (155)

237 DSA-positive preformed DSA-positive DSA-positive (7)
AMR
DSA-positive/CXM-positive

234 Microcirculation inflammation (4)

274 C1q-fixing DSAs (140)

152 Pancreas-kidney De novo DSA-positive (67)

439 Pancreas Elevated DSA (156)
Preformed DSA-positive

2631 Liver Preformed class II DSAs positive MFI ≧5000 (19)

1270 Preformed C1q-fixing class II DSA IgG3 DSA-positive (157)
De novo IgG3 DSA

749 De novo DSA development (158)

15 Heart SAB-C1q-positive DSA CDC-XM-positive (9)

243 De novo DSA-positive (159)
Persistent DSA (160)

44 Lung DSA-positive HLA-DQ DSA (>10,000) (71)
60

546 Early anti-HLA class II DSA (72)
Pre-operative HLA antibodies
Retransplantation
Postoperative PGD

79 Intestine De novo DSA development early after transplant (161)

291 DSA-positive DSA-positive (162)
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of C1q bound to DSAs and provides us with useful information 
from the sera (146). In addition, in C1q-positive cases despite 
being DSA-negative, graft survival is poor. It suggested that C1q 
could affect the transplanted organ prognosis by itself.

DSA Characteristics
In this study, we tabulated previously reported factors that partici-
pate in ABMR and graft loss (Table 1). Reports show that DSAs 

with higher mean fluorescent intensities (MFI) of ≥15,000 cause 
ABMR with higher probability than those with MFI of ≤5000, 
and higher level of DSAs may activate humoral immune reactions 
to donor antigens. In addition, many papers indicated that class 
II DSAs should be considered as a risk factor, particularly at the 
onset of ABMR. However, DSA specificities that activate humoral 
immune response to donor antigen may depend on the type of 
transplanted organ, and the further recognition about detailed 
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association between DSAs and graft outcome is required in each 
solid organ transplantation.

With regard to kidney transplants, DSAs with high threshold 
MFI and C1q binding DSAs have been reported to be closely 
related to TMA, glomerulopathy, microangiopathy, C4d 
deposition, extensive interstitial fibrosis, and tubular atrophy 
and these factors could affect graft prognosis in the long term 
(147–154). With regard to pancreatic transplants, elevated 
DSAs could affect graft prognosis (67, 156). With regard to liver 
transplants, IgG3 DSAs and C1qbinding DSAs were related 
to graft survival and class II DSAs were shown to be closely 
related to acute rejection early after a transplant (157). In addi-
tion, DSAs could affect graft outcome and reduce graft survival 
1 year or more after a transplant by itself (158). With regard to 
cardiac transplants, C1q binding DSAs and cross match positiv-
ity could be risk factors for ABMR and de novo DSA develop-
ment and persistent DSA were found to be closely related to 
graft loss (9, 159, 160). With regard to lung transplants, DSA 
has been related to ABMR, cellular rejection, and bronchiolitis 
obliterans and could significantly reduce postoperative survival 
3 years later compared with that in DSA-negative recipients. In 
addition, de novo DSA (along with HLA-DR mismatch) devel-
opment has been reported to reduce postoperative survival 
(71, 159). With regard to intestine transplants, de novo DSA 
development early after transplant could affect graft prognosis 
and might be effective for screening of acute rejection because 
DSA measurement has been shown to be closely related to 
histological findings (161, 162). The characteristics of DSA that 
could affect graft prognosis vary among the different types of 
organ transplant; we should, thus, understand these features 
well and make use of them for the postoperative management 
of transplant recipients.

Onset Mechanisms of ABMR from  
De Novo DSA
Antibody-mediated rejection caused by de novo DSAs typically 
appears several weeks to months after transplantation, but can 
develop at any time as far as a graft engrafts afterward.

Following the absorption of HLA antibodies onto capillary 
endothelial donor antigens (mainly HLA antigen), activation of 
pro-complement solidification and accumulation of inflamma-
tory cytokines, macrophages, and neutrophils are caused succes-
sively. Therefore, it leads to microangiopathy and gradual annual 
declines in graft function (52, 163–165). Under these conditions, 
ABMR-mediated microangiopathy is chronic and sustained, 
although moderate inflammatory activities result in slow and 
irreversible disease progression.

Management Strategies of ABMR by  
De Novo DSA
In a previous section, we suggested that immunosuppressive 
therapy limits differentiation of naïve B cells to germinal center 
B cells by controlling CD4+ effector T cell stimulation. However, 
stronger immunosuppressive therapy is required to control 
B cell growth and survival after differentiation of naive B cells to 

memory B cells in germinal centers. As a result, chronic use of 
immunosuppressive agents after differentiation of naïve B cells 
into memory B cells corresponding to HLA antibodies may no 
longer affect B cells in germinal centers.

