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All hematopoietic and immune cells are continuously generated by hematopoietic stem 
cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process 
of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while 
HPCs are actively proliferating and contributing to daily hematopoiesis. In response to 
hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, 
HSCs can be activated to proliferate and engage in blood formation. The HSC activation 
induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms 
involving pattern recognition receptors or cytokine/chemokine receptors. In contrast 
to the hematopoietic challenges with obvious clinical symptoms, how the aging pro-
cess, which involves low-grade chronic inflammation, impacts hematopoiesis remains 
undefined. Herein, we summarize recent findings pertaining to functional alternations 
of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the pro-
cesses of aging and inflammation and highlight some common cellular and molecular 
changes during the processes that influence hematopoiesis and its cells of origin, HSCs 
and HPCs, as well as the BM microenvironment. We also discuss how age-depen-
dent alterations of the immune system lead to subclinical inflammatory states and how 
inflammatory signaling might be involved in hematopoietic aging. Our aim is to present 
evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging 
of hematopoiesis.
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iNTRODUCTiON

Hematopoiesis
Hematopoiesis is an active, continuous process involving the production and consumption of 
mature blood cells that constitute the hemato-lymphoid system. It has been estimated that in a 
healthy individual (70 kg), approximately 5 × 1011 mature blood cells are produced daily throughout 
that individual’s lifetime (1). All blood cells arise from a small population of hematopoietic stem 
cells (HSCs) in the bone marrow (BM) that have two unique properties: self-renewing capacity, 
the ability to generate themselves, and multi-lineage differentiation capacity, the ability to produce 
all blood cell types, including red blood cells, platelets, myeloid lineage cells, such as monocytes 
and granulocytes, as well as lymphoid lineage cells, such as natural killer (NK) cells, B cells, and 
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FiGURe 1 | inflammation- and aging-associated changes in hematopoiesis. (A) In steady state, platelet-biased HSCs are at the top of the hematopoietic 
hierarchy and are able to generate myeloid-biased and lymphoid-biased HSCs. In turn, myeloid-biased HSCs can generate both balanced- and lymphoid-biased 
HSCs, whereas lymphoid-biased HSCs do not generate their myeloid-biased counterparts. Platelet-biased HSCs have the potential to repopulate platelet 
populations faster than other HSC subsets. Myeloid-biased HSCs preferentially give rise to myeloid lineage cells through myeloid committed progenitors. Balanced 
HSCs make equal contributions to both myeloid and lymphoid lineages. Lymphoid-biased HSCs predominantly generate lymphoid over myeloid lineage cells 
through lymphoid-committed progenitors. Dashed lines represent the potential of one HSC subset to generate another HSC subset. Solid lines represent 
differentiation potential. (B) Inflammation enhances myeloid lineage production, including myeloid progenitors and mature myeloid cells, leading to myeloid bias in 
hematopoiesis. (C) During the processes of aging, myeloid-biased HSCs increase and produce more myeloid than lymphoid cells. Red arrows indicate the dominant 
differentiation pathway. Dashed lines represent a potential pathway. Solid lines represent the differentiation potential shown previously. The thickness of the lines 
reflects the relative contributions to each lineage commitment.
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T cells. Since, in the steady state, most adult HSCs are in the 
G0 phase of cell cycle, i.e., they are quiescent and are estimated 
to turnover slowly on a monthly time scale (2–5), daily hemat-
opoietic production is mainly sustained by highly proliferative 
downstream hematopoietic progenitor cells (HPCs) (6–8). 
Cellular behavior of HSCs, i.e., self-renewal, differentiation, and 
apoptosis, is tightly controlled by both cell-intrinsic factors, e.g., 
transcriptional regulatory networks and cellular metabolism, 
and cell-extrinsic factors, e.g., cytokines, chemokines, growth 
factors, metabolites, and exogenous pathogen-derived molecules 
(9–11). When mature hematopoietic cells are consumed and 
need to be replenished in response to hematopoietic challenges, 

HSCs can translate locally produced and/or systematically 
migrating external signals into hematopoiesis by increasing their 
own proliferation and differentiation (12, 13).

