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The immune system protects the organism against infections and the damage associated 
with them. The first line of defense against pathogens is the innate immune response. In 
the case of a viral infection, it induces the interferon (IFN) signaling cascade and eventually 
the expression of type I IFN, which then causes an antiviral state in the cells. However, 
many viruses have developed strategies to counteract this mechanism and prevent the 
production of IFN. In order to modulate or inhibit the IFN signaling cascade in their favor, 
viruses have found ways to interfere at every single step of the cascade, for example, 
by inducing protein degradation or cleavage, or by mediate protein polyubiquitination. 
In this article, we will review examples of viruses that modulate the IFN response and 
describe the mechanisms they use.

Keywords: virus, type i interferon, evasion, innate immune signaling, NFκB

iNTRODUCTiON

The mammalian immune system evolved to detect and fight viral infections effectively. The induc-
tion of type I interferon (IFN), predominantly IFN-α and IFN-β, forms the first line of defense. The 
type I IFN response consists of two parts. First, the cell produces type I IFN, when triggered by a 
viral stimulus. The IFN is then secreted and, in the second part of the response, it is sensed by the 
producing, as well as neighboring cells, resulting in the production of IFN-stimulated genes (ISGs) 
[reviewed in Ref. (1)].

Viruses, which have coevolved with their host, develop strategies to counteract the signaling 
cascades of the innate immune system and ensure their replication. Recently, several reviews were 
published, describing the innate immune evasion strategies of individual viruses or virus families, 
such as influenza virus (2, 3), Phleboviruses (4), Herpes viruses (5–7), Coronaviruses severe acute 
respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) (8), human immu-
nodeficiency virus (HIV) (9, 10), as well as multiple RNA viruses (11, 12). Moreover, there are 
recent articles that review how viruses prevent detection by pathogen recognition receptors (PRRs) 
(13, 14) and how viruses modulate innate immune signaling by use of viral deubiquitinases (15).

In this review, we will compare the different strategies viruses have developed to suppress innate 
immune signaling of individual components of the innate immune signaling cascade. Due to the 
tremendous amount of data in this field, we will focus on recent discoveries. Older studies were 
summarized in Ref. (16, 17).
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viRUS ReCOGNiTiON

Invading viruses are recognized by PRRs [reviewed in Ref. (14)]. 
The most important viral markers for the innate immune system 
are viral nucleic acids. The detection of viral DNA through the 
cGAS-Sting pathway and the counter measurements taken by 
viruses have been reviewed recently (18) and are not part of this 
review.

Viral RNAs, which are mostly double-stranded (ds-)RNA, 
are recognized by three PRRs: the endosomal toll-like receptor 3 
(TLR3), the cytoplasmic retinoic acid-inducible gene I (RIG-I)- 
like receptors (RLRs), and the nucleotide-oligomerization 
domain (NOD)-like receptors (NLRs) (19). TLR3 and the RLRs 
are important for inducing the type I IFN response, whereas NLRs 
have been shown to regulate interleukin-1β (IL-1β) maturation 
through activation of caspase-1 (20). The group of RLRs consists 
of RIG-I, melanoma differentiation-associated gene 5 (MDA5), 
and laboratory of genetics and physiology 2 (LGP2). The three 
receptors have a similar structure, all containing a caboxy-
terminal domain, which functions as a repressor domain (RD) 
in RIG-I and LGP2 (21) and a central helicase domain, but LGP2 
lacks the caspase activation and recruitment domains (CARDs) 
that function in signaling [reviewed in Ref. (19, 22)]. Both the 
helicase and the carboxy-terminal domain are required for RNA 
binding. RIG-1 and MDA-5 detect specific viral RNA PAMPs, 
while LGP2 negatively regulates RIG-I signaling and promotes 
RNA binding to MDA5 [reviewed in detail in Ref. (14)].

In unstimulated cells, RIG-I and MDA-5 are kept in a repressed 
state due to phosphorylations on serine and threonine residues in 
the CARDs and carboxy-terminal domains (23, 24). Upon bind-
ing of RNA, both RIG-I and MDA-5 undergo conformational 
changes, resulting in release of their CARDs (25, 26). Recruited 
phosphatases remove the phosphate residues, and E3 ubiquitin 
ligases attach Lys63-linked ubiquitin polymers onto the CARDs 
and C-terminal domain of RIG-I, which are important for RIG-I 
tetramerization (27–31).

RNA-bound RIG-1 then interacts with 14-3-3ε, a mito-
chondrial trafficking protein, and the TRIM25 ubiquitin ligase, 
which together transport RIG-I to the mitochondria (32). There 
the CARDs of RIG-I or MDA-5 interact with the CARD of the 
mitochondrial activator of virus signaling (MAVS, also known as 
IPS-1, VISA, and Cardif), which is an essential signaling adaptor 
protein. The activation of MAVS has recently been reviewed in 
detail in Ref. (33).

TLR3 interacts with TRIF, which serves as a molecular 
platform and forms physical interactions with several adaptor 
molecules (34). By interacting with upstream adaptors, TRIF 
undergoes conformational changes and recruits the downstream 
TNF receptor-associated factor (TRAF)3 and TRAF6 [reviewed 
in Ref. (35)]. The kinase receptor-interacting protein-1 (RIP-1) 
is part of both the signaling pathways downstream of TLR3 and 
RIG-I. It can interact with TRIF to induce NFκB activation (36). 
Moreover, the dsRNA-activated TLR3 can recruit TRIF, RIP-1, 
and Caspase-8 and induce apoptosis (37). Also, RIP-1 and its 
adaptor protein Fas-associated protein with death domain 
(FADD) are part of the signaling cascade downstream of RIG-I 
and MDA-5 and involved in the activation of the transcription 

factors interferon regulatory factor (IRF)3 and IRF7 (38). TRAF3 
serves as a linker between the upstream adaptor proteins (TRIF 
or MyD88 for TLRs and MAVS for RLRs) and the downstream 
signaling kinases TBK1/IKKε or IRAK1/IKKα. The recruitment 
of TRAF3 to the TLR or RLR signaling complexes activates the E3 
ligase activity of TRAF3, which then catalyzes its own K63-linked 
ubiquitinylation. Subsequent TRAF3 activates TBK1/IKKε or 
IRAK/IKKα [reviewed in Ref. (39)] (Figure 1).

Viruses target RIG-I directly or indirectly to block the type 
I IFN response. The phlebovirus Toscana Virus expresses a 
non-structural protein, which directly interacts with RIG-I and 
induces its proteasomal degradation (40, 41). Foot-and-mouth 
disease virus (FMDV) proteins Lpro, 3Cpro, and 2B increase the 
RIG-I mRNA expression but decrease the protein expression of 
RIG-I. Lpro and 3Cpro both induce RIG-I degradation, whereas the 
mechanism of how 2B reduces RIG-I protein levels has not been 
solved yet (42). Other viruses target RIG-I indirectly. Hepatitis B 
virus (HBV) induces miR146a, which then posttranscriptionally 
inhibits the expression of RIG-I and suppresses the production 
of type I IFN (43).

The dengue virus NS3 protein binds to 14-3-3ε and prevents 
the translocation of RIG-I to MAVS. The binding site on NS3 is 
a highly conserved phosphomimetic motif, which was verified 
by generation of a virus containing a mutation in this motif (44).

It has been proposed that in certain cell types RIG-I requires 
sentinels, such as the protein DDX60, which associates with RIG-I 
and promotes the RIG-I RNA-binding activity (45, 46). Other 
studies question DDX60 acting as a broadly active enhancer 
of antiviral responses (47, 48) and instead suggest that DDX60 
only functions in the antiviral response to specific viruses, such 
as hepatitis C virus (47). However, there are data indicating that 
influenza A virus and hepatitis C virus attenuate IFNβ-promoter 
activation by targeting the sentinel DDX60. Both viruses activate 
the epidermal growth factor (EGF) receptor, which in turn 
phosphorylates DDX60 on Tyr-793 and Tyr-796. This results 
in the attenuation of DDX60-dependent RIG-I activation. In 
addition, independent of its role as sentinel for RIG-I viral RNA 
recognition, DDX60 plays a role in viral RNA degradation (46) 
(Figure 1).

Mitochondrial activator of virus signaling is blocked by dif-
ferent viruses in various ways. The dengue virus protein NS4A 
targets MAVS, and the interaction prevents the binding of 
MAVS to RIG-I (49). The porcine reproductive and respiratory 
syndrome virus (PRRSV) 3C-like protease (3CLSP), by contrast, 
cleaves MAVS in a proteasome- and caspase-independent man-
ner at Glu268 (E268/G269). Both cleavage products fail to acti-
vate the type I IFN response (50). Likewise, the hepatitis C virus 
protein NS3-4A (51, 52), as well as the highly pathogenic porcine 
reproductive and respiratory syndrome virus (HP-PRRSV) 
protein nsp4 (53) have been shown to cleave MAVS and block 
RLR signaling. The porcine epidemic diarrhea virus (PEDV) also 
targets MAVS in small intestinal epithelial cells (IECs). However, 
the exact mechanism has not been solved yet (54) (Figure 1).