Thus, further attention should be paid to pancytopenia, 
anemia, and viral infection as well as to those concerning 
B cell differentiation, because more strong immunosuppressive 
therapy might be necessary to inhibit memory B cell growth and 
survival in comparison with naïve B cells. In particular, rituximab 
administration induces CD20+ memory B cell apoptosis (166), 
bortezomib therapy inhibits the production of DSAs production 
from PCs (167), and IVIG can be used to reduce circulating DSAs 
(168) (Figure 3). Hence, the development of new immunosup-
pressive agents that inhibit memory B cell growth and survival 
is warranted.

In addition, the development of a diagnostic method for 
predicting the development of DSA specific memory B cells as 
soon as possible has been required.

Therefore, the control of ABMR is very difficult; the disease 
state progresses irreversibly and severely and is unresponsive 
to increasing immunosuppression following diagnosis using 
currently available methods. Although graft tissue biopsies are 
the most reliable diagnostic method for ABMR, it was hard to 
perform frequently because it is very invasive. Therefore, less 
invasive diagnostic approaches are urgently required to predict 
the development of DSA-specific memory B cells.

Histological studies of ABMR following solid organ trans-
plantation show that the classical complement pathway is 
activated after adhesion of DSAs to capillary endothelia, and 
that C4d produced and deposited as the final product of this 
pathway is an important ABMR diagnostic factor before (169). 
In late years, the number of reported cases of C4d-negative 
ABMR has recently increased (15) and some DSA-related 
mechanisms that are independent of the classical complement 
pathway have been identified. In each organ transplantation, 
these observations necessitate revision of histologic diagnostic 
criteria for all organ transplant patients, and improved the 
understanding of ABMR (170–172).

Banff Score for Diagnosis of ABMR
Pathological diagnoses play important clinical roles, and diag-
nostic criteria have been revised for all organ transplants. In 
particular, Banff score are widely used as histologic methods 
for kidney transplantations, although diagnostic criteria were 
substantively revised in 2013; indeed, the roles of ABMR, DSAs, 
and C4d deposition in grafts received greater emphasis in the 
previous diagnostic criteria before the meeting in 2013. In the 
2013 revised edition (Table 2), C4d-negative ABMR became the 
diagnostic focus especially, reflecting on the increased numbers 
of reported cases. Thus, we listed the important diagnostic criteria 
for ABMR in the revised edition in 2013, including confirmation 
of microangiopathy, evidence for DSA-capillary endothelial reac-
tions, and detection of DSA in the serum. In particular, diagnosis 
of DSA-capillary endothelial reactions requires at least one of the 
following observations; (i) C4d deposition in peritubular capillar-
ies (PTC), (ii) evidence of more than moderate microangiopathy 
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FigURe 3 | The pathway of naïve B-cell differentiation into DSAs specific PCs and how immunosuppressive reagents suppress the development of ABMR.

TABLe 2 | Revised classification of antibody-mediated rejection.

Acute/active ABMR
1 Evidence of acute tissue injury, including one or more of the following

Microvascular inflammation (g > 0 and/or ptc > 0)
Intimal or transmural arteritis (v > 0)
Acute thrombotic microangiopathy, in the absence of any other cause
Acute tubular injury, in the absence of any other cause

2 Evidence of current/recent antibody interaction with vascular endothelium, including at least one of the following:
Linear C4d staining in ptc
Moderate microvascular inflammation(g + ptc ≧ 2)
increased expression of gene transcripts indicative of endothelial injury

3 Serologic evidence of DSAs

Chronic/active ABMR
1 Evidence of chronic tissue injury, including one or more of the following

Transplant glomerulopathy(cg > 0)
Severe ptc basement membrane multilayering (requires EM)
Arterial intimal fibrosis of new onset, excluding other causes

2 Evidence of current/recent antibody interaction with vascular endothelium, including at least one of the following
Linear C4d staining in ptc
moderate microvascular inflammation(g + ptc ≧ 2)
increased expression of gene transcripts indicative of endothelial injury

3 Serologic evidence of DSAs

The bold font showed the most important factor to diagnose ABMR (Acute and Chronic).
DSAs, donor-specific HLA antibodies; EM, electron microscopy.
Furthermore, in the revised criteria, ABMR phenotypes have been classified as acute/active; chronic/active corresponding to the diagnostic criteria, which have been listed in detail.
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complement pathway following binding of DSAs to capillary endothelia. Although C4d is the final product. (B) Direct injury to the capillary endothelium. DSAs may 
directly promote vascular endothelial cell growth and proliferation, and inhibit apoptosis in capillary endothelia. (C) Recruitment of inflammatory cells with Fc 
receptors. DSAs have been shown to bind with Fcγ on the cell membrane surfaces of macrophages, natural killer cells, and neutrophils, and to induce inflammatory 
cytokine production and microangiopathy.
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and microvascular inflammation (MVI; g +  ptc ≥  2), and (iii) 
expression of endothelial activation (ENDAT) and injury 
transcripts.