Hematopoietic Stem Cell Heterogeneity
Recent studies with single-cell transplantation and lineage trac-
ing have revealed cellular heterogeneity within a functionally 
defined HSC population and have identified HSC subtypes with 
distinct lineage differentiation potentials (Figure  1A) (14–18). 
Myeloid-biased HSCs give rise to more myeloid lineage than 
lymphoid lineage cells, while lymphoid-biased HSCs favor 
lymphopoiesis over myelopoiesis, and balanced HSCs produce 
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FiGURe 2 | impacts of aging on immunity and hematopoiesis. During aging, myelopoiesis results in the domination of hematopoiesis over lymphopoiesis due 
to increased numbers of myeloid-biased HSCs, myeloid progenitors, and myeloid cells, while the pool consisting of B and T cells shrinks. These hematopoietic 
changes result in increased dependence of the immune system on innate rather than acquired immunity, with an enhanced basal level of inflammation, increasing 
the risk of myeloid neoplasia or spontaneous anemia.
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myeloid and lymphoid lineage cells equally (14, 16). It has also 
been indicated that there is a certain functional hierarchy within 
these lineage-biased HSCs (16, 19). Myeloid-biased HSCs defined 
as CD150highCD34− LKS have greater self-renewal potential than 
lymphoid-biased or balanced HSCs (CD150low/negativeCD34− LKS) 
and are able to replenish all types of HSC populations, indicating 
that myeloid-biased HSCs are higher in the HSC hierarchy than 
other HSCs. In addition, it was recently found that a subset of 
HSCs expressing von Willebrand factor efficiently gives rise to 
platelets and erythroid lineage cells earlier than other lineages, 
and this subset was therefore named platelet-biased HSCs. As 
the platelet-biased HSCs can generate myeloid-biased HSCs, they 
are suggested to be positioned at the apex of the hematopoietic 
hierarchy (17, 20).

Cellular heterogeneity and lineage priming have been 
observed at the level of not only HSCs but also HPCs (6, 21–23). 
A subset of multipotent progenitors (MPPs), MPP2 (LKS 
Flt3−CD150+CD48+), preferentially gives rise to platelets, eryth-
rocytes, and granulocyte-monocyte progenitors (GMPs), while 
MPP3 (LKS Flt3−CD150−CD48+) is primed to GMP, and to a 

lesser extent, the erythroid lineage with no potential for platelet 
generation. MPP4 (LKS Flt3+CD150−CD48+) is biased toward 
lymphoid lineage output. These MPP subsets are independent 
of one another and, as each is produced directly by HSCs, they 
lack the capacity to give rise to one another. However, it remains 
to be determined whether HSC subsets with distinct lineage 
outputs have any clonal relationship with MPP subsets.

HeMATOPOieTiC AGiNG

Hematopoietic Changes during Aging
Aging of the hematopoietic system is represented by functional 
declines in both the adaptive and the innate immune system, 
an immunosenescence that leads to high susceptibility to 
infections, low efficacy of vaccinations, and increased vulner-
ability to the development of autoimmunity and hematologic 
malignancies (24, 25). As shown in Figure 2, (a) B cell produc-
tion decreases significantly with advancing age, i.e., the naïve 
B cell pool diminishes, while the memory B cell pool expands. 
Diversity of the B cell repertoire also decreases in association 
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with lowered antibody affinity and impaired class switching. 
B cells are prone to produce auto-antibodies increasing the 
incidence of spontaneous autoimmunity (26, 27); (b) de novo 
T cell production also declines with aging partially due to 
thymic involution. CD8+ T cells undergo oligoclonal expansion 
and their repertoire is skewed toward previously encountered 
antigens, as niches for naïve T cells in peripheral lymphoid tis-
sues become occupied by terminally differentiated cells (28); (c) 
NK cells show diminished cytotoxicity and cytokine secretion; 
(d) although myeloid cells increase in number, their functional-
ity is decreased, e.g., neutrophils migrate less in response to 
stimuli, and macrophages have reduced phagocytic activity and 
decreased oxidative burst (29–31); and (e) erythropoiesis also 
declines in elderly people causing frequent anemia (32), while 
the thrombocytic lineage has not, to date, been reported to be 
significantly affected by aging.