The SARS coronavirus protein ORF9b not only influences anti-
viral signaling but also alters host cell mitochondria morphology 
by inducing degradation of the dynamin-like protein (DRP1). 
MAVS becomes concentrated into small puncta in the presence 
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FiGURe 1 | Activation of interferon regulatory factors and the counteractions taken by viruses. DsRNA is sensed by PRRs, which results in the activation 
of different adaptor proteins and the recruitment of TRAF3. TBK1 and/or IKKε are activated and phosphorylate IRF3 and/or IRF7, which then translocate into the 
nucleus to induce type I IFN expression. CSFV, classical swine fever virus; DENV, dengue virus; FMDV, foot-and-mouth disease virus; HBV, hepatitis B virus; 
HP-PRRSV, highly pathogenic porcine reproductive and respiratory syndrome virus; HSV-1, herpes simplex virus type 1; HTLV-1, human T-cell lymphotropic virus 
type I; KSHV, Kaposi’s sarcoma-associated herpesvirus; MERS-CoV, middle east respiratory syndrome coronavirus; PBoV, porcine bocavirus; PEDV, porcine 
epidemic diarrhea virus; PRRSV, porcine reproductive and respiratory syndrome virus; RRV, rhesus macaque rhadinovirus.
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of ORF9b (55). In addition, ORF9b triggers K48-linked ubiquit-
inylation of MAVS, by targeting the poly(C)-binding protein 2 
(PCBP2) and the HECT domain E3 ligase AIP4. Under normal 
conditions, PCBP2 controls MAVS levels by linking the AID4 E3 
ubiquitin ligase with MAVS (56). In addition to MAVS, also the 
levels of TRAF3 and TRAF6 are reduced by ORF9b. However, it 
is unlikely that TRAF3 and TRAF6 are targeted directly. More 
likely, they are degraded due to their interaction with MAVS (55) 
(Figure 1).

Human T-cell lymphotropic virus type I (HTLV-1) protein Tax 
disrupts innate immune signaling in multiple ways: it binds to the 
RIP homotypic interaction motif (RHIM) domains of RIP-1 and 
disrupts the interaction between RIP-1 and RIG-I or MDA-5 and 
the activation of the type I IFN promoter. Tax also binds to TRIF 
and thereby interrupts the TLR3 signaling cascade. Finally, Tax 
blocks the association between RIP-1 and IRF7, which resulted 
in repression of the IRF7 activity (57) (Figure 1).

Middle East respiratory syndrome coronavirus M protein 
interacts with TRAF3 and disrupts the interaction between 
TRAF3 and TBK1, which ultimately leads to a reduced IRF3 

activation. For the interaction with TRAF3, the N-terminal 
transmembrane domain of the MERS-CoV M protein is suffi-
cient (58), similar to what has been shown for SARS-CoV before 
(59) (Figure 1).

ACTivATiON OF TRANSCRiPTiON 
FACTORS AND iFN TRANSCRiPTiON

Triggering of the TLR3- and RLR-signaling cascade results in the 
activation of the transcription factors NFκB and IRF3/IRF7. In its 
inactive state, the transcription factor NFκB is complexed with its 
inhibitor IκB (60). Upon stimulation, IκB is phosphorylated by 
the IκB kinase (IKK) complex, which is composed of two catalytic 
subunits, such as IKKα and IKKβ, and a regulatory subunit, such 
as NFκB essential modulator (NEMO) (61). The phosphorylation 
of IκBα induces its polyubiquitination through the E3 ubiquitin 
ligase β-transducin repeat-containing protein (β-TrCP) and 
subsequent proteasomal degradation (62), allowing NFκB to 
translocate into the nucleus and induce the expression of target 
genes (63) (Figure 2).
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FiGURe 2 | Activation of NFκB signaling and the counteractions taken by viruses. Triggering of TLR3 results in the activation of first TRAF6 and 
subsequently of IKK (consisting of NEMO, IKKα, and IKKβ). Together with β-TrCP, IKK mediates the ubiquitinylation of IκB, resulting in the release of NFκB. EAV, 
equine arteritis virus; EMCV, encephalomyocarditis virus; FMDV, foot-and-mouth diseases virus; PEDV, porcine epidemic diarrhea virus; PRRSV, porcine reproductive 
and respiratory syndrome virus.

4

Schulz and Mossman Viral Evasion of Interferon Pathways

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 498

Encephalomyocarditis virus (EMCV) protein 3C cleaves 
TRAF family member-associated NFκB activator (TANK), which 
inhibits TRAF6-mediated NFκB activation, on Gln291. As a 
result, NFκB is activated and the unstable C-terminal fragment of 
TANK is subjected to proteasomal degradation (64). Also, other 
viruses express proteases that cleave TANK, although on other 
residues, such as porcine reproductive and respiratory syndrome 
virus (PRRSV) (TANK is cleaved by Nsp4), FMDV (protease 
3C cleaves TANK), and equine arteritis virus (EAV) (TANK is 
cleaved by Nsp4). Thus, TANK seems to be a common target of 
several positive RNA viral proteases (64) (Figure 2).

Several viruses have been shown to disrupt IFN signaling by 
cleaving NEMO. PEDV 3C-like protease, nsp5, cleaves NEMO 
at Gln231 (65), whereas the hepatitis A virus 3C protease (3Cpro) 
cleaves NEMO at Gln304 (66) and the picornavirus FMDV 
protease 3Cpro at Gln383, removing the C-terminal zinc finger 
domain from the protein (67). The human rotavirus has devel-
oped another way. Its non-structural protein 1 (NSP1) has been 
shown to inhibit the NFκB pathway by degrading β-TrCP and 
consequently stabilizing IκB (68) (Figure 2).

TANK-binding kinase 1 (TBK1) and inhibitor of κB kinase ε 
(IKKε) are classified as non-canonical serine/threonine kinases 

and are both able to induce IRF3 and IRF7 phosphorylation 
and subsequent dimerization (69–72). However, while TBK1 is 
constitutively expressed in most cell types, the expression of IKKε 
is more restricted (73). Upon stimulation, TBK1 and IKKε are 
recruited by adaptor proteins to signaling complexes to be acti-
vated by phosphorylation on Ser172 and both have been shown 
to be subjected to K63-linked polyubiquitination [reviewed in 
Ref. (73, 74)]. For TBK1, K63-linked polyubiquitination seems 
to be important for TLR- and RLR-induced IFN production, as 
ubiquitin chains might serve as a platform for the assembly of 
TBK1 signaling complexes. Moreover, deubiquitinases are able 
to terminate the TBK1-mediated pathway by cleaving the K63-
linked ubiquitin chains [reviewed in Ref. (74, 75)]. Activated 
TBK1/IKKε phosphorylates IRF3 and/or IRF7 in the cytosol at 
specific serine residues. This phosphorylation results in homo- or 
heterodimerization of IRF3 and IRF7 and nuclear translocation 
(76, 77). Interestingly, while IRF3 is constitutively expressed, 
IRF7 is expressed at low levels in most cell types and expression 
is induced upon IFN signaling. Therefore, in most cells, IRF7 
strongly enhances the production of IFN [reviewed in Ref. (78)]. 
Once phosphorylated IRF3 and/or IRF7 dimers have translo-
cated into the nucleus, they bind to the transcription coactivator 
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CREB-binding protein (CPB)/p300 (79, 80). Together with other 
factors, such as NFκB, they form the enhanceosome on the IFNβ 
promoter and induce the expression of type I IFN [reviewed in 
Ref. (76)].

The viral proteins that target TBK1 act by either blocking acti-
vation of TBK1 by MAVS or by inhibiting activation of IRF3 by 
TBK1. The MERS-CoV protein ORF4b blocks IFNβ production 
by binding to TBK1 and IKKε and suppressing the formation of a 
MAVS/IKKε complex (81). In addition to inhibiting TBK1/IKKε 
activation, ORF4b can also inhibit the production of IFNβ in the 
nucleus; however, the mechanism has not been solved yet (81). 
Recently, two herpes simplex virus proteins have been shown to 
target TBK1/IKKε and inhibit the phosphorylation of IRF3: ICP27 
(82) and VP24 (83). Also, dengue virus serotype 4 non-structural 
proteins NS2A and NS4B, as well as the NS2A and NS4B proteins 
of other Dengue viruses, inhibit the phosphorylation of TBK1 
(84) and PEDV N protein has been shown to interact with TBK1, 
hampering the association of TBK1 with IRF3 and preventing the 
activation of IRF3 activation (85). The human T-cell leukemia 
virus type 1 oncoprotein Tax has been shown to also interact with 
TBK1. However, studies came to contradicting results on how 
that influences the production of IFNβ. While one group showed 
that Tax activates TBK1 and the production of IFNβ (86), another 
group showed that Tax suppresses the IFN production by interac-
tion with TBK1 (87). Interestingly, when a recent study tested 
how the rabies virus P protein of street strains behaves compared 
to laboratory-adapted strains with regard to the induction of type 
I IFN, they found that both street strains and laboratory strains 
inhibit TBK1-mediated signaling, but only the P protein of street 
strains also interacts with and inhibits IKKε-inducible IRF3-
dependent IFNβ expression (88) (Figure 1).

