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Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 
25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit 
the bloodstream to achieve rapid dissemination to distal tissue sites during infection. 
Travel through the bloodstream requires evasion of immune surveillance and pathogen 
clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes 
greater than 19 adhesive outer surface proteins many of which have been found to 
bind to host cells or components of the extracellular matrix. Several others bind to host 
complement regulatory factors, in vitro. Production of many of these adhesive proteins 
is tightly regulated by environmental cues, and some have been shown to aid in vascular 
interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work 
has described multifaceted and redundant roles of B. burgdorferi outer surface proteins 
in complement component interactions and tissue targeted adhesion and colonization, 
distinct from their previously identified in vitro binding capabilities. Recent insights into 
the multifunctional roles of previously well-characterized outer surface proteins such as 
BBK32, DbpA, CspA, and OspC have changed the way we think about the surface 
proteome of these organisms during the tick–mammal life cycle. With the combination of 
new and old in vivo models and in vitro techniques, the field has identified distinct ligand 
binding domains on BBK32 and DbpA that afford tissue colonization or blood survival 
to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of 
many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, 
and bloodstream survival that, together, promote the survival of Borrelia spp. throughout 
maintenance in their multi-host lifestyle.
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iNTRODUCTiON

Borrelia burgdorferi, a diderm motile spirochete bacterium, is the causative agent of Lyme disease in 
the U.S. Each year greater than 25,000 confirmed cases of Lyme disease are reported to the United 
States Centers for Disease Control and Prevention with about 96% of those cases reported from only 
14 states in the Midwest and East (1). Lyme disease is also a significant health problem in parts of 
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FiGURe 1 | Outer surface protein regulation. B. burgdorferi senses changes in temperature, pH, and cell density, as well as unknown stimuli to modulate 
production of proteins on the bacterial surface. Proteins listed are upregulated in their respective environments, in the tick vector or the mammalian host, or are 
produced at similar levels in both environments. Proteins produced during mammalian infection are grouped based on temporal expression pattern, expressed early 
during infection (early), during persistent infection (late), or those that have been detected both early and late during infection or have not been experimentally 
determined (both/untested). aBased on in vivo qRT-PCR and microarray data (15). (#)Reference. Underline indicates genes regulated by the RpoS regulon.
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Europe and Asia where it is more commonly caused by Borrelia 
afzelii and Borrelia garinii than B. burgdorferi.

Borrelia spp. are maintained in nature in a tick–mammal life 
cycle. B. burgdorferi is carried by several species of the Ixodes 
genus of tick and is transmitted to mammals through tick saliva 
(2). The spirochetes are maintained in the tick midgut as the tick 
progresses through its life stages, but the bacteria are not passed 
transovarially to its offspring (2). The primary mammalian res-
ervoir for B. burgdorferi is the white-footed mouse, Peromyscus 
leucopus (2). This reservoir is not known to be physically affected 
by the infection (3). Additional small animals and birds can also 
serve as reservoirs, whereas large animals and humans can be 
accidental hosts for tick feeding and subsequent infection.

Human infection with Borrelia spp. often results in a number 
of generic symptoms including headache, fatigue, and general 
malaise, and for this reason, the infection is often misdiagnosed 
or goes untreated. A large percentage of individuals infected with 
B. burgdorferi will display a rash, termed erythema migrans, at the 
site of a tick bite (4). An untreated infection with B. burgdorferi 
can result in late stage symptoms including arthritis, carditis, and 
neurologic issues (5–7). The CDC reported from 2001 to 2010 
that 31% of confirmed Lyme disease cases presented with Lyme 
arthritis, 14% with neurologic symptoms, and 1% with cardiac 
involvement (1). The results of a late stage Borrelia infection vary 
depending on the infecting species, with B. garinii most often 
associated with neurologic symptoms and B. afzelii infection 
commonly associated with a skin rash called acrodermatitis 
chronica atrophicans (8–10).