HSC Functional Alteration during Aging
Since multiple blood lineages change during the aging process, it 
is possible that hematopoietic aging is in part due to functional 
changes in early hematopoietic compartments that repopulate 
the affected lineages, including HSCs. Single-cell and limiting 
dilution transplantations have demonstrated the self-renewal 
capacity of HSCs to apparently be reduced on a per-cell basis 
during aging, as the frequency of phenotypically defined HSCs 
does not correlate with that of functionally defined HSCs in 
aged BM (19, 33–38). It was also shown that phenotypic HSCs 
(LKS CD34−Flt3−) upregulate CD150 expression (19, 37, 39), 
resulting in expansion of the myeloid-biased HSC population 
and the domination of this fraction over the entire aged HSC 
pool (39), with advancing age (Figure 1B). Consistent with the 
phenotypic characterization, hematopoietic repopulation after 
transplantation is biased toward myeloid cell production, and 
this change in differentiation potential persists over the course 
of serial transplantations, indicative of aging-associated cell-
autonomous alterations in HSCs. Based on these observations, 
two possible theories for age-associated myeloid bias can be 
proposed: (a) clonal evolution within the aged HSC population, 
in which lymphoid-biased HSC clones turn into myeloid-biased 
or platelet-biased HSC clones via cell-intrinsic changes (40); (b) 
clonal composition shift, in which subsets of myeloid-biased 
or platelet-biased HSC clones dominate the entire HSC pool 
via clonal expansion and/or selection (16, 19, 34, 39, 41–43). 
Aging-associated myeloid lineage skewing may also involve 
disturbance in the composition of committed progenitors: 
aged mice show a decreased frequency of common lymphoid 
progenitors, while frequencies of GMPs are increased (37). These 
findings are accompanied by decreased B cell lymphopoiesis and 
diminished fitness of lymphoid progenitors, coinciding with 
altered receptor-associated kinase signaling (44). Moreover, 
the recent identification of myeloid-restricted progenitors with 
long-term repopulating capacity/self-renewal has raised new 
questions regarding the definition of HSCs (18, 45). Therefore, 
which level of the hematopoietic hierarchy is affected by aging 
remains uncertain.

The BM homing efficiency of aged HSCs is significantly reduced 
when transplanted intravenously into irradiated recipients 

(14), although similar mobilizing efficacies are observed in 
aged and young HSCs released into the circulation in response 
to granulocyte colony-stimulating factor (G-CSF) treatment 
(46). Transcriptome profiling of aged versus young HSCs has 
provided molecular insights into potential mechanisms of HSC 
aging (33, 47): aged HSCs show dysregulation of intracellular 
homeostasis, e.g., upregulated stress responses, increased pro-
inflammatory signaling, protein misfolding, downregulated 
DNA repair machinery, and aberrant chromatin modification 
(19, 33, 37). Further investigations have demonstrated that aged 
HSCs accumulate more DNA damage possibly due to higher 
levels of intracellular reactive oxygen species (ROS) and naturally 
produced genotoxic metabolites (48–50), but interestingly, these 
cells are still able to efficiently repair the damage upon cell cycle 
induction (51). Other studies have indicated that accumulation of 
proliferative stress in aged HSCs causes inefficient DNA replica-
tion and transcriptional repression (52). Aged HSCs also exhibit 
activation of the mammalian target of rapamycin (mTOR) (53), 
autophagy-dependent survival (54), dysregulated DNA meth-
ylation, specifically at the site of genes controlling myeloid and 
lymphoid balancing (51), impaired histone modification (55), 
and disturbed cell polarity (56).

These characteristics of HSC aging can, in part, be experi-
mentally recapitulated by increasing the proliferative history of 
HSCs or stressing them with multiple injections of myeloablative 
chemotherapeutic regimens (57), or by conducting serial trans-
plantations (“experimental aging”) (34, 35). As this indicates that 
proliferative history might be associated with the aging process, 
several groups have compared the cycling activity of young 
versus aged HSCs. The results are, however, controversial: some 
data indicate that aged HSCs have increased cycling activity 
(36), whereas others suggest no difference in cell cycle status (33, 
38), or more quiescent HSCs in aged as compared to young BM 
(4, 53). These seemingly discrepant results might be partially 
explained by differing immunophenotypic definitions of HSCs 
and/or different experimental approaches to measure cell cycle 
status [reviewed in Ref. (3)].