Interferon regulatory factor 3 is targeted by many viruses 
to impair innate immune signaling. Most viruses inhibit the 
phosphorylation and thereby also the dimerization and trans-
location of IRF3, such as the porcine deltacoronavirus (89) or 
poliovirus (90). Hepatitis E virus protein ORF3 also suppresses 
IRF3 phosphorylation, but in an indirect way. It activates the 
signal regulator protein α (SIRP-α), which negatively regulates 
type I IFN induction (91). In contrast, porcine bocavirus (PBoV) 
NP1 protein does not affect IRF3 expression, phosphorylation, or 
nuclear translocation. Instead, it interacts with the DNA-binding 
domain of IRF3 and inhibits the DNA-binding activity (92). A 
very interesting way of how to circumvent the host innate immune 
response was found when studying gammaherpesviruses Kaposi’s 
sarcoma-associated herpesvirus (KSHV) and rhesus macaque 
rhadinovirus (RRV). They express several viral homologs to the 
IRFs, called viral IRFs (vIRFs). These vIRFs have found multiple 
ways to suppress type I IFN production. For KSHV, different 
strategies have been reviewed in Ref. (6). Recently, the RRV vIRF 
R6 has been shown to interact with the transcriptional coactiva-
tor CBP in the nucleus, similar to the KSHV vIRF1. As a result, 
CBP cannot form a complex with the phosphorylated IRF3, and 
the IFN expression is not induced (93–95). Interestingly, RRV R6 
is the first vIRF for which an association with the viron could be 
shown. Therefore, vIRF V6 can shut down the type I IFN response 
shortly after the cell was infected, rendering the cell more sus-
ceptible to infection (95). The PEDV protein nsp1 also targets 

CBP. Nsp1 induces CBP degradation in a proteasome-dependent 
manner and thereby interrupts enhanceosome assembly and the 
production of type I IFN (96) (Figure 1).

For most of these interactions, the molecular mechanisms 
have not been unraveled yet. A protein that has been shown to 
interact with and induce proteasomal degradation of IRF3 some 
time ago is classical swine fever virus (CSFV) Npro (97,  98). 
Recently, the molecular mechanism has been published. IRF3 
and Npro interact direct and form a soluble 1:1 complex. 
Moreover, it was shown that Npro interacts with the full-length 
IRF3, not with individual domains, and that Npro binds the 
constitutively active form of IRF3 in the presence of CPB. Thus, 
Npro interacts with both the monomer and the active IRF3 
dimer and likely targets both species for ubiquitinylation and 
proteasomal degradation (99).

Interferon regulatory factor 7 is targeted by two human 
enteroviruses, such as enterovirus 71 and enterovirus 68. They 
downregulate IRF7 by cleaving it with their protease 3c, leaving 
the cleavage products unable to induce IFN expression. While 
enterovirus 71 cleaves IRF7 once at Gln189–Ser190 (100), 
Enterovirus 68 cleaves it twice, the cleavage sites being Gln167 
and Gln189 (101). Moreover, megalocytivirus, a DNA virus that 
infects marine and freshwater fish, induces the expression of the 
host microRNA pol-miR-731, which then specifically suppresses 
the expression of IRF7 (102) (Figure 1).

TYPe i iFN SiGNALiNG

The type I IFNs act in an autocrine, paracrine, or systemic manner 
to stimulate antiviral responses. They are recognized by the IFNα/β 
receptor (IFNAR), which consists of the subunits IFNAR1 and 
IFNAR2 expressed on virtually all cell types (103). The interac-
tion of type I IFN with the receptor results in the phosphorylation 
and activation of the IFNAR1- and IFNAR2-associated tyrosine 
kinases tyrosine kinase 2 (TYK2) and Janus kinase 1 (JAK1), 
which then phosphorylate IFNAR tyrosine residues, resulting in 
the recruitment and activation of signaling molecules, such as 
the signal transducer and activator of transcription (STAT) family 
of transcription factors (104, 105). Upon activation, STAT1 and 
STAT2, together with IRF9, form the IFN-stimulated gene factor 
3 (ISGF3), which then translocates into the nucleus to induce 
transcription of ISGs [reviewed in detail in Ref. (106–108)].

Several viruses target IFNAR to prohibit IFN binding and 
signaling. Influenza virus induces the degradation of IFNAR1. 
Hemagglutinin (HA) triggers the phosphorylation and ubiquit-
inylation of IFNAR1, thus promoting protein degradation (109). 
Encephalitic Flaviviruses, such as tick-borne encephalitis virus or 
West Nile virus, inhibit IFNAR1 surface expression. Their protein 
NS5 binds the cellular dipeptidase prolidase (PEPD), which is 
involved in IFNAR1 maturation and accumulation, activation 
of IFNβ-stimulated gene induction, and IFN-dependent viral 
control. This interaction inhibits IFNAR1 intracellular traffick-
ing and glycosylation but does not promote IFNAR1 degradation 
(110) (Figure 3).

Both STAT1 and STAT2 are targeted by many viruses to 
suppress ISG induction. PEDV induces Stat1 ubiquitinyla-
tion and targets it for degradation in the proteasomes (111). 
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FiGURe 3 | Type i iFN signaling and the counteractions taken by viruses. IFN binds to its receptor and thereby activates Tyk2 and Jak1, which then 
phosphorylate Stat1 and Stat2. Together with IRF9, Stat1 and Stat2 form the ISGF3, which translocates into the nucleus and induces the expression of ISGs. 
HMPV, human metapneumovirus; IBV, infectious bronchitis virus; JEV, Japanese encephalitic virus; LPMV, La Piedad Michoacán Mexico Virus; PEDV, porcine 
epidemic diarrhea virus; RSV, respiratory syncytial virus; SFTSV, severe fever with thrombocytopenia syndrome virus; VZV, varicella-zoster virus.
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Some viruses evolved to prevent the phosphorylation of Stat1 
or Stat2. The paramyxovirus La Piedad Michoacán Mexico 
Virus (LPMV) V protein binds to Stat2 and prevents the type 
I IFN-dependent phosphorylation and nuclear translocation 
of Stat1 and Stat2 (112). Similarly, human metapneumovirus 
(HMPV) protein SH impairs Stat1 expression, phosphoryla-
tion, and activation (113). Simian varicella virus not only 
inhibits Stat2 phosphorylation but also promotes degrada-
tion of IRF9 in a proteasome-dependent manner through its 
protein ORF63 (114). Also, infectious bronchitis virus (IBV) 
inhibits phosphorylation and nuclear translocation of Stat1. 
However, despite detailed analyses, it is unclear which viral 
protein is responsible. It was, however, shown that the acces-
sory protein 3a contributes to IBV resistance to type I IFN, 
although the target is unknown as well (115). In case of the 
human Parvovirus B19, it becomes evidently clear that both 
the virus and the immune system constantly evolve to prevail. 
While its protein NS1 suppresses Stat phosphorylation, the 
immune system senses the protein and triggers the production 
of type I IFN (116). SFTSV, an emerging tick-borne pathogen, 
developed multiple ways to prevent ISG induction. The viral 
non-structural protein NS impairs Stat1 expression, phospho-
rylation, and activation (117) and interacts with STAT2 and 
sequesters STAT1 and STAT2 into viral inclusion bodies, where 
they are trapped (118) (Figure 3).

The JAK-STAT signal transduction pathway is negatively 
regulated by the suppressor of cytokine signaling (SOCS) fam-
ily of proteins in form of a classical feedback loop (119, 120). 
Some viruses induce the expression of SOCS to take advantage 

of this mechanism to minimize the induction of ISGs. Japanese 
encephalitic virus (JEV) downregulates the expression of micro-
RNA miR-432, which then results in upregulated SOCS5 levels 
(121). Varicella-zoster virus (VZV) infection induces the expres-
sion of SOCS3 (122) and respiratory syncytial virus (RSV) non-
structural proteins NS1 and NS2 induce upregulation of SOCS1 
and SOCS3, which also inhibited the induction of chemokines 
(123) (Figure 3).