OUTeR SURFACe PROTeiNS OF Borrelia 
burgdorferi

Borrelia spp. are able to exist in the tick–mammal life cycle due 
to their ability to adapt to the environment in which they reside. 
In in vitro studies, Borrelia spp. are able to respond to changes in 
pH and temperature of the environment, as well as cell density of 
spirochetes, to differentially regulate the production of many of 
their outer surface proteins (Figure 1) (11–14).

One way in which B. burgdorferi is able to respond to changes 
in these environmental conditions is through the RpoN–RpoS 
signaling system (14, 16). RpoS, RpoN, Rrp2, and BosR are 
considered the master regulators of virulence gene expression in 
B. burgdorferi (17–23). RpoS and Rrp2 have been shown to be 
required for mouse infectivity (18, 24). One example of such con-
trol is the reciprocal expression of outer surface protein A (ospA) 
and outer surface protein C (ospC) tightly regulated by RpoN, 
RpoS, and Rrp2 (19–21, 25, 26).

Borrelia burgdorferi produces OspA on its surface while in 
the unfed tick (11). Upon the uptake of blood into the midgut 
of the tick, ospA expression is maintained until transmission 
into the mammal when expression is decreased and ospC 
expression is increased in conjunction with many other genes 
that encode outer surface proteins, to aid in survival within 
the mammal (15, 27, 28). Interestingly, OspC production is not 
necessary and is, in fact, detrimental to survival of the bacteria, 
likely due to the high immunogenicity of the OspC protein 
(29). In addition to regulation of surface protein production by 
RpoN, RpoS, Rrp2, or BosR, B. burgdorferi also utilizes other 
mechanisms to rapidly change the epitopes available on the 
surface inside the mammalian host, but not within the tick 
(30). For example, B. burgdorferi encodes a variable membrane 
protein-like sequence (Vls) antigenic variation system that 
enables evasion of recognition by the host-adaptive immune 
system by continual recombination of silent vls gene segments 
encoding different vlsE sequences into the expression site 
(31–34).

Outer Surface Proteins and virulence
For years, a focus of the Borrelia field, as with any pathogen field, 
has been to identify bacterial proteins that could contribute to 
virulence. Due to the cumbersome nature of Borrelia genetics, 
the roles of very few proteins have been described in mammalian 
infection. Using traditional cloning methods, glycosaminoglycan 
(GAG) and fibronectin (Fn)-binding protein, BBK32, and GAG 
and decorin-binding proteins, DbpA and DbpB, were all identi-
fied as being important for the establishment or persistence of 
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TABLe 1 | Adhesive outer surface proteins of B. burgdorferi.

Adhesin Genetic locusa In vitro binding Reference In vivo function Reference

Adhesins with a role in mammalian infection

Lmp1 bb0210 Chondroitin-6-sulfate (53) Not determined (53–55)

BmpA bb0383 Laminin (56) Joint persistence (57)

BmpC bb0384 Not determined Not determined (49)

Bgp bb0588 Heparin, dermatan sulfate, GAGs, 
and aggrecan

(58–60) Not determined (49, 58)

P66 bb0603 Integrins αIIbβ3 and αvβ3 (61) Heart and skin adhesion, dissemination, and 
vascular transmigration (integrin-binding domain)

(62–64)

DbpA bba24 Decorin, GAGs (65–68) Joint colonization (29, 35–44, 47, 49)

DbpB bba25 Decorin, GAGs (65–68) Joint colonization (36, 43, 44, 49)

BBA33 bba33 Collagen (69) Not determined (69)

BBB07 bbb07 Integrin α3β1 (70) Not determined (49)

OspC bbb19 Plasminogen, Salp15 (in tick saliva) (71, 72) Bloodstream survival (29, 38, 47, 62)

RevB bbc10 Fibronectin (41, 45) Not determined (49)

VlsE bbf32 Not determined Not determined (49, 73–76)

BBK32 bbk32 Fibronectin, GAGs, and complement 
component C1r

(77–80) Vascular adhesion and joint colonization  
(GAG-binding domain)

(35, 39–42, 49, 62)

RevA bbm27, bbp27 Fibronectin, laminin (41, 45) Heart colonization (46, 49, 62)