Microvascular inflammation scores and C4d deposition in 
PTC are currently the most commonly used diagnostic criteria. 
However, according to this standard, ABMR diagnoses are rec-
ommended in the presence of strong MVI, even in specimens 
that are C4d-negative.

Thus, C4d deposition has not been necessary for ABMR 
diagnoses after the meeting in 2013.

By contrast, prior to 2013, ABMR was considered reflective 
of injury to capillary endothelia (165, 173), and C1q was the 
assumed trigger of the classical complement pathway following 
binding of DSAs to capillary endothelia. Although C4d is the final 
product (Figure  4), this classical pathway was not necessarily 
activated during ABMR in C4d-negative patients.

About the other pathways, DSAs may directly promote vascular 
endothelial cell (EC) growth and proliferation, and inhibit apop-
tosis in capillary endothelia (Figure 4); DSAs have been shown 
to bind with Fcγ on the cell membrane surfaces of macrophages, 
natural killer cells, and neutrophils, and to induce inflammatory 
cytokine production and microangiopathy (Figure 4).

Furthermore, in the revised criteria, ABMR phenotypes have 
been classified as acute/active, chronic/active corresponding to 
the diagnostic criteria, which have been listed in detail.

Among these, evidence of acute tissue injury as the diagnostic 
criteria of acute/active ABMR, and morphologic evidence of 
chronic tissue injury as the diagnostic criteria of chronic/active 
ABMR, is considered central. Therefore, effective management 
of ABMR entails varied treatments for differing levels of patho-
logical progress, and these diagnostic criteria identify ABMR 
phenotypes with sufficient accuracy to inform treatments.

THe ROLe OF NON-HLA iN THe 
PATHOgeNiCiTY OF gRAFT iNJURY

Rejection by nHLAs was previously recognized as an unexpected 
hyper acute rejection of HLA identical transplants (174–177). 
Recently, it has been accepted that nHLA antibodies play an 
important role in acute and chronic rejection (178–184).

Moreover, in a report from 1997, antibodies against nHLA 
antigens were shown to activate humoral immune responses to 
graft antigens and cause graft injury (185). Subsequently, graft 
loss due to immunological factors occurred in 56% of cases, and 
38% of factors were nHLA. Thus, because the probability of graft 
loss due to nHLA factors was shown to be greater than that due to 
HLA factors (186), in late years, more attention has been paid to 
nHLA factors in the transplantation field. For instance, the former 
have received increased attention in the transplantation field with 
the anti-MHC class I chain-related gene A (MICA) antibodies 
and nHLA antibodies to ECs in the presence of complement, as 
identified in numerous recent reports. Thus, it was expected that 
humoral response toward nHLA antigens is primarily activated 
to donor antigen on ECs.

However, while MICA and ECs was not expressed on lympho-
cyte membranes and was undetectable using cross-match studies 
(10), the HLA antibody tests LAB Screen Mixed Class I & II and 
LAB Screen MICA Single Antigen have been successfully used to 
detect anti-MICA antibodies in sera.

In addition, there are many reports on the other nHLAs that 
were associated with ABMR.

These reports showed that the type of nHLA antigens differed 
between patients with hyper acute rejection, acute rejection, and 
rejection due to chronic allograft injury (CAI), and it may predict 
graft success and that management plans could be informed by 
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TABLe 3 | A list of selected nHLA antibodies and gene in transplantation.

nHLA antibody (nHLA-ab) Organ Associated factors Reference

Anti-protein kinase C zeta (PKCf) ab Kidney Graft loss (188)
Steroid-resistant rejection and the hypertension
Mononuclear cell infiltrate of acute rejection

Anti-MHC I-related chain A (MICA) ab Kidney Poor graft survival with only MICA and significantly poor with both antibodies(MICA+/HLA+) (189–197)
Kidney Preformed MICA antibodies contributes to increasing frequency of graft loss
Kidney Chronic rejection, poor graft survival
Kidney Graft rejection, poor 1-year graft survival
Kidney Poor graft survival
Heart The incidence of transplant coronary artery disease
Heart No negative effect on graft survival
Liver Late graft rejection

Anti-angiotensin II type I receptor (AT1R) ab Kidney Refractory vascular rejection (198–201)
Kidney Cronic kidney disease
Kidney Graft injury, graft loss
heart Cellular and Ab-mediated rejection and early onset of microvasculopathy

Anti-endothelial antibodies (AECA) Kidney Cellular rejection (177, 202–206)
Kidney Hyperacute rejection
Kidney Graft rejection
Kidney Acute rejection
Kidney Microvascular damage
Heart Early acute rejection