HOST SHUT OFF

Viruses fully depend on the translation machinery of the host cell 
for replication. Accordingly, they have evolved multiple ways to 
hamper host protein synthesis [reviewed in Ref. (124)]. One way 
is to shut off host protein synthesis. For some time, it was thought 
that Gamma- and Deltacoronaviruses do not induce host shutoff, 
such as Alpha- and Betacoronaviruses do. However, a recent 
study showed that the infectious bronchitis Gammacoronavirus 
induces host shutoff using its protein 5b. It seems like 5b is a func-
tional equivalent of nsp1, the host shutoff protein of Alpha- and 
Betacoronaviruses (125).

CONCLUSiON

Viruses evolved to have various strategies to circumvent the 
innate immune response by blocking the production of type I 
IFN or the expression of ISGs. While these diverse strategies may 
appear contradictory between viruses, several factors require 
consideration. For example, the use of clinical isolates versus 
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laboratory-passaged strains could yield different results, particu-
larly with RNA viruses that rapidly accumulate mutations due to 
error-prone RNA-dependent RNA polymerases. Moreover, the 
choice of cell line can greatly influence experimental outcomes, 
as many immortalized or transformed continual cell lines harbor 
mutations in critical innate immune signaling (126). Likewise, 
the use of genetic knockout versus knockdown cell lines or 
organisms can influence experimental outcomes, as can the 
experimental procedures themselves, particularly when endog-
enous interactions are disrupted with the use of overexpression 
approaches.

Studying the mechanisms used by viruses to prevent an 
immune response is of great importance for the development 
of new strategies to limit the sequelae of viral infections. 
Identification of key immune evasion proteins allows develop-
ment of antivirals to target these proteins. Alternatively, iden-
tification of key cellular antiviral pathways allows development 

of strategies to enhance these pathways to overwhelm incoming 
viruses. Information on key immune evasion factors further 
facilitates the engineering of safe and effective vaccine strains 
and designing strategies to target new emerging viruses from the 
same or closely related family.

AUTHOR CONTRiBUTiONS

KS and KM conceptualized the scope of the review article. KS 
wrote the review with input from KM.

FUNDiNG

This work was supported by a postdoctoral fellowship from the 
Deutsche Forschungsgemeinschaft (SCHU3011/1-1). Work in 
the Mossman laboratory on innate antiviral signaling is sup-
ported by the Canadian Institutes for Health Research.

ReFeReNCeS

1. Nagarajan U. Induction and function of IFNbeta during viral and 
bacterial infection. Crit Rev Immunol (2011) 31(6):459–74. doi:10.1615/
CritRevImmunol.v31.i6.20 

2. Krug RM. Functions of the influenza A virus NS1 protein in antiviral defense. 
Curr Opin Virol (2015) 12:1–6. doi:10.1016/j.coviro.2015.01.007 

3. Weber-Gerlach M, Weber F. To conquer the host, influenza virus is 
packing it in: interferon-antagonistic strategies beyond NS1. J Virol (2016) 
90(19):8389–94. doi:10.1128/JVI.00041-16 

4. Wuerth JD, Weber F. Phleboviruses and the type I interferon response. 
Viruses (2016) 8(6):174–90. doi:10.3390/v8060174 

5. Amsler L, Verweij MC, DeFilippis VR. The tiers and dimensions of evasion of 
the type I interferon response by human cytomegalovirus. J Mol Biol (2013) 
425(24):4857–71. doi:10.1016/j.jmb.2013.08.023 

6. Kumari P, Narayanan S, Kumar H. Herpesviruses: interfering innate immu-
nity by targeting viral sensing and interferon pathways. Rev Med Virol (2015) 
25(3):187–201. doi:10.1002/rmv.1836 

7. Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV-1, 
an update. Virol J (2016) 13:38. doi:10.1186/s12985-016-0495-5 

8. Vijay R, Perlman S. Middle East respiratory syndrome and severe acute 
respiratory syndrome. Curr Opin Virol (2016) 16:70–6. doi:10.1016/j.coviro. 
2016.01.011 

9. Rustagi A, Gale M Jr. Innate antiviral immune signaling, viral evasion and 
modulation by HIV-1. J Mol Biol (2014) 426(6):1161–77. doi:10.1016/j.
jmb.2013.12.003 

10. Sauter D, Kirchhoff F. HIV replication: a game of hide and sense. Curr Opin 
HIV AIDS (2016) 11(2):173–81. doi:10.1097/COH.0000000000000233 

11. Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to 
block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 
(2013) 100(3):615–35. doi:10.1016/j.antiviral.2013.10.002 

12. Chatterjee S, Basler CF, Amarasinghe GK, Leung DW. Molecular mech-
anisms of innate immune inhibition by non-segmented negative-sense 
RNA viruses. J Mol Biol (2016) 428(17):3467–82. doi:10.1016/j.jmb.2016. 
07.017 

13. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. 
Immunity (2013) 38(5):855–69. doi:10.1016/j.immuni.2013.05.007 

14. Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA 
sensing. Nat Rev Microbiol (2016) 14(6):360–73. doi:10.1038/nrmicro. 
2016.45 

15. Lin D, Zhong B. Regulation of cellular innate antiviral signaling by ubiquitin 
modification. Acta Biochim Biophys Sin (Shanghai) (2015) 47(3):149–55. 
doi:10.1093/abbs/gmu133 

16. Taylor KE, Mossman KL. Recent advances in understanding viral evasion 
of type I interferon. Immunology (2013) 138(3):190–7. doi:10.1111/ 
imm.12038 

17. Devasthanam AS. Mechanisms underlying the inhibition of interferon 
signaling by viruses. Virulence (2014) 5(2):270–7. doi:10.4161/viru.27902 

18. Ma Z, Damania B. The cGAS-STING defense pathway and its counter-
action by viruses. Cell Host Microbe (2016) 19(2):150–8. doi:10.1016/j.
chom.2016.01.010 

19. Kell AM, Gale M Jr. RIG-I in RNA virus recognition. Virology (2015) 
47(9–480):110–21. doi:10.1016/j.virol.2015.02.017 

20. Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors 
in host defense and disease. Immunity (2007) 27(4):549–59. doi:10.1016/j.
immuni.2007.10.002 

21. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, et al. Regulation 
of innate antiviral defenses through a shared repressor domain in RIG-I 
and LGP2. Proc Natl Acad Sci U S A (2007) 104(2):582–7. doi:10.1073/
pnas.0606699104 

22. Fitzgerald ME, Rawling DC, Vela A, Pyle AM. An evolving arsenal: viral RNA 
detection by RIG-I-like receptors. Curr Opin Microbiol (2014) 20:76–81. 
doi:10.1016/j.mib.2014.05.004 

23. Gack MU, Nistal-Villan E, Inn KS, Garcia-Sastre A, Jung JU. Phosphorylation-
mediated negative regulation of RIG-I antiviral activity. J Virol (2010) 
84(7):3220–9. doi:10.1128/JVI.02241-09 

24. Sun Z, Ren H, Liu Y, Teeling JL, Gu J. Phosphorylation of RIG-I by casein 
kinase II inhibits its antiviral response. J Virol (2011) 85(2):1036–47. 
doi:10.1128/JVI.01734-10 

25. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, et al. 
Structural basis for the activation of innate immune pattern-recognition 
receptor RIG-I by viral RNA. Cell (2011) 147(2):423–35. doi:10.1016/j.
cell.2011.09.039 

26. Kolakofsky D, Kowalinski E, Cusack S. A structure-based model of RIG-I 
activation. RNA (2012) 18(12):2118–27. doi:10.1261/rna.035949.112 

27. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-
finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. 
Nature (2007) 446(7138):916–20. doi:10.1038/nature05732 

28. Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, et al. Reconstitution 
of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin 
chains in innate immunity. Cell (2010) 141(2):315–30. doi:10.1016/j.cell. 
2010.03.029 

29. Maharaj NP, Wies E, Stoll A, Gack MU. Conventional protein kinase 
C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antivi-
ral  signal transduction. J Virol (2012) 86(3):1358–71. doi:10.1128/JVI. 
06543-11 

30. Oshiumi H, Miyashita M, Matsumoto M, Seya T. A distinct role of 
Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor 
domain in human antiviral innate immune responses. PLoS Pathog (2013) 
9(8):e1003533. doi:10.1371/journal.ppat.1003533 

31. Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, et  al. 
Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1615/CritRevImmunol.v31.i6.20
http://dx.doi.org/10.1615/CritRevImmunol.v31.i6.20
http://dx.doi.org/10.1016/j.coviro.2015.01.007
http://dx.doi.org/10.1128/JVI.00041-16
http://dx.doi.org/10.3390/v8060174
http://dx.doi.org/10.1016/j.jmb.2013.08.023
http://dx.doi.org/10.1002/rmv.1836
http://dx.doi.org/10.1186/s12985-016-0495-5
http://dx.doi.org/10.1016/j.coviro.2016.01.011
http://dx.doi.org/10.1016/j.coviro.2016.01.011
http://dx.doi.org/10.1016/j.jmb.2013.12.003
http://dx.doi.org/10.1016/j.jmb.2013.12.003
http://dx.doi.org/10.1097/COH.0000000000000233
http://dx.doi.org/10.1016/j.antiviral.2013.10.002
http://dx.doi.org/10.1016/j.jmb.2016.07.017
http://dx.doi.org/10.1016/j.jmb.2016.07.017
http://dx.doi.org/10.1016/j.immuni.2013.05.007
http://dx.doi.org/10.1038/nrmicro.2016.45
http://dx.doi.org/10.1038/nrmicro.2016.45
http://dx.doi.org/10.1093/abbs/gmu133
http://dx.doi.org/10.1111/imm.12038
http://dx.doi.org/10.1111/imm.12038
http://dx.doi.org/10.4161/viru.27902
http://dx.doi.org/10.1016/j.chom.2016.01.010
http://dx.doi.org/10.1016/j.chom.2016.01.010
http://dx.doi.org/10.1016/j.virol.2015.02.017
http://dx.doi.org/10.1016/j.immuni.2007.10.002
http://dx.doi.org/10.1016/j.immuni.2007.10.002
http://dx.doi.org/10.1073/pnas.0606699104
http://dx.doi.org/10.1073/pnas.0606699104
http://dx.doi.org/10.1016/j.mib.2014.05.004
http://dx.doi.org/10.1128/JVI.02241-09
http://dx.doi.org/10.1128/JVI.01734-10
http://dx.doi.org/10.1016/j.cell.2011.09.039
http://dx.doi.org/10.1016/j.cell.2011.09.039
http://dx.doi.org/10.1261/rna.035949.112
http://dx.doi.org/10.1038/nature05732
http://dx.doi.org/10.1016/j.cell.2010.03.029
http://dx.doi.org/10.1016/j.cell.2010.03.029
http://dx.doi.org/10.1128/JVI.06543-11
http://dx.doi.org/10.1128/JVI.06543-11
http://dx.doi.org/10.1371/journal.ppat.1003533


8

Schulz and Mossman Viral Evasion of Interferon Pathways

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 498

PP1 is essential for innate immune signaling. Immunity (2013) 38(3):437–49. 
doi:10.1016/j.immuni.2012.11.018 

32. Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M Jr. The 
mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I 
translocon that mediates membrane association and innate antiviral 
immunity. Cell Host Microbe (2012) 11(5):528–37. doi:10.1016/j.chom.2012. 
04.006 

33. Wu B, Hur S. How RIG-I like receptors activate MAVS. Curr Opin Virol 
(2015) 12:91–8. doi:10.1016/j.coviro.2015.04.004 

34. Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 
pathway. Rev Med Virol (2011) 21(2):67–77. doi:10.1002/rmv.680 

35. Hyun J, Kanagavelu S, Fukata M. A unique host defense pathway: TRIF 
mediates both antiviral and antibacterial immune responses. Microbes Infect 
(2013) 15(1):1–10. doi:10.1016/j.micinf.2012.10.011 

36. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, et al. 
RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B 
activation. Nat Immunol (2004) 5(5):503–7. doi:10.1038/ni1061 

37. Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanbervliet B, et al. 
dsRNA induces apoptosis through an atypical death complex associating 
TLR3 to caspase-8. Cell Death Differ (2012) 19(9):1482–94. doi:10.1038/
cdd.2012.22 

38. Balachandran S, Thomas E, Barber GN. A FADD-dependent innate 
immune mechanism in mammalian cells. Nature (2004) 432(7015):401–5. 
doi:10.1038/nature03124 

39. Lalani AI, Luo C, Han Y, Xie P. TRAF3: a novel tumor suppressor gene 
in macrophages. Macrophage (Houst) (2015) 2:e1009. doi:10.14800/
macrophage.1009

40. Gori-Savellini G, Valentini M, Cusi MG. Toscana virus NSs protein inhibits 
the induction of type I interferon by interacting with RIG-I. J Virol (2013) 
87(12):6660–7. doi:10.1128/JVI.03129-12 

41. Gori Savellini G, Gandolfo C, Cusi MG. Truncation of the C-terminal region 
of Toscana virus NSs protein is critical for interferon-beta antagonism 
and protein stability. Virology (2015) 486:255–62. doi:10.1016/j.virol.2015. 
09.021 

42. Zhu Z, Wang G, Yang F, Cao W, Mao R, Du X, et al. Foot-and-mouth disease 
virus viroporin 2B antagonizes RIG-I mediated antiviral effects by inhibition 
of its protein expression. J Virol (2016). doi:10.1128/JVI.01310-16

43. Hou Z, Zhang J, Han Q, Su C, Qu J, Xu D, et al. Hepatitis B virus inhibits 
intrinsic RIG-I and RIG-G immune signaling via inducing miR146a. Sci Rep 
(2016) 6:26150. doi:10.1038/srep26150 

44. Chan YK, Gack MU. A phosphomimetic-based mechanism of dengue 
virus to antagonize innate immunity. Nat Immunol (2016) 17(5):523–30. 
doi:10.1038/ni.3393 

45. Miyashita M, Oshiumi H, Matsumoto M, Seya T. DDX60, a DEXD/H box 
helicase, is a novel antiviral factor promoting RIG-I-like receptor-medi-
ated signaling. Mol Cell Biol (2011) 31(18):3802–19. doi:10.1128/MCB. 
01368-10 

46. Oshiumi H, Miyashita M, Okamoto M, Morioka Y, Okabe M, Matsumoto 
M, et  al. DDX60 is involved in RIG-I-dependent and independent anti-
viral  responses, and its function is attenuated by virus-induced EGFR 
activation. Cell Rep (2015) 11(8):1193–207. doi:10.1016/j.celrep.2015.04.047 

47. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A 
diverse range of gene products are effectors of the type I interferon antiviral 
response. Nature (2011) 472(7344):481–5. doi:10.1038/nature09907 

48. Goubau D, van der Veen AG, Chakravarty P, Lin R, Rogers N, Rehwinkel 
J, et  al. Mouse superkiller-2-like helicase DDX60 is dispensable for type I 
IFN induction and immunity to multiple viruses. Eur J Immunol (2015) 
45(12):3386–403. doi:10.1002/eji.201545794 

49. He Z, Zhu X, Wen W, Yuan J, Hu Y, Chen J, et  al. Dengue virus subverts 
host innate immunity by targeting adaptor protein MAVS. J Virol (2016) 
90(16):7219–30. doi:10.1128/JVI.00221-16 

50. Dong J, Xu S, Wang J, Luo R, Wang D, Xiao S, et al. Porcine reproductive and 
respiratory syndrome virus 3C protease cleaves the mitochondrial antiviral 
signalling complex to antagonize IFN-beta expression. J Gen Virol (2015) 
96(10):3049–58. doi:10.1099/jgv.0.000257 

51. Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A 
cleaves mitochondrial antiviral signaling protein off the mitochondria to 
evade innate immunity. Proc Natl Acad Sci U S A (2005) 102(49):17717–22. 
doi:10.1073/pnas.0508531102 

52. Ferreira AR, Magalhaes AC, Camoes F, Gouveia A, Vieira M, Kagan JC, 
et al. Hepatitis C virus NS3-4A inhibits the peroxisomal MAVS-dependent 
antiviral signalling response. J Cell Mol Med (2016) 20(4):750–7. doi:10.1111/
jcmm.12801 

53. Huang C, Du Y, Yu Z, Zhang Q, Liu Y, Tang J, et al. Highly pathogenic porcine 
reproductive and respiratory syndrome virus Nsp4 cleaves VISA to impair 
antiviral responses mediated by RIG-I-like receptors. Sci Rep (2016) 6:28497. 
doi:10.1038/srep28497 

54. Cao L, Ge X, Gao Y, Herrler G, Ren Y, Ren X, et al. Porcine epidemic diarrhea 
virus inhibits dsRNA-induced interferon-beta production in porcine intesti-
nal epithelial cells by blockade of the RIG-I-mediated pathway. Virol J (2015) 
12:127. doi:10.1186/s12985-015-0345-x 

55. Shi CS, Qi HY, Boularan C, Huang NN, Abu-Asab M, Shelhamer JH, et al. 
SARS-coronavirus open reading frame-9b suppresses innate immunity 
by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. 
J Immunol (2014) 193(6):3080–9. doi:10.4049/jimmunol.1303196 