ErpA (CRASP-5) bbp38 Factor H, Factor H-related proteins 1, 
2, and 5, and plasminogen

(81–86) Not determined (49, 87)

Adhesins with no role in mammalian infection

OspA bba15 TROSPA (in tick) (88) N/A (89)

CspZ (CRASP-2) bbh06 Factor H, Factor H-like 1 (82, 90) N/A (91)

Adhesins with an undetermined role in mammalian infection

CspA (CRASP-1) bba68 Factor H, Factor H-like 1, and 
complement components C7 and C9

(86, 92–95) Not determined

BBA70 bba70 Plasminogen (96) Not determined

ErpC (CRASP-4) bbl39 Factor H, Factor H-related protein 1, 
and plasminogen

(82, 83, 85) Not determined

ErpK bbm38 Heparan sulfate (97) Not determined

ErpP (CRASP-3) bbn38 Factor H, Factor H-related proteins 1, 
2, and 5, and plasminogen

(81–85, 98) Not determined

ErpL bbo39 Heparan sulfate (97) Not determined

ErpX bbq47 Laminin (85) Not determined

OspF bbr42 Heparan sulfate (97) Not determined

ErpG (OspG) bbs41 Heparan sulfate, heparin (97) Not determined

N/A, not applicable.
aAll gene designations are based on B. burgdorferi strain B31.
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mammalian infection (35–44). Additionally, the Fn-binding pro-
tein, RevA, was also found to have an effect on bacterial virulence 
(45, 46), though the affinity of the interaction between RevA and 
Fn was found to be less than that of BBK32 and Fn (41). Likewise, 
deletion of the ospC gene from B. burgdorferi strain B31 also 
has a negative impact on the establishment of infection in mice 
(29, 38, 47). This may be due to the antiphagocytic properties of 
OspC on Borrelia, though the importance of this activity has not 
yet been elucidated in vivo (48). Recent headway has been made 
in identifying Borrelia genes involved in mammalian infection 
by the generation and utilization of a transposon library in B. 
burgdorferi (49). By inoculating mice with the signature-tagged 
transposon mutagenesis (STM) library, the list of virulence 
determinants of B. burgdorferi was expanded to include addi-
tional outer surface proteins, many with undescribed function 
including BBB07, Bgp, BmpC, ErpA, RevB, and VlsE (Table 1) 
(49, 50). Through the use of traditional cloning, it was shown 

that the lipoprotein, BBA66, is also required for mammalian 
infection (51, 52).

Ligand Binding Mediated by Borrelia 
burgdorferi Outer Surface Proteins
Borrelia burgdorferi is known to produce at least 19 adhesive 
proteins on its surface (Table 1) (35). Previous work has focused 
on describing the binding capability of three B. burgdorferi outer 
surface proteins to the ECM component, Fn, which is expressed 
by a variety of cells types and has been shown to be important 
in neural and vascular development (99): RevA, BBK32, and 
BB0347. RevA is a 17 kDa outer surface lipoprotein of B. burg-
dorferi produced within the mammalian environment, which has 
been shown to bind to Fn in vitro, though reports on the affinity of 
this interaction are conflicting (41, 45). Recently, it was found that 
production of RevA is required for the colonization of heart tissue 
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1 month p.i. (46). In addition, B. burgdorferi produces BB0347 
during mammalian infection (100), which has also been shown 
to bind to Fn with low affinity by surface plasmon resonance (41). 
RevA and BB0347 were both found to have a minimal role in 
vascular binding in mouse flank skin in vivo 1-h post infection 
(h.p.i.) (41). Much work has been done to decipher the role of the 
surface protein BBK32, produced during mammalian infection, 
and its high affinity interactions with Fn and GAGs, which are 
evenly distributed throughout the ECM of all mammalian tissues 
(41, 77, 101, 102). Tissue distribution and function of GAGs was 
expertly reviewed by Jinno and Park (86). Early work with BBK32 
identified distinct regions of the protein required for binding to 
GAGs (residues 45–68) and Fn (residues 158–182) (41, 103). 
In contrast to other Fn-binding adhesins on B. burgdorferi, the 
region of Fn that interacts with BBK32 has been precisely defined 
(41). Interactions of BBK32 on the surface of B. burgdorferi with 
GAGs and Fn are important for tethering and dragging interac-
tions with endothelial cells of the vasculature in vivo, respectively 
(33, 39, 98). This was demonstrated by a restoration of vascular 
adhesion to non-adhesive mutant B. burgdorferi upon BBK32 
production as determined by intravital microscopy in mouse 
flank skin (35, 41, 104). Another component of the ECM, collagen, 
which is a structural component of bone, tendon, and ligaments 
[as reviewed in Ref. (99)] also acts as a ligand for B. burgdorferi. 
BBA33, was shown to bind to collagen type VI in vitro, and is 
required for mammalian infection (69). Additionally, the base-
ment membrane glycoprotein, laminin, found in the epithelium 
[as reviewed in Ref. (99)], has been shown to be a ligand for 
B. burgdorferi adhesins BmpA, ErpX, and RevA (41, 56, 105). 
Studies using BmpA-deficient B. burgdorferi showed a role for 
this protein in bacterial persistence in the joints of mice (57).

