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Dengue virus (DENV) has spread through most tropical and subtropical areas of the 
world and represents a serious public health problem. The control of DENV infection 
has not yet been fully successful due to lack of effective therapeutics or vaccines. 
Nevertheless, a better understanding of the immune responses against DENV infection 
may reveal new strategies for eliciting and improving antiviral immunity. T cells provide 
protective immunity against various viral infections by generating effector cells that 
cooperate to eliminate antigens and memory cells that can survive for long periods with 
enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can 
migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the 
elimination of pathogens by trafficking to infected tissues and providing help to innate 
immune responses, B cells, as well as CD8 T cells. However, it is now evident that 
CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target 
cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop 
following DENV infections and may play a crucial role in protecting the host from severe 
dengue disease. We review our current understanding of the differentiation and function 
of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of 
harnessing these cells for the prevention and treatment of DENV infection and disease.
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DeNv iNFeCTiON AND A PROTeCTive ROLe FOR CYTOTOXiC 
CD4 T CeLLS

Dengue virus (DENV) is a major public health problem in tropical and subtropical areas with 390 
million estimated infections per year (1). DENV has four serotypes (DENV 1–4), and infection with 
one of the serotypes can be asymptomatic or result in a range of diseases spanning from dengue fever 
(DF) to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The more severe forms 
of DHF and DSS are more likely to develop following secondary infections with a different serotype 
(2). Other than supportive care there is currently no specific therapy available for the treatment 
of dengue diseases. Tremendous efforts have been devoted to the development of DENV vaccines 
since Word War II, and a tetravalent chimeric vaccine, Dengvaxia®, has recently been licensed in 
several countries including Mexico, Brazil, and the Philippines (3). However, several clinical trials of 
Dengvaxia® raise concerns about the efficacy of the vaccine. A phase 2b study in Thailand showed an 
overall efficacy of 30.2% with only 9.2% protection against DENV 2 (4). Additionally, two large-scale 
phase 3 trials in Asia and Latin America reported that the average efficacies against the four serotypes 
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were 56.5 and 60.8%, respectively, and further confirmed the 
lowest level of protection against DENV 2 (5, 6). Furthermore, 
a long-term follow up of these trials reveals that Dengvaxia® 
was less effective in seronegative vaccinees and resulted in an 
increased incidence of hospitalization among vaccinated children 
who were under 9 years old (7). Given the importance of host 
immunity in the protection of DENV infection, it is crucial to 
gain a better understanding of anti-DENV immune responses 
and identify the correlates of protection or susceptibility in order 
to improve the development of immunotherapies and vaccines 
for dengue disease.

T cells play important roles in fighting infections with 
intracellular pathogens; however, the roles of T cells during 
DENV infection may be complex. Although some studies sug-
gest that T cells may contribute to the pathogenesis of DENV 
infection via the production of inflammatory cytokines, and 
that the expansion of preexisting cross-reactive memory T cells 
may impair viral control upon secondary heterologous infec-
tions (original antigenic sin), others indicate that T cells may 
play important roles in the protection against severe dengue 
disease (8). Stronger T cell responses generated following natu-
ral infection or vaccination with DENV as measured by the 
production of effector cytokines such as interferon-γ (IFN-γ) 
have been associated with better protection against subsequent 
DENV infection (9, 10). Additionally, our laboratory has 
demonstrated that protective human leukocyte antigen (HLA) 
alleles against dengue disease are associated with robust and 
polyfunctional CD8 T cell responses (11). Furthermore, the 
observation that the frequency of T cells that express CD107a, 
a degranulation marker, correlates with less severe dengue 
disease, supporting the notion that the roles of T cells during 
DENV infection may depend upon their functionality and that 
T cells with cytotoxic potentials may be crucial for the control 
of DENV infection (12).

Although cytotoxic functions are usually associated with CD8 
T cells, accumulating evidence has demonstrated that a range of 
other cells can elicit cytotoxic effector functions. Dendritic cells 
(DCs) are the early, primary targets of DENV in natural infection, 
and the vigor of cell-mediated immunity is modulated by the rela-
tive presence or absence of IFN-γ in the microenvironment sur-
rounding the virus-infected DCs (13). DCs including Langerhans 
cells (LCs) express CD1d, a molecule responsible not only for the 
presentation of lipopeptides but also conventional antigens that 
have a specific binding motif, i.e., hydrophobic amino acids in 
position 1, 4, and 7 (14). CD1d-restricted natural killer T (NKT) 
cells are a distinct subset of T cells that rapidly produce an array 
of cytokines upon activation and play a critical role in regulat-
ing various immune responses. NKT cells are classified into two 
groups based on differences in T-cell receptor usage. Type I NKT 
cells have an invariant T-cell receptor α-chain (iNKT), while Type 
II NKT cells have a more diverse T-cell receptor repertoire, and 
it has been shown that CD4 engagement by CD1d potentiates 
activation of CD4+ NKT cells (15, 16). Recent evidence suggests 
iNKT involvement in DENV pathogenesis, and the level of 
iNKT cell activation associates with the disease severity (17–19). 
Finally, another unconventional T cell subset, gamma delta (γδ) 
T cells, has been shown to be able to kill dengue-infected cells 

and contribute to the immune response during DENV infection 
by providing an early source of IFN-γ (20).

This review focuses on CD4 T cells that can also acquire a 
cytotoxic phenotype, which has been investigated by numerous 
studies over the past three decades (21). The ability of CD4 T cells 
to acquire cytotoxic functions have been mostly attributed to 
T helper type 1 (Th1) cells after viral infections; however, it is 
now clear that other CD4 T cell subsets including regulatory 
T (Treg) cells can also secrete effector molecules and exert cyto-
toxic effects (22, 23). Moreover, recent studies further suggest 
that cytotoxic CD4 T cells may represent a separate lineage inde-
pendent of other CD4 T cell subsets and are induced by distinct 
environmental cues and transcriptional regulators, highlighting 
the versatility of CD4 T cell responses (24–26). Notably, cytotoxic 
CD4 T cells are readily detectable following DENV infection 
and correlate with enhanced protection against dengue disease 
(12, 27). We discuss the differentiation and function of cytotoxic 
CD4 T cells, especially in the context of DENV infection, and 
anticipate future studies into the therapeutic potentials of these 
intriguing cells in the development of anti-DENV vaccines and 
immunotherapies.

CeLLULAR AND eNviRONMeNTAL 
FACTORS THAT MeDiATe THe 
GeNeRATiON OF CYTOTOXiC CD4  
T CeLLS

The differentiation of diverse CD4 T cell subsets is induced and 
guided by antigens, costimulation, and distinct sets of cytokines, 
which are integrated to regulate the expression of transcription 
factors that are crucial for CD4 T cell lineage specification 
(28). In line with this notion, costimulatory signals mediated 
by OX40–OX40L and 4-1BB (29–31), as well as cytokines such 
as transforming growth factor-β (TGF-β), type I interferons 
and IL-2 (25, 32–34), have been suggested to promote the 
differentiation of cytotoxic CD4 T cells. Although cytotoxic 
CD4 T cells are often observed during chronic infections such 
as HIV, Epstein–Barr virus (EBV), human cytomegalovirus 
(HCMV), and mouse CMV (MCMV) infections (35–39), they 
are also readily detectable following acute lymphocytic chori-
omeningitis virus (LCMV), influenza virus, and ectromelia 
virus infections (40–44). Therefore, persistent antigenic stimula-
tion may not be absolutely required for cytotoxic CD4 T cell 
differentiation. Furthermore, Brown et