56. You F, Sun H, Zhou X, Sun W, Liang S, Zhai Z, et al. PCBP2 mediates degrada-
tion of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 
(2009) 10(12):1300–8. doi:10.1038/ni.1815 

57. Hyun J, Ramos JC, Toomey N, Balachandran S, Lavorgna A, Harhaj E, 
et al. Oncogenic human T-cell lymphotropic virus type 1 tax suppression of 
primary innate immune signaling pathways. J Virol (2015) 89(9):4880–93. 
doi:10.1128/JVI.02493-14 

58. Lui PY, Wong LY, Fung CL, Siu KL, Yeung ML, Yuen KS, et  al. Middle 
east respiratory syndrome coronavirus M protein suppresses type I 
interferon expression through the inhibition of TBK1-dependent phos-
phorylation of IRF3. Emerg Microbes Infect (2016) 5:e39. doi:10.1038/emi. 
2016.33 

59. Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P, Jin DY. Suppression of innate 
antiviral response by severe acute respiratory syndrome coronavirus M pro-
tein is mediated through the first transmembrane domain. Cell Mol Immunol 
(2014) 11(2):141–9. doi:10.1038/cmi.2013.61 

60. Cramer P, Muller CW. A firm hand on NFkappaB: structures of the 
IkappaBalpha-NFkappaB complex. Structure (1999) 7(1):R1–6. doi:10.1016/
S0969-2126(99)80002-1 

61. Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB 
pathway. Trends Biochem Sci (2004) 29(2):72–9. doi:10.1016/j.tibs.2003. 
12.003 

62. Kroll M, Margottin F, Kohl A, Renard P, Durand H, Concordet JP, et  al. 
Inducible degradation of IkappaBalpha by the proteasome requires interac-
tion with the F-box protein h-betaTrCP. J Biol Chem (1999) 274(12):7941–5. 
doi:10.1074/jbc.274.12.7941 

63. Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol 
Cell Biol (2004) 5(5):392–401. doi:10.1038/nrm1368 

64. Huang L, Liu Q, Zhang L, Zhang Q, Hu L, Li C, et al. Encephalomyocarditis 
virus 3C protease relieves TRAF family member-associated NF-kappaB 
activator (TANK) inhibitory effect on TRAF6-mediated NF-kappaB sig-
naling through cleavage of TANK. J Biol Chem (2015) 290(46):27618–32. 
doi:10.1074/jbc.M115.660761

65. Wang D, Fang L, Shi Y, Zhang H, Gao L, Peng G, et al. Porcine epidemic diar-
rhea virus 3C-like protease regulates its interferon antagonism by cleaving 
NEMO. J Virol (2016) 90(4):2090–101. doi:10.1128/JVI.02514-15 

66. Wang D, Fang L, Wei D, Zhang H, Luo R, Chen H, et al. Hepatitis A virus 3C 
protease cleaves NEMO to impair induction of beta interferon. J Virol (2014) 
88(17):10252–8. doi:10.1128/JVI.00869-14 

67. Wang D, Fang L, Li K, Zhong H, Fan J, Ouyang C, et al. Foot-and-mouth 
disease virus 3C protease cleaves NEMO to impair innate immune signaling. 
J Virol (2012) 86(17):9311–22. doi:10.1128/JVI.00722-12 

68. Di Fiore IJ, Pane JA, Holloway G, Coulson BS. NSP1 of human rotaviruses 
commonly inhibits NF-kappaB signalling by inducing beta-TrCP degrada-
tion. J Gen Virol (2015) 96(Pt 7):1768–76. doi:10.1099/vir.0.000093 

69. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, 
et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling 
pathway. Nat Immunol (2003) 4(5):491–6. doi:10.1038/ni921 

70. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering 
the interferon antiviral response through an IKK-related pathway. 
Science (2003) 300(5622):1148–51. doi:10.1126/science.1081315 

71. Hacker H, Karin M. Regulation and function of IKK and IKK-related 
kinases. Sci STKE (2006) 2006(357):re13. doi:10.1126/stke.3572006re13 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1016/j.immuni.2012.11.018
http://dx.doi.org/10.1016/j.chom.2012.04.006
http://dx.doi.org/10.1016/j.chom.2012.04.006
http://dx.doi.org/10.1016/j.coviro.2015.04.004
http://dx.doi.org/10.1002/rmv.680
http://dx.doi.org/10.1016/j.micinf.2012.10.011
http://dx.doi.org/10.1038/ni1061
http://dx.doi.org/10.1038/cdd.2012.22
http://dx.doi.org/10.1038/cdd.2012.22
http://dx.doi.org/10.1038/nature03124
http://dx.doi.org/10.14800/macrophage.1009
http://dx.doi.org/10.14800/macrophage.1009
http://dx.doi.org/10.1128/JVI.03129-12
http://dx.doi.org/10.1016/j.virol.2015.09.021
http://dx.doi.org/10.1016/j.virol.2015.09.021
http://dx.doi.org/10.1128/JVI.01310-16
http://dx.doi.org/10.1038/srep26150
http://dx.doi.org/10.1038/ni.3393
http://dx.doi.org/10.1128/MCB.01368-10
http://dx.doi.org/10.1128/MCB.01368-10
http://dx.doi.org/10.1016/j.celrep.2015.04.047
http://dx.doi.org/10.1038/nature09907
http://dx.doi.org/10.1002/eji.201545794
http://dx.doi.org/10.1128/JVI.00221-16
http://dx.doi.org/10.1099/jgv.0.000257
http://dx.doi.org/10.1073/pnas.0508531102
http://dx.doi.org/10.1111/jcmm.12801
http://dx.doi.org/10.1111/jcmm.12801
http://dx.doi.org/10.1038/srep28497
http://dx.doi.org/10.1186/s12985-015-0345-x
http://dx.doi.org/10.4049/jimmunol.1303196
http://dx.doi.org/10.1038/ni.1815
http://dx.doi.org/10.1128/JVI.02493-14
http://dx.doi.org/10.1038/emi.2016.33
http://dx.doi.org/10.1038/emi.2016.33
http://dx.doi.org/10.1038/cmi.2013.61
http://dx.doi.org/10.1016/S0969-2126(99)80002-1
http://dx.doi.org/10.1016/S0969-2126(99)80002-1
http://dx.doi.org/10.1016/j.tibs.2003.12.003
http://dx.doi.org/10.1016/j.tibs.2003.12.003
http://dx.doi.org/10.1074/jbc.274.12.7941
http://dx.doi.org/10.1038/nrm1368
http://dx.doi.org/10.1074/jbc.M115.660761
http://dx.doi.org/10.1128/JVI.02514-15
http://dx.doi.org/10.1128/JVI.00869-14
http://dx.doi.org/10.1128/JVI.00722-12
http://dx.doi.org/10.1099/vir.0.000093
http://dx.doi.org/10.1038/ni921
http://dx.doi.org/10.1126/science.1081315
http://dx.doi.org/10.1126/stke.3572006re13


9

Schulz and Mossman Viral Evasion of Interferon Pathways

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 498

72. Ikeda F, Hecker CM, Rozenknop A, Nordmeier RD, Rogov V, Hofmann K, 
et al. Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in reg-
ulation of IFN-inducible genes. EMBO J (2007) 26(14):3451–62. doi:10.1038/
sj.emboj.7601773 

73. Verhelst K, Verstrepen L, Carpentier I, Beyaert R. IkappaB kinase epsilon 
(IKKepsilon): a therapeutic target in inflammation and cancer. Biochem 
Pharmacol (2013) 85(7):873–80. doi:10.1016/j.bcp.2013.01.007 

74. Weil R, Laplantine E, Genin P. Regulation of TBK1 activity by optineurin 
contributes to cell cycle-dependent expression of the interferon pathway. 
Cytokine Growth Factor Rev (2016) 29:23–33. doi:10.1016/j.cytogfr.2016. 
03.001 

75. Zhao W. Negative regulation of TBK1-mediated antiviral immunity. FEBS 
Lett (2013) 587(6):542–8. doi:10.1016/j.febslet.2013.01.052 

76. Honda K, Taniguchi T. IRFs: master regulators of signalling by toll-like 
receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 
(2006) 6(9):644–58. doi:10.1038/nri1900 

77. Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription 
factors in immunity and oncogenesis. Annu Rev Immunol (2008) 26:535–84. 
doi:10.1146/annurev.immunol.26.021607.090400 

78. Ikushima H, Negishi H, Taniguchi T. The IRF family transcription factors 
at the interface of innate and adaptive immune responses. Cold Spring Harb 
Symp Quant Biol (2013) 78:105–16. doi:10.1101/sqb.2013.78.020321 

79. Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. Direct 
triggering of the type I interferon system by virus infection: activation of 
a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 
(1998) 17(4):1087–95. doi:10.1093/emboj/17.4.1087 

80. Yang H, Ma G, Lin CH, Orr M, Wathelet MG. Mechanism for transcriptional 
synergy between interferon regulatory factor (IRF)-3 and IRF-7 in activation 
of the interferon-β gene promoter. Eur J Biochem (2004) 271(18):3693–703. 
doi:10.1111/j.1432-1033.2004.04310.x 

81. Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, et al. Middle East respiratory 
syndrome coronavirus ORF4b protein inhibits type I interferon production 
through both cytoplasmic and nuclear targets. Sci Rep (2015) 5:17554. 
doi:10.1038/srep17554 

82. Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert 
LS, et  al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to 
inhibit virus-induced type I IFN expression. EMBO J (2016) 35(13):1385–99. 
doi:10.15252/embj.201593458 

83. Zhang D, Su C, Zheng C. Herpes simplex virus 1 serine protease VP24 
blocks the DNA-sensing signal pathway by abrogating activation of inter-
feron regulatory factor 3. J Virol (2016) 90(12):5824–9. doi:10.1128/JVI. 
00186-16 

84. Dalrymple NA, Cimica V, Mackow ER. Dengue virus NS proteins inhibit 
RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: dengue 
virus serotype 1 NS4A is a unique interferon-regulating virulence determi-
nant. MBio (2015) 6(3):e515–53. doi:10.1128/mBio.00553-15 

85. Ding Z, Fang L, Jing H, Zeng S, Wang D, Liu L, et  al. Porcine epidemic 
diarrhea virus nucleocapsid protein antagonizes beta interferon production 
by sequestering the interaction between IRF3 and TBK1. J Virol (2014) 
88(16):8936–45. doi:10.1128/JVI.00700-14 

86. Diani E, Avesani F, Bergamo E, Cremonese G, Bertazzoni U, Romanelli MG. 
HTLV-1 Tax protein recruitment into IKKepsilon and TBK1 kinase com-
plexes enhances IFN-I expression. Virology (2015) 476:92–9. doi:10.1016/j.
virol.2014.12.005 

87. Yuen CK, Chan CP, Fung SY, Wang PH, Wong WM, Tang HM, et  al. 
Suppression of type I interferon production by human T-cell leukemia virus 
type 1 oncoprotein tax through inhibition of IRF3 phosphorylation. J Virol 
(2016) 90(8):3902–12. doi:10.1128/JVI.00129-16 

88. Masatani T, Ozawa M, Yamada K, Ito N, Horie M, Matsuu A, et  al. 
Contribution of the interaction between the rabies virus P protein and 
I-kappa B kinase to the inhibition of type I IFN induction signalling. J Gen 
Virol (2016) 97(2):316–26. doi:10.1099/jgv.0.000362 

89. Luo J, Fang L, Dong N, Fang P, Ding Z, Wang D, et al. Porcine deltacoronavirus 
(PDCoV) infection suppresses RIG-I-mediated interferon-beta production. 
Virology (2016) 495:10–7. doi:10.1016/j.virol.2016.04.025 

90. Kotla S, Gustin KE. Proteolysis of MDA5 and IPS-1 is not required for 
inhibition of the type I IFN response by poliovirus. Virol J (2015) 12:158. 
doi:10.1186/s12985-015-0393-2 

91. Huang F, Yang C, Yu W, Bi Y, Long F, Wang J, et  al. Hepatitis E virus 
infection activates signal regulator protein alpha to down-regulate type I 
interferon. Immunol Res (2016) 64(1):115–22. doi:10.1007/s12026-015- 
8729-y 

92. Zhang R, Fang L, Wu W, Zhao F, Song T, Xie L, et al. Porcine bocavirus NP1 
protein suppresses type I IFN production by interfering with IRF3  DNA-
binding activity. Virus Genes (2016) 52(6):797–805. doi:10.1007/s11262-016- 
1377-z 

93. Burysek L, Yeow WS, Lubyova B, Kellum M, Schafer SL, Huang YQ, et al. 
Functional analysis of human herpesvirus 8-encoded viral interferon regu-
latory factor 1 and its association with cellular interferon regulatory factors 
and p300. J Virol (1999) 73(9):7334–42. 

94. Seo T, Lee D, Lee B, Chung JH, Choe J. Viral interferon regulatory factor 1 
of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) binds to, 
and inhibits transactivation of, CREB-binding protein. Biochem Biophys Res 
Commun (2000) 270(1):23–7. doi:10.1006/bbrc.2000.2393 

95. Morin G, Robinson BA, Rogers KS, Wong SW. A rhesus rhadinovirus viral 
interferon (IFN) regulatory factor is virion associated and inhibits the 
early IFN antiviral response. J Virol (2015) 89(15):7707–21. doi:10.1128/
JVI.01175-15 

96. Zhang Q, Shi K, Yoo D. Suppression of type I interferon production by 
porcine epidemic diarrhea virus and degradation of CREB-binding protein 
by nsp1. Virology (2016) 489:252–68. doi:10.1016/j.virol.2015.12.010 

97. Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli 
N. Classical swine fever virus Npro interacts with interferon regulatory factor 
3 and induces its proteasomal degradation. J Virol (2007) 81(7):3087–96. 
doi:10.1128/JVI.02032-06 

98. Seago J, Hilton L, Reid E, Doceul V, Jeyatheesan J, Moganeradj K, et al. The 
Npro product of classical swine fever virus and bovine viral diarrhea virus 
uses a conserved mechanism to target interferon regulatory factor-3. J Gen 
Virol (2007) 88(Pt 11):3002–6. doi:10.1099/vir.0.82934-0 

99. Gottipati K, Holthauzen LM, Ruggli N, Choi KH. Pestivirus Npro directly 
interacts with interferon regulatory factor 3 (IRF3) monomer and dimer. 
J Virol (2016) 90(17):7740–7. doi:10.1128/JVI.00318-16 

100. Lei X, Xiao X, Xue Q, Jin Q, He B, Wang J. Cleavage of interferon regulatory 
factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol (2013) 
87(3):1690–8. doi:10.1128/JVI.01855-12 

101. Xiang Z, Liu L, Lei X, Zhou Z, He B, Wang J. 3C protease of enterovirus D68 
inhibits cellular defense mediated by interferon regulatory factor 7. J Virol 
(2016) 90(3):1613–21. doi:10.1128/JVI.02395-15 

102. Zhang BC, Zhou ZJ, Sun L. pol-miR-731, a teleost miRNA upregulated 
by megalocytivirus, negatively regulates virus-induced type I interferon 
response, apoptosis, and cell cycle arrest. Sci Rep (2016) 6:28354. doi:10.1038/
srep28354 

103. de Weerd NA, Nguyen T. The interferons and their receptors – distribution 
and regulation. Immunol Cell Biol (2012) 90(5):483–91. doi:10.1038/
icb.2012.9 

104. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons 
to cytokines. J Biol Chem (2007) 282(28):20059–63. doi:10.1074/jbc.
R700016200 

105. Reich NC. STATs get their move on. JAKSTAT (2013) 2(4):e27080. 
doi:10.4161/jkst.27080 

106. Au-Yeung N, Mandhana R, Horvath CM. Transcriptional regulation by 
STAT1 and STAT2 in the interferon JAK-STAT pathway. JAKSTAT (2013) 
2(3):e23931. doi:10.4161/jkst.23931 

107. Fink K, Grandvaux N. STAT2 and IRF9: beyond ISGF3. JAKSTAT (2013) 
2(4):e27521. doi:10.4161/jkst.27521 

108. Porritt RA, Hertzog PJ. Dynamic control of type I IFN signalling by an inte-
grated network of negative regulators. Trends Immunol (2015) 36(3):150–60. 
doi:10.1016/j.it.2015.02.002 

109. Xia C, Vijayan M, Pritzl CJ, Fuchs SY, McDermott AB, Hahm B. 
Hemagglutinin of influenza A virus antagonizes type I interferon (IFN) 
responses by inducing degradation of type I IFN receptor 1. J Virol (2016) 
90(5):2403–17. doi:10.1128/JVI.02749-15 

110. Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor 
RT, et al. Flavivirus antagonism of type I interferon signaling reveals proli-
dase as a regulator of IFNAR1 surface expression. Cell Host Microbe (2015) 
18(1):61–74. doi:10.1016/j.chom.2015.06.007 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1038/sj.emboj.7601773
http://dx.doi.org/10.1038/sj.emboj.7601773
http://dx.doi.org/10.1016/j.bcp.2013.01.007
http://dx.doi.org/10.1016/j.cytogfr.2016.03.001
http://dx.doi.org/10.1016/j.cytogfr.2016.03.001
http://dx.doi.org/10.1016/j.febslet.2013.01.052
http://dx.doi.org/10.1038/nri1900
http://dx.doi.org/10.1146/annurev.immunol.26.021607.090400
http://dx.doi.org/10.1101/sqb.2013.78.020321
http://dx.doi.org/10.1093/emboj/17.4.1087
http://dx.doi.org/10.1111/j.1432-1033.2004.04310.x
http://dx.doi.org/10.1038/srep17554
http://dx.doi.org/10.15252/embj.201593458
http://dx.doi.org/10.1128/JVI.00186-16
http://dx.doi.org/10.1128/JVI.00186-16
http://dx.doi.org/10.1128/mBio.00553-15
http://dx.doi.org/10.1128/JVI.00700-14
http://dx.doi.org/10.1016/j.virol.2014.12.005
http://dx.doi.org/10.1016/j.virol.2014.12.005
http://dx.doi.org/10.1128/JVI.00129-16
http://dx.doi.org/10.1099/jgv.0.000362
http://dx.doi.org/10.1016/j.virol.2016.04.025
http://dx.doi.org/10.1186/s12985-015-0393-2
http://dx.doi.org/10.1007/s12026-015-8729-y
http://dx.doi.org/10.1007/s12026-015-8729-y
http://dx.doi.org/10.1007/s11262-016-1377-z
http://dx.doi.org/10.1007/s11262-016-1377-z
http://dx.doi.org/10.1006/bbrc.2000.2393
http://dx.doi.org/10.1128/JVI.01175-15
http://dx.doi.org/10.1128/JVI.01175-15
http://dx.doi.org/10.1016/j.virol.2015.12.010
http://dx.doi.org/10.1128/JVI.02032-06
http://dx.doi.org/10.1099/vir.0.82934-0
http://dx.doi.org/10.1128/JVI.00318-16
http://dx.doi.org/10.1128/JVI.01855-12
http://dx.doi.org/10.1128/JVI.02395-15
http://dx.doi.org/10.1038/srep28354
http://dx.doi.org/10.1038/srep28354
http://dx.doi.org/10.1038/icb.2012.9
http://dx.doi.org/10.1038/icb.2012.9
http://dx.doi.org/10.1074/jbc.R700016200
http://dx.doi.org/10.1074/jbc.R700016200
http://dx.doi.org/10.4161/jkst.27080
http://dx.doi.org/10.4161/jkst.23931
http://dx.doi.org/10.4161/jkst.27521
http://dx.doi.org/10.1016/j.it.2015.02.002
http://dx.doi.org/10.1128/JVI.02749-15
http://dx.doi.org/10.1016/j.chom.2015.06.007


10

Schulz and Mossman Viral Evasion of Interferon Pathways

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 498

111. Guo L, Luo X, Li R, Xu Y, Zhang J, Ge J, et al. Porcine epidemic diarrhea virus 
infection inhibits interferon signaling by targeted degradation of STAT1. 
J Virol (2016) 90(18):8281–92. doi:10.1128/JVI.01091-16 

112. Pisanelli G, Laurent-Rolle M, Manicassamy B, Belicha-Villanueva A, 
Morrison J, Lozano-Dubernard B, et al. La Piedad Michoacan Mexico Virus 
V protein antagonizes type I interferon response by binding STAT2 protein 
and preventing STATs nuclear translocation. Virus Res (2016) 213:11–22. 
doi:10.1016/j.virusres.2015.10.027 

113. Hastings AK, Amato KR, Wen SC, Peterson LS, Williams JV. Human 
metapneumovirus small hydrophobic (SH) protein downregulates type I 
IFN pathway signaling by affecting STAT1 expression and phosphorylation. 
Virology (2016) 494:248–56. doi:10.1016/j.virol.2016.04.022 

114. Verweij MC, Wellish M, Whitmer T, Malouli D, Lapel M, Jonjic S, et  al. 
Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through 
multiple mechanisms. PLoS Pathog (2015) 11(5):e1004901. doi:10.1371/
journal.ppat.1004901 

115. Kint J, Dickhout A, Kutter J, Maier HJ, Britton P, Koumans J, et al. Infectious 
bronchitis coronavirus inhibits STAT1 signaling and requires accessory pro-
teins for resistance to type I interferon activity. J Virol (2015) 89(23):12047–57. 
doi:10.1128/JVI.01057-15 

116. Wu J, Chen X, Ye H, Yao M, Li S, Chen L. Nonstructural protein (NS1) of 
human parvovirus B19 stimulates host innate immunity and blunts the 
exogenous type I interferon signaling in vitro. Virus Res (2016) 222:48–52. 
doi:10.1016/j.virusres.2016.06.004 

117. Chaudhary V, Zhang S, Yuen KS, Li C, Lui PY, Fung SY, et al. Suppression of 
type I and type III IFN signalling by NSs protein of severe fever with throm-
bocytopenia syndrome virus through inhibition of STAT1 phosphorylation 
and activation. J Gen Virol (2015) 96(11):3204–11. doi:10.1099/jgv.0.000280 

118. Ning YJ, Feng K, Min YQ, Cao WC, Wang M, Deng F, et al. Disruption of type 
I interferon signaling by the nonstructural protein of severe fever with throm-
bocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into 
inclusion bodies. J Virol (2015) 89(8):4227–36. doi:10.1128/JVI.00154-15 

119. Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling 
(SOCS) proteins in regulation of the immune response. Annu Rev Immunol 
(2004) 22:503–29. doi:10.1146/annurev.immunol.22.091003.090312 

120. Ilangumaran S, Ramanathan S, Rottapel R. Regulation of the immune system 
by SOCS family adaptor proteins. Semin Immunol (2004) 16(6):351–65. 
doi:10.1016/j.smim.2004.08.015 

121. Sharma N, Kumawat KL, Rastogi M, Basu A, Singh SK. Japanese encephali-
tis virus exploits the microRNA-432 to regulate the expression of suppres-
sor of cytokine signaling (SOCS) 5. Sci Rep (2016) 6:27685. doi:10.1038/
srep27685 

122. Choi EJ, Lee CH, Shin OS. Suppressor of cytokine signaling 3 expression 
induced by varicella-zoster virus infection results in the modulation of virus 
replication. Scand J Immunol (2015) 82(4):337–44. doi:10.1111/sji.12323 

123. Zheng J, Yang P, Tang Y, Pan Z, Zhao D. Respiratory syncytial virus non-
structural proteins upregulate SOCS1 and SOCS3 in the different manner 
from endogenous IFN signaling. J Immunol Res (2015) 2015:738547. 
doi:10.1155/2015/738547 

124. Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery. 
Nat Rev Microbiol (2011) 9(12):860–75. doi:10.1038/nrmicro2655 

125. Kint J, Langereis MA, Maier HJ, Britton P, van Kuppeveld FJ, Koumans J, et al. 
Infectious bronchitis coronavirus limits interferon production by inducing a 
host shutoff that requires accessory protein 5b. J Virol (2016) 90(16):7519–28. 
doi:10.1128/JVI.00627-16 

126. Katsoulidis E, Kaur S, Platanias LC. Deregulation of interferon signaling in 
malignant cells. Pharmaceuticals (Basel) (2010) 3(2):406–18. doi:10.3390/
ph3020406

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Schulz and Mossman. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://dx.doi.org/10.1128/JVI.01091-16
http://dx.doi.org/10.1016/j.virusres.2015.10.027
http://dx.doi.org/10.1016/j.virol.2016.04.022
http://dx.doi.org/10.1371/journal.ppat.1004901
http://dx.doi.org/10.1371/journal.ppat.1004901
http://dx.doi.org/10.1128/JVI.01057-15
http://dx.doi.org/10.1016/j.virusres.2016.06.004
http://dx.doi.org/10.1099/jgv.0.000280
http://dx.doi.org/10.1128/JVI.00154-15
http://dx.doi.org/10.1146/annurev.immunol.22.091003.090312
http://dx.doi.org/10.1016/j.smim.2004.08.015
http://dx.doi.org/10.1038/srep27685
http://dx.doi.org/10.1038/srep27685
http://dx.doi.org/10.1111/sji.12323
http://dx.doi.org/10.1155/2015/738547
http://dx.doi.org/10.1038/nrmicro2655
http://dx.doi.org/10.1128/JVI.00627-16
http://dx.doi.org/10.3390/ph3020406
http://dx.doi.org/10.3390/ph3020406
http://creativecommons.org/licenses/by/4.0/

	Viral Evasion Strategies in Type I IFN Signaling – A Summary of Recent Developments
	Introduction
	Virus Recognition
	Activation of Transcription Factors and IFN Transcription
	Type I IFN Signaling
	Host Shut Off
	Conclusion
	Author Contributions
	Funding
	References