Adhesive surface proteins of B. burgdorferi have also been iden-
tified that bind to integrins, integral membrane proteins found on 
the surface of all nucleated mammalian cells that function to bind 
to several ECM components [as reviewed in Ref. (106)]. One such 
protein is the 66 kDa putative porin, P66, which has been shown 
to be important for the establishment of mammalian infection 
(63, 107, 108). P66 was shown to bind to β3-chain integrins and 
is involved in bacterial dissemination from the site of inoculation 
in the skin (64, 109). B. burgdorferi encodes another integrin-
binding protein, BBB07, which is produced during mammalian 
infection as evidenced by the presence of a specific antibody 
response in the serum of infected individuals (70). This protein 
has been shown to have a role in signaling through integrin α3β1 
to induce the production of pro-inflammatory cytokines in vitro, 
though this activity has not yet been described in vivo (70).

Additional outer surface proteins (Osp) have been described 
on B. burgdorferi that are involved in binding to other host pro-
teins, including the 22 kDa outer surface protein, OspC. OspC 
production is induced upon bacterial entry into mammalian 
tissue (Figure 1) (19) and has been shown to bind plasminogen 
in  vitro (71). Plasminogen is a mammalian protein important 
for the degradation of the ECM to facilitate cellular migration. 
OspE protein family members, ErpA, ErpC, and ErpP, were all 
found to bind to plasminogen in vitro, as is seen with a number 
of other Borrelia proteins (85, 96, 110–112). However, the pres-
ence or role of plasminogen binding by these proteins in vivo has 

not yet been described. A function for plasminogen binding has 
been recently described for the adhesive B. burgdorferi protein, 
BBA70. Through in vitro experiments, it was shown that BBA70 
binds to plasminogen, which cleaves and inactivates complement 
component C5, ultimately inhibiting membrane attack complex 
formation (96).

Along with producing proteins that bind to Fn, integrins, and 
plasminogen, Borrelia spp. also produce proteins, which have 
been shown to bind to a variety of GAGs. Just as was seen with 
BBK32, outer surface proteins DbpA and B, produced during 
mammalian infection (37), have been shown to bind to decorin, 
heparin, dermatan sulfate, and heparan sulfate in vitro (66–68, 
113–115). OspF-related family members, ErpG, ErpK, and 
ErpL, were all found to bind to heparan sulfate, in addition to 
plasminogen, with varying affinities as determined by a series 
of in vitro assays (97). To add a layer of complexity, DbpA from 
different Borrelia species was found to bind to dermatan sulfate 
with differing affinities, which may contribute to the differences 
seen in clinical manifestations of disease caused by B. garinii, 
B. burgdorferi, and B. afzelii (114).