Aging-Associated Changes in BM Niche
Hematopoietic stem cell homeostasis is preserved in the BM 
microenvironment, the so-called HSC niche that supplies these 
cells with pivotal factors for their own maintenance (3, 58). 
Recent research on the BM niche has revealed a perivascular 
HSC niche comprised mesenchymal stromal cells (MSCs) and 
endothelial cells (ECs) as major cellular components, reflecting 
hierarchic HSC function and the effects exerted by aging (58, 
59). MSCs are characterized by plastic adherence, high growth 
potential, and mesenchymal immunophenotypes, as well as 
differentiation into mesenchymal lineages, such as osteocytes, 
adipocytes, chondrocytes, fibroblasts, and epithelial cells (60, 
61). Aged MSCs exhibit reduced clonogenic and proliferative 
capacity, and differentiation potentials are skewed toward adi-
pogenesis at the expense of osteogenesis (62–64). These cells also 
show enlargement, telomere shortening, or p53/p21-mediated 
DNA damage accumulation, impaired DNA methylation or 
histone acetylation, and increased levels of ROS and nitric oxide 
(NO) (65–69). Although age-dependent mechanisms underlying 
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adipogenesis-favoring MSC differentiation are not as yet fully 
understood, possible molecular changes have been reported, 
including activations of peroxisome proliferator-activated recep-
tor gamma 2 and CCAAT/enhancer binding protein (70, 71). 
Adipogenesis enhancement in aged BM (72) might be linked to 
dysregulation of insulin growth factor signaling (27), changes in 
extracellular matrix composition, and decreased bone formation 
(73, 74). Since adipocytes are shown to negatively regulate HSC 
function and B-lymphopoiesis (75, 76), adipogenesis enhanced 
in aged BM might promote myelopoiesis over lymphopoiesis as 
well as impair HSC function. In fact, young HSCs in the aged 
environment reportedly tend to produce slightly more myeloid 
cells than in a young environment (37, 77).

Endothelial cells are another niche cell component that secrete 
HSC maintenance and retention factors, such as stem cell fac-
tor and CXC motif ligand (CXCL) 12 (58, 78). Aging involves 
decreases in CD31hiEmcnhi EC-associated osteoprogenitors (79), 
fewer PDGFRβ+/NG2+ perivascular cells, arterioles, and ECs, 
thereby resulting in reduced stem cell factor production (59). 
Activation of endothelial Notch signaling can reverse these age-
dependent vascular niche alterations, without affecting aged HSC 
function. Additionally, vascular endothelial function declines 
with aging, due to reduced NO which in turn induces vasodila-
tion, elevated oxidative stress causing genomic instability, and 
increased ROS levels associated with impaired proangiogenic 
functions of EC (80). As it has been suggested that NO produc-
tion regulates CXCL12-mediated HSC mobilization (81), aging-
related reductions of EC-derived NO and the enhancement of 
angiogenic function in the BM niche might be involved in aber-
rant HSC maintenance and/or retention in aged BM.

Hematopoietic Aging in Humans
While most of the data on aging of the hematopoietic system was 
obtained employing a mouse system, a few pioneering studies 
have indicated similar tendencies in the human hematopoietic 
system. HSCs containing fractions such as Lin−CD34+CD38− 
(29), Lin−CD34+CD38−CD90+CD45RA− (82), or Lin−CD34+CD
10−CD123−CD45RA−CD90+ (83) increase with age. While GMPs 
appear to be retained at the same frequency (29, 82, 83), early B cell 
progenitors and CLPs decrease with advancing age (82, 83). Yet, 
the functionality and differentiation bias of HSCs remain unclear: 
one study, using xenograft mouse models, indicated no change in 
NSG-repopulating cell frequency and decreased myeloid lineage 
repopulation of aged HSCs (29), while another (82) showed a 
two-fold decreased engraftment with significant myeloid lineage 
dominance. Further molecular analyses indicated upregulations 
of myeloid and megakaryocyte-associated genes and downregu-
lations of lymphoid differentiation genes (82, 83). These findings 
indicate major aging-associated changes in hematopoiesis to be 
conserved among species.

iNFLAMMATiON iN HeMATOPOieSiS

Hematopoietic Responses to inflammation
Inflammation is defined as a protective immune response, 
underlain by a variety of pathophysiological processes that 
are in part caused by infection and tissue injury/damage (84). 