Anti-endothelial-1 type A receptor (ETAR) ab Kidney Hyperacute rejection (199, 207)
Kidney Poor graft function early after transplant, hyperacute rejection
Kidney Graft injury, graft loss
Heart Cellular and Ab-mediated rejection and early onset of microvasculopathy

Anti-peroxisomal-trans-2-enoyl-coA-
reductase (PECR) ab

Kidney Transplant glomerulopathy (79, 208)

Anti-PRKRIP1ab Kidney Cronic kidney disease (32, 208)

Antivimentin ab Heart It did not correlate with early post-transplant rejection or graft survival (32)

Non-HLA pigmy ab Heart Mortality (209)

Antibodies against Kidney Acute ABMR (210)
Endoglin
Epidermal growth factor (EGF)-like repeats
Discoidin I-like domains 3
Intercellular adhesion molecule 4
FMS-like tyrosine kinase-3 ligand

Antibodies against Kidney Chronic allograft injury (CAI) (26)
MIG
ITAC
IFN-c
Glial-derived neurotrophic factor (GDNF)

Collagen type V, K-α1-tubulin Lung Graft disfunction, bronchiolitis obliterans syndrome (207)

nHLA gene
FN-γ, IL-1B, IL-1RN, IL-2, IL-6, IL-7, IL-17, 
CCR9, ESR1, FAS Stem cell

GVHD ↑ (206)

IL-10, NOD2, toll-like receptors GVHD ↑ or GVHD ↓
VDR GVHD ↑, mortality ↑
CTLA4 Acute GVHD ↑, survival ↑
IL-7R, CXCL10 Transplant-related mortality ↑
IL-18 Transplant-related mortality ↓
Il-23R Acute GVHD ↓
HLA-E Chronic GVHD ↓
IL-1A Chronic and acute GVHD ↑, transplant-related mortality ↑
CCl-2 Over roll survival ↓, transplant-related mortality ↑
CXCL12 Hematological recovery ↑
TGFβ Acute GVHD ↓, over roll survival ↓
HMGB1 Relapse ↑, relapse-related mortality ↑, transplant-related mortality ↑, over roll survival ↑, 

acute GVHD ↓, chronic GVHD ↑
MICA GVHD ↑
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mapping nHLA antigens in recipient sera before transplantation, 
further indicating the utility of serum nHLA determinations in 
the diagnosis and management of ABMR.

Management Strategies of ABMR by 
Non-HLA
Previous studies have reported the detection of nHLA antibodies 
using ELISA and FACS. However, the clinical utility of these assays 
remains unclear, because they fail to distinguish antibodies from 
autoantibodies. Additionally, nHLA antibodies may be detectable 
in sera from patients with failed grafts but no immunological fac-
tors (26, 187). Thus, specific detection of nHLA antibodies that 
activate humoral immune responses to grafts requires more sen-
sitive methods. For example, by using high-density protein array 
platforms (26), serum nHLA antibodies in transplant recipients 
may have up to 9000 different target proteins/antigens and these 
antibodies were screened immediately, indicating the importance 
of high throughput screening. In addition, nHLA genotyping of 
donor and recipient to estimate the risk of ABMR in recipients, 
such as HLA may be required; the specificities of these antibodies 
to nHLA should be identified in more details. For example, we 
should examine if nHLA has the capacity to bound complement 
or not and if these antibodies could activate humoral immune 
response toward the donor antigen by using donor-specific ECs.

Mechanism of participation of nHLA antibodies in ABMR 
and graft loss has not been investigated sufficiently. However, we 
could find reports that C4d deposition is related to ABMR causing 
from nHLA antibodies with high probability, indicating that this 
type of ABMR was caused by the activation of the complement 
classical pathway. Moreover, further studies are warranted to 
establish effective immunosuppressive therapies thereby clarify-
ing the mechanism.

In addition, we summarized the association between the 
representative nHLA antibodies and graft prognosis (Table 3).

CONCLUSiON

Absorption of DSAs has been regarded as the main cause of 
ABMR. However, numerous recent studies have characterized 
the involvement of nHLA antibodies, and have shown that DSA- 
and nHLA-mediated ABMR phenotypes likely require different 
management strategies.

Specifically, hyper acute rejections due to preformed DSAs 
may be avoided with improved desensitization therapy, while de 
novo DSA-mediated ABMR remains difficult to diagnose without 
invasive graft tissue biopsies prior to critical disease progression. 
Although the roles of nHLA antibodies have been identified 
in ABMR, ensuing that mechanisms remain insufficiently 
understood to inform improvements in management strategies. 
Moreover, because physiological nHLA antibodies are indistin-
guishable from those that are closely related to humoral immune 
reactions against graft antigens, highly sensitive methods that 
distinguish ABMR-relevant nHLAs are required for clinical diag-
noses and management planning for organ transplant patients.
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