TiSSUe COLONiZATiON BY Borrelia 
burgdorferi

In order to colonize tissue sites distal to the site of tick bite in 
the mammal, it is thought that Borrelia travel within the vascular 
system of the host. Specific tissue colonization by the spirochetes 
is thought to occur by targeted exit from the vasculature dictated 
by the binding specificity of the outer surface proteins of Borrelia 
spp. This hypothesis is plausible, as characteristics of vascular 
beds differ depending on the tissue they are associated with as 
well as the size and type of vessel (116, 117). Tissue bed-specific 
endothelial cell surface receptors have been documented includ-
ing VCAM1 in liver, CD36 in lung and heart, L-selectin (CD62L/
SELL) in the spleen, and CD133 in the skin, brain, eye, and 
testicular microvasculature (116). Vascular beds can also vary in 
their production of proteoglycans, GAGs, and ECM components 
[as reviewed in Ref. (118)]. The ability of B. burgdorferi to bind 
to GAGs and ECM components has been specifically associated 
with effects on bacterial virulence and tissue colonization for 
Borrelia outer surface proteins such as DbpA and BBK32 (36, 39, 
42–44, 51, 71, 77, 113, 119).

It is possible that B. burgdorferi are able to interact with dif-
ferentially available endothelial cell surface proteins and utilize 
them to preferentially bind different tissues. Endothelial cell 
binding by B. burgdorferi has been observed to occur in  vitro 
through interaction with cell surface proteoglycans such as der-
matan sulfate, fibronectin, and heparin (120, 121). The binding 
of B. burgdorferi to the vasculature has been observed, in vivo, 
to occur in three stages (35, 104). Using intravital microscopy 
techniques on mouse flank skin, Norman et  al. observed both 
tethering and dragging interactions to occur during the first 
stage of B. burgdorferi interactions with the vasculature (35). 
Using a flow chamber, tethering and dragging interactions with 
the endothelium were confirmed to occur both at the cell surface 
and at endothelial cell junctions (121). Stationary interactions, 
which occur after tethering and dragging, may be controlled by 
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B. burgdorferi integrin-binding proteins such as P66 and BBB07. 
After the spirochete is tightly associated with the endothelial 
cell junction, it is able to transmigrate into the tissue where it is 
presumed to colonize and replicate.

By inoculating mice with a library of filamentous phage-
expressing B. burgdorferi N40 D10/E9 gene fragments, a number 
of outer surface proteins of B. burgdorferi that have a tropism 
for particular mouse tissues were identified (122). Several of the 
identified proteins in these experiments have been shown to bind 
to a small number of host proteins, as described in Table 1. This 
redundancy in protein function suggests a high importance for 
tissue tropic binding by the bacteria during a mammalian infec-
tion. The tissue targeting effects of the different outer surface 
proteins of Borrelia may be due to the presence of nutrients 
required for survival of the bacteria at those particular sites. The 
cumulative data suggest an association between in  vitro ligand 
affinity and the ability to bind to particular tissues in vivo. For 
example, the GAG-binding proteins BBK32 and DbpA from 
B.  burgdorferi have been shown to be tropic for joint tissue in 
mouse models of Borrelia infection (40, 114). Detailed work 
with BBK32 has shown the joint targeting effects of the protein 
to be mediated specifically by the GAG-binding domain (40). 
This association between ligand affinity and tissue targeting does 
not hold true with Fn-binding adhesins. Fn-binding proteins, 
BB0347 and BBK32, have been shown to preferentially bind joint 
tissue (40, 62), whereas the Fn-binding protein, RevA, was found 
to have a tropism for heart tissue in vivo (62). These data highlight 
the inherent difficulties in using in  vitro binding data between 
two proteins to infer in vivo function of a protein. It is becoming 
increasingly clear that the outer surface proteome of Borrelia spp. 
during mammalian infection functions collaboratively to direct 
the bacteria to specific tissue sites. Further experiments using 
in vivo models will need to be performed to determine functions 
for each outer surface protein of Lyme disease Borrelia.