There are many different types of endogenous and exogenous 
factors that can potentially induce local or systemic inflamma-
tion: mechanical stimuli (e.g., tissue damage, foreign objects), 
thermal stimuli (e.g., heat, cold), radiation (e.g., ultraviolet, ion-
izing, chemotherapeutic), chemical irritants (e.g., acids, alkalis, 
toxins), physical or psychological stress, autoimmunity (e.g., 
allergens, autoantigens), and pathogens (e.g., bacteria, viruses, 
fungi, protozoal parasites).

Inflammatory responses involving the hemato-immune sys-
tem are exemplified by infection. The first line of defense against 
infection is often initiated by innate immunity: bacterial, viral, 
or fungal pathogens that break through the epithelial barrier 
will be recognized by pattern recognition receptors (PRRs) 
expressed on hematopoietic and non-hematopoietic cells, such 
as dendritic cells (DCs), macrophages, monocytes, and ECs (85). 
Upon ligation of PRR by pathogen-derived molecules, the innate 
immune cells secrete an array of inflammatory cytokines and 
chemokines, e.g., interleukin (IL)-1β, IL-6, CXCL-8, IL-12, and 
tumor necrosis factor (TNF)-α, as well as chemical mediators, 
e.g., leukotriene B4, prostaglandin E2 (PGE2), and histamine 
[reviewed in Ref. (86, 87)]. These biologically active factors 
attract immune effector cells from the circulation to the site of 
infection, and simultaneously increase vascular permeability to 
allow more immune effector cells to infiltrate and differentiate 
in the inflamed tissues. This process causes heat (calor), pain 
(dolor), redness (rubor), and swelling, which are referred to as 
hallmarks of inflammation (87).

Toll-like receptors (TLRs) belong to the PRR family and 
recognize microbial products derived from exogenous patho-
gen molecules, such as lipopolysaccharide (LPS) for TLR-4, 
lipopeptides for TLR-1, -2, and -6, bacterial and viral RNA and 
DNA for TLR-3, -7, -8, and -9, as well as possibly endogenous 
host molecules that are misfolded or modified, including heat 
shock proteins and fibronectin. Binding of the respective 
ligands to TLRs leads to cell proliferation, differentiation, 
and migration (88). For example, activation of TLR signal-
ing on DCs is a key step necessary for their full maturation 
into antigen-presenting cells. When TLRs on DCs are ligated 
by the pathogen molecules encountered, DCs enhance the 
subcellular machineries that process and present pathogen-
derived antigens on their cell surfaces, as well as triggering the 
production of pro-inflammatory cytokines/chemokines, e.g., 
macrophage inflammatory protein (MIP)-1α, MIP-1β, and the 
regulated on activation, normal T cell expressed and secreted 
(RANTES) chemokine. They also up/downregulate chemokine 
receptors, e.g., CCR1, CCR5, and CCR7, thereby directing 
their migration to secondary lymphoid organs, such as lymph 
nodes or the spleen, where they initiate a second-line defensive 
response by activating adaptive immunity [reviewed in Ref. 
(89)]. Naïve T cells are activated to proliferate and differentiate 
into functionally mature effector cells upon activation of two 
distinct signals through antigen-presenting cells expressing 
the major histocompatibility complex and co-stimulatory 
molecules. These effector T cells in turn migrate to the site 
of infection, and either activate other immune effector cells 
(macrophages, NK cells, neutrophils, eosinophils, mast cells, 
basophils) through cytokine secretion or kill the infected cells 
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FiGURe 3 | Responses of hematopoietic stem and progenitor cells (HSPCs), and non-hematopoietic bone marrow cells to infection. HSPCs and 
non-hematopoietic cells in bone marrow (BM), such as mesenchymal stromal cells (MSCs) and endothelial cells, express both cytokine and pattern recognition 
receptors (PRRs) on their surfaces. In response to infections in peripheral tissues, (a) immune cells or endothelial cells secrete pro-inflammatory cytokines that 
migrate to the BM and stimulate the respective receptors expressed on HSPCs, thereby inducing their proliferation, migration and/or differentiation; (b) alternatively, 
migrating cytokines also can act on MSCs or endothelial cells to enhance their pro-inflammatory cytokine production; and (c) some pathogen-derived molecules 
reach the BM and activate HSPCs directly through PRRs or indirectly through pro-inflammatory cytokines produced by PRR expressing MSCs or HSPCs.
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through release of cytolytic molecules. They also produce IL-4, 
IL-5, interferon (IFN)-γ, and tumor growth factor (TGF)-β to 
activate monoclonal B cells that recognize the specific anti-
gen. This activation process facilitates clonal expansion and 
differentiation into plasma and memory B cells that secrete 
high-affinity antibodies, and therefore enhances subsequent 
humoral immune responses, e.g., neutralization, phagocytosis, 
and opsonization.