Interestingly, tissue tropism of Borrelia spp. appears not only 
to be determined by different bacterial proteins but also by allelic 
differences in a gene encoding a given protein taken from different 
Borrelia species. For example, dbpA gene sequences are variable 
between strains as well as species of Borrelia, and this variation 
not only affects ligand binding, as mentioned earlier, but also 
tissue tropism (114). It was shown that DbpA from B. burgdorferi 
strains B31-A3 and N40 D10/E9 is tropic for joint tissue adhe-
sion and colonization, while DbpA from B. afzelii and B. garinii 
is not (114). DbpA from B. afzelii strain VS461 showed a tropism 
for skin, while DbpA from B. garinii strain PBr was uniquely 
tropic for heart tissue colonization among the dbpA alleles tested 
(75). These differences in tissue tropism of allelic gene variants 
from different strains and species of Borrelia could explain the 
differences observed in the symptoms of a late stage infection 
with Borrelia spp. DbpA may contribute to these symptoms as 
B. burgdorferi infection often results in arthritis symptoms, while 
late stage B. afzelii infection commonly presents with skin lesions.

COMPLeMeNT COMPONeNT BiNDiNG

Rapid dissemination of B. burgdorferi during an infection is 
thought to be facilitated by the spirochetes traveling in the 

bloodstream of the mammalian host. During this dissemination 
process, the bacteria are exposed to the innate immune system 
of the host, designed to detect and clear invading pathogens. 
B. burgdorferi is also exposed to these blood products inside the 
midgut of a feeding tick during a blood meal. Resistance to killing 
by innate immune mechanisms in the blood and host tissues is, 
therefore, essential for maintenance of the enzoonotic lifestyle of 
B. burgdorferi.

One of the major innate immune components in the host 
blood and tissues is the complement cascade. The complement 
cascade is a series of proteolytic cleavage events in which inactive 
precursors are converted into active enzymes in the host serum 
and tissues. These proteolytic cleavage events are activated by 
three distinct pathogen-recognition mechanisms. The first is 
termed the “classical” complement cascade, mediated by anti-
bodies that recognize the surface of the pathogen and recruit 
complement component C1q molecules, which then activate the 
cascade of enzymatic cleavage events. Mannose-binding lectin 
molecules present in the serum can bind to sugar moieties on 
the surface of an invading pathogen, activating the complement 
cascade by the “lectin” pathway. A third pathway known as 
the “alternative” pathway activates the complement cascade by 
random deposition of complement component C3 molecules 
onto the surface of the pathogen, activating the cascade. All 
three of the complement pathways converge on the activation of 
complement component C3, ultimately resulting in formation of 
the membrane attack complex pore in the pathogen membrane, 
and pathogen lysis.

The host has adapted many different regulatory mechanisms 
to control the activation of this pathway to minimize harm to 
host tissues. One such mechanism is the C1 inhibitor protein 
(C1-INH), which acts on the C1s and C1r molecules of the 
first step of the classical pathway (123). Additionally, the host 
produces C4-binding protein (C4BP), which inhibits the clas-
sical and lectin pathways by binding to C4b and inducing its 
proteolytic cleavage and subsequent inactivation [reviewed in 
Ref. (124)]. The host also has a number of different mechanisms 
that it employs for regulating the alternative complement cascade. 
The host produces Factor H, Factor H-like protein 1 (FHL-1), and 
complement Factor H-related (CFHR) proteins, which all inhibit 
the alternative complement cascade by acting on C3b. Factor H 
can act to sterically hinder the interactions of C3b with Factor 
B, compete with Factor Bb for binding to C3b, and induce its 
proteolytic degradation and inactivation into iC3b [reviewed in 
Ref. (125)]. Regulation of the complement cascade can occur 
at the end stages of the cascade by employing factors such as 
clusterin (ApoJ), vitronectin, and CD59. Vitronectin is known 
to inhibit the binding of complement factor complex C5–C7 
to the pathogen membrane, as well as inhibit C9 oligomeriza-
tion (126). CD59 functions in a similar fashion to vitronectin, 
intercalating into the membrane attack complex, and inhibiting 
its polymerization. Clusterin is a complement regulatory glyco-
protein associated with apolipoprotein AI, a protein component 
of high-density lipoprotein (HDL) cholesterol molecules (125). 
Clusterin inhibits insertion of the membrane attack complex into 
the pathogen membrane by forming attack complex aggregates 
away from the pathogen surface (125).
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Borrelia spp. produce several proteins on their surfaces, which 
are proposed to allow them to evade clearing by the complement 
cascade. Many of the proteins act by recruiting complement 
regulatory factors to the surface of B. burgdorferi, such as the 
surface proteins CspA (86, 92–95), CspZ (82, 90, 91), ErpP (94), 
ErpA (81, 98), and ErpC (127–129) as determined in vitro. Full 
length CspA and ErpP were found to be required for binding 
to purified human Factor H and FHL-1 in  vitro using a series 
of C-terminal truncation proteins in a solid phase binding 
assay (92). The binding of Factor H and FHL-1 by CspA on the 
surface of B. burgdorferi was confirmed by far western blot and 
immunofluorescence assays (95) and contributes to cleavage and 
inactivation of complement component C3b (93). CspA has also 
been shown, in vitro, to interact with complement components 
C7 and C9, at a distinct location from the site of Factor H binding 
on CspA (92, 93, 95). Binding of CspA to C7 and C9 inhibits 
assembly of the membrane attack complex at the spirochete 
surface when incubated in active human serum as determined 
by immunofluorescence microscopy, contributing to bacterial 
resistance to lysis by human serum proteins in vitro (92, 93, 95). 
Interestingly, cspA was found to be expressed only in an unfed tick 
and not during mammalian infection, suggesting a necessary role 
for complement resistance of Borrelia within the tick (130, 131). 
Similar to CspA, another outer membrane protein of B. burgdor-
feri, CD59-like protein, also binds complement component C9 
as well as C8β and inhibits the insertion of the membrane attack 
complex in vitro (132).

Borrelia burgdorferi also produces several OspE-related 
protein family members including ErpA, ErpP, and ErpC, which 
have been shown to recruit Factor H and CFHR proteins to the 
bacterial surface in vitro (81–83). By solid phase-binding assay 
and immunoblot, ErpA, ErpP, and ErpC were found to bind 
to CFHR-1, unlike CspA and CspZ, which showed no binding 
to CFHR-1 in active human serum in  vitro (82). Additionally, 
recombinant ErpP and ErpA were found to bind full length 
recombinant Factor H with a low dissociation constant, suggest-
ing a potential role for this interaction in vivo, though this has not 
yet been established (81, 83).

CspZ, a gene encoding another Factor H and FHL-1-binding 
protein on the surface of B. burgdorferi, has a reciprocal expression 
pattern to cspA (90). CspZ was found to be expressed primarily 
during mammalian infection but was not found to be required for 
establishment of mammalian infection (91). Consistent with this 
result, CspA and CspZ on the surface of B. burgdorferi were found 
to interact with human Factor H and FHL-1 in vitro, although 
production of CspZ was not found to be required for survival in 
active human serum in vitro (82, 91).

Recently, BBK32 was found to interact with a component of 
the classical complement cascade in vitro (80). BBK32 was shown 
to bind C1r, a member of the first protein complex in the classical 
complement cascade, whereby inhibiting its zymogen activity 
and effectively blocking attack complex formation in vitro (80). 
A C-terminal portion of BBK32 (residues 206–354) outside of 
the Fn- and GAG-binding domains, was found to be necessary 
for the interaction with C1 in vitro (80). We would predict based 
on the in vitro binding capabilities of BBK32 to C1, that BBK32 
cooperates in  vivo with additional Borrelia surface proteins to 

ensure successful inhibition of multiple branches of the comple-
ment cascade.