HSC Response to infection
Since immune effector cells involved in both innate and adaptive 
immunity are short-lived except for the memory B and T cells 
maintained for life, they need to be replenished by the upstream 
HSCs and progenitor cells (HSPCs) in BM when consumed 
during inflammation (12). Given that HSCs tend to remain in 
a largely quiescent state, as mentioned above (5), understanding 
how these quiescent HSCs respond to inflammation and are 
activated to maintain hematopoietic homeostasis is becoming 
a major research focus. Recent findings have indicated that 
not only mature immune cells but also HSPCs are capable of 
responding to infection by directly sensing pathogen-associated 
molecule patterns through their respective PRR (4, 13, 90–92) 

(Figure 3). The activation of PRR in HSPCs leads to enhanced 
proliferation, increased mobilization from the BM, reduced self-
renewal, and myelopoiesis-favoring differentiation (Figure 1C). 
Since HSPCs also express a broad spectrum of inflammatory 
cytokine/chemokine receptors (12, 93), they can detect milieu 
broad range of pro-inflammatory signals via their respective 
receptors, released systemically or locally by activated immune 
cells in response to infectious challenges, e.g., IFN-α/γ (94–98) 
(Figure  3). These two pathways are not mutually exclusive: 
G-CSF stimulation impairs HSC repopulating potential through 
upregulation of TLR-2 and -4 expressions and activation of the 
subsequent signaling in HSCs (99). When bound to TLR-2 and 
-4, HSPCs have been shown to have the capacity to secrete 
pro-inflammatory cytokines, e.g., IL-6, TGF-β, TNF-α, and 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
all of which activate their respective receptor signaling mecha-
nisms and promote myelopoiesis in a paracrine or an autocrine 
fashion (13). The HSPC responses triggered by TLR activation 
appear to integrate the infectious signals into the process of 
hematopoiesis by recruiting themselves to the inflamed tissues, 
directing their differentiation, and reflecting the high demand 
toward myelopoiesis. A recent study identified stem cell-like 
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megakaryocyte-committed progenitors as a novel inflammation 
responsive cell population remaining dormant and thereby show 
little contribution to megakaryopoiesis in the steady state, but 
in response to acute inflammation, these cells become metaboli-
cally active and rapidly produce platelets to replace those lost 
during inflammatory processes (45).

BM Niche Response to infection
MSCs can influence both innate and acquired immunity through 
cell–cell contact or secretion of soluble factors, e.g., TNF, IL-10, 
IL-6, and PGE2 (100), which inhibit T cell function, DC matura-
tion, and the activation and proliferation of both B and NK cells. 
MSCs have also been shown to express several TLRs, the activa-
tion of which controls inflammatory cytokine production critical 
for their immunosuppressive function (101, 102). TLR activation 
in MSCs reportedly not only influences their functions, e.g., 
differentiation, proliferation, migration, immunomodulation, 
and bone regeneration (103–105), but also regulates HSPC 
proliferation and differentiation toward myeloid development, 
as well as monocyte egress (106, 107) (Figure  3). Moreover, it 
has been shown that pro-inflammatory cytokines control the 
productions of other cytokines/chemokines by MSCs. IFN-γ 
alone or in combination with TNF or IL-1 induces the production 
of nitric oxide synthase or PGE2 in MSCs, thereby inhibiting T 
or NK cell activation, respectively (108). The secretion of IFN-γ 
by cytotoxic CD8+ T cells also leads indirectly to an activation of 
HPCs by promoting the IL-6 production in MSCs (109). During 
early hematopoietic regulation, G-CSF suppresses the production 
of CXCL12 from BM MSCs and mobilizes HSC into circulating 
blood (110).

ECs also express multiple PRRs, and when activated, regulate 
various immune responses acting against infection [reviewed 
in Ref. (111)] (Figure  3). In response to TLR4 activation, ECs 
produce G-CSF that contributes to rapid neutrophil production 
in the BM (112, 113), and at the same time, induces neutrophil 
recruitment to infectious sites (114, 115). Pro-inflammatory 
cytokine signaling influences EC function through nuclear factor 
κB (NFκB) activity. It has also been shown that stimulation of 
ECs in the BM with TNF-α and LPS expands the HPC popula-
tion through modulation of Notch signals (66). When stimulated 
with IL-1β and TNF-α, ECs in the BM are induced to produce 
GM-CSF, which leads to the recruitment of neutrophils and 
expansion of HPCs in the BM (116, 117). Interestingly, it was also 
shown that through MSC-EC interaction, MSCs upregulate IL-6 
production modulating the responses of ECs to inflammatory 
cytokines (118). The results obtained in these studies suggest that 
ECs in the BM play important roles in hematopoietic regulation 
during inflammation.

Taken together, these findings highlight previously unappre-
ciated HSPC responses to infection via TLR-mediated direct or 
cytokine-mediated indirect sensing mechanisms. Inflammatory 
responses play beneficial roles in the activation and replenishment 
of hemato-immune system components and thereby contribute 
to controlling infection. However, if the inflammatory response is 
not discontinued in a timely manner, instead being unnecessarily 
sustained even after infection has resolved, it might ultimately 
have detrimental effects, e.g., tissue damage, chronic diseases, and 

even cancer. In fact, uncontrolled persistent inflammatory signal-
ing is known to promote the development of chronic diseases, 
e.g., rheumatoid arthritis, inflammatory bowel disease, asthma, 
and aplasia. Recent studies have also demonstrated that sustained 
IFN-α/γ activation during chronic infection impairs HSC func-
tion and can ultimately lead to BM failure (94, 119). Chronic 
TNF-α signaling is associated with myelodysplastic syndrome 
and BM failure (120). Therefore, inflammatory responses must 
stop when no longer needed. The appropriate timing of this ces-
sation is critical.

inflammation of the Hematopoietic 
System in Humans
Not only murine but also human HSCs have been shown to 
express TLRs (121, 122). The stimulation of agonists for TLR2, 
TLR7, and TLR8 in vitro induces cytokine production, e.g., IL-1b, 
IL-6, IL-8, TNF-α, and GM-CSF, as well as cell differentiation of 
the myeloid lineage (122, 123). In vitro TLR9 binding by CpG 
DNA reportedly upregulates IL-8 expression via activation of 
ERK1/2 and p38, both mitogen-activated protein kinases, but 
not of NFκB (121). Nevertheless, in contrast to murine HSCs, 
quiescent human HSCs appear to be fully resistant to infection 
with both intracellular bacteria, such as Listeria monocytogenes 
and Salmonella enterica, and extracellular bacteria, including 
Yersinia enterocolitica (124). In contrast, when human CD34+ 
HSPCs were cultured with Escherichia coli, they showed upregu-
lated production of pro-inflammatory cytokines such as IL-1, 
IL-6, IL-8, and TNF through NFκB activation, as do human 
CD34+-derived granulocyte–macrophage lineage cells (125). 
Regarding the HSPC response to inflammatory cytokines, the 
exposure of human CD34+ HSPCs to IFN-γ produces drastic 
transcriptional changes in genes involved in pro-apoptotic pro-
cesses, immune responses, and myeloid proliferation that results 
in an increased number of viable cells (126, 127). While some 
transcriptional changes are specific to HSPCs, others, e.g., cell 
growth and signal transduction, generally occur in stromal cells 
incubated with IFN-γ (127). In contrast, in vitro stimulation with 
IFN-γ and TNF severely compromised the ability of HSPCs to 
undergo multi-lineage reconstitution in xenografted mice (128, 
129). Future studies are required to unravel the details of the dif-
ferent HSPC responses to inflammatory cues and the underlying 
molecular mechanisms.