Experiments have been performed to discern the role of com-
plement in the clearance of Borrelia during mammalian infection 
using C5-deficient mice (133). Complement component C5 is a 
point of convergence of all three pathways of the complement cas-
cade. The activation of C5 ultimately results in the formation of 
the membrane attack complex pore in the pathogen membrane. 
B. burgdorferi recovery by culture from tissues of several infected 
strains of mice naturally deficient in C5, including A/J, AKR/J, 
B10.D2/oSnJ, DBA/2J, and SWR/J, was not found to be different 
than recovery from infected C5 sufficient C3H/HeJ mouse tis-
sues at 2, 4, and 12 weeks p.i. (133). The authors concluded that 
complement activity is not required for clearance of B. burgdorferi 
during a mouse infection. Similar results were seen in experi-
mentally infected C3-deficient mice where complement sensitive 
B. garinii was not recovered from complement-deficient mice 
(134). Additionally, it was shown that recruitment of Factor H 
to the surface of B. burgdorferi in vivo is not necessary for serum 
resistance of the bacteria as evidenced by similarities in bacterial 
burdens of WT and Factor H-deficient mice (135). Given what 
we now know about the ability of B. burgdorferi to interact with 
several host complement regulatory factors upstream of C3 and 
C5 in  vitro, one would not predict to see a difference in WT 
bacteria survival in these experiments.

The evasion of the alternative complement cascade is not 
unique to B. burgdorferi and has been observed in Borrelia hermsii, 
a causative agent of relapsing fever (136, 137), Borrelia bavariensis 
(138), as well as other bacterial pathogens such as Streptococcus 
pyogenes (139), Bordetella pertussis (140, 141), Neisseria gonor-
rhoeae (142–145), Escherichia coli (146–148), Leptospira inter-
rogans (149), Yersinia pseudotuberculosis (150, 151), Salmonella 
enterica serovar Typhimurium (152), and Moraxella catarrhalis 
(153). Many of these organisms obtain resistance to host comple-
ment by coating themselves in C4-binding protein (C4BP) and 
Factor H, similar to B. burgdorferi [reviewed in Ref. (124)].

SUMMARY

Borrelia spp. are highly adept at preventing clearance by the 
innate immune system of the host while adhering to and coloniz-
ing host tissues. The success of this mammalian pathogen can, 
so far, be attributed to the presences of a few bacterial proteins 
produced on the pathogen surface though there are many more 
adhesins whose in vivo functions have yet to be determined. For 
many years, researchers in the Borrelia field have identified and 
studied outer surface proteins of Borrelia spp. that may contribute 
to the efficiency of Borrelia as a pathogen. The host proteins that 
are specifically bound by different outer surface proteins are 
beginning to be revealed. Borrelia outer surface proteins BBK32, 
DbpA, RevA, CspA and Erps A, C, and P, have all been shown 
to bind to multiple macromolecules from the host cell surface 
and ECM. In addition to binding to multiple host cell surface 
proteins, Borrelia proteins BBK32, CspA, and Erps A, C, and P 
have all been found to bind to host complement components. 
The multifunctional and redundant capabilities of many of the 
proteins on the surface of Borrelia provide the bacteria with a 
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higher probability of successfully infecting the arthropod and 
mammalian hosts. As research of Borrelia outer surface proteins 
progresses, it becomes increasingly clear that redundancy in 
ECM and host protein-binding specificity acts to guarantee that 
the bacteria will successfully colonize host tissues while evading 
detection by the host immune system.

As suggested in this review, there is a strong correlation 
between ligand specificity of different bacterial outer surface 
proteins and the tissue tropism of those proteins. When examin-
ing the literature it becomes apparent that the binding affinity for 
host macromolecules such as GAGs by BBK32 and DbpA may be 
the necessary interactions required for joint tropism and colo-
nization (40, 114). This is further evidenced by the documented 
species to species differences in GAG-binding capacity and joint 
colonization seen with the production of DbpA from B. afzelli 
and B. garinii, Borrelia species, which do not commonly cause 
arthritis in humans (114).

As discussed in this review, complement protein resistance 
is achieved by Borrelia spp. through the action of a few outer 

surface proteins with multiple levels of redundancy. One aspect 
of redundancy is the ability of multiple Borrelia proteins to 
bind to and recruit the same complement inhibitory protein. 
This functional redundancy ensures the successful inhibition of 
the complement cascade at different stages of the pathway by 
multiple Borrelia proteins. Redundancy in protein function is 
a common theme for both the tissue binding and complement 
protein recruitment aspects of Borrelia pathogenesis, and likely 
contribute largely to the pathogenic success of this bacterial 
genus.
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