AGiNG-ASSOCiATeD iNFLAMMATiON: 
“INFLAMM-AGING”

There are similarities between hematopoietic alterations during 
inflammation and those that occur with aging. In response to 
aging and bacterial infection, myelopoiesis becomes dominant 
over lymphopoiesis in relation to immunosenescence (36, 38, 
130, 131). Most notably, B-lymphopoiesis is impaired due to a 
decreased level of E47, a transcription factor essential for B cell 
development, in aged (132) and LPS-treated mice (130). The 
aging-associated myeloid dominance and/or adipogenesis in BM 
might be triggered by increased basal levels of pro-inflammatory 
cytokines even in the absence of infection. Indeed, levels of 
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circulating pro-inflammatory cytokines, such as IL-6, TNF-α, 
IL-1Rα, and C-reactive protein, are reportedly upregulated in 
healthy elderly populations (25, 133–138). These observations 
allow us to hypothesize that “Inflamm-Aging” represents a sub-
clinical grade of chronic inflammation possibly contributing to 
the initiation and/or acceleration of hematopoietic aging.

Aging-associated HSC alterations, including reduced self-
renewal and myelopoiesis-favored differentiation, are very 
similar to the functional changes occurring in HSCs exposed 
to chronic inflammatory stimuli: the HSC pool is shifted to an 
increased proportion of CD150high HSCs that predominantly 
produce myeloid lineage cells, as mentioned earlier (19, 39). 
This was also the case when mice were given a daily low dose 
of LPS for 1  month, suggesting exogenous stimulation to be 
involved in HSC aging (130). Recent studies have indicated that 
accumulation of myeloid-skewed HSCs with aging is mediated 
by activated signaling of TLR4 (130), P-selectin (33), NFκB (33), 
the RANTES-mTOR pathway (53, 77), and TGF-β (19). Since 
numerous pro-inflammatory cytokines are known to be produced 
by myeloid cell lineages or adipocytes, there might be a positive 
feedback mechanism by which, when aging processes begin, 
HSCs with myeloid-skewed differentiation gradually accumulate 
in BM via proliferative signals. As a consequence, these cells 
give rise to more myeloid cells that are prone to spontaneously 
produce pro-inflammatory cytokines, thereby further advancing 
myeloid dominance (Figure 2). In parallel, adipogenic MSC dif-
ferentiation during aging also contributes to the promotion of 
inflammatory cytokine production and enhanced myelopoiesis. 
Moreover, inflammatory conditions foster the production and 
release of ROS in hematopoietic cells, a genotoxic reagent known 
to damage DNA, and might cause genetic ablations in adjacent 
cells, such as MSCs and ECs in BM (48). Intracellular ROS pro-
duction has indeed been shown to be induced and to cause DNA 
damage accumulation in HSCs during viral infections and aging 
(49, 119), although another study detected no DNA damage in 
aged HSCs (52).

DiSCUSSiON

Since numerous inflammatory factors are increased in aged 
hematopoietic tissues, and inflammation- and aging-associated 
hematopoietic changes share common cellular and molecular 
alterations, it is reasonable to speculate that low-grade inflam-
mation might be involved in hematopoietic aging with reduced 
fitness of both adaptive and innate immune cells. Given that 
some hematopoietic phenotypes during inflammation and aging 
arise from functional alterations in HSPCs, as discussed above 
(19, 34, 39), it would be worthwhile to elucidate the underlying 
common mechanisms. Future research could yield meaning-
ful insights into cell-intrinsic changes in HSPC quantity and 
quality, e.g., how aspects of HSPC population dynamics such as 
functional heterogeneity and population size change, whether 
all subsets of HSCs with a distinct lineage output respond 
equally to inflammatory stimuli or only the minor fraction is 
responsive, how the self-renewal and differentiation capacities 
of HSC are altered on a per-cell basis, and molecular changes 
in cellular signaling, such as alterations in cellular metabolism, 
transcriptional networks, epigenetic modifications, and genomic 
instability (Figure 4). It is also essential to understand to what 
extent inflamm-aging-associated cell-extrinsic factors influence 
HSPC biology, including signals derived from the BM niche, 
tissue damage/repair, infection, obesity, or the microbiome. In 
addition, the fundamental task that remains is identification of 
the factor(s) initially triggering the process of hematopoietic 
inflamm-aging. Inflammation- or aging-related external stimuli 
appear to force quiescent HSCs to proliferate and impair their 
self-renewal and differentiation capacities, as suggested by 
evidence that HSC cycling in response to chemotherapy admin-
istration or hematopoietic stress accelerates the manifestation 
of aging phenotypes (119). These data suggest that the central 
features of HSCs aging might be attributable to accumulation of 
a proliferative history that is closely associated with perturbed 
self-renewal and differentiation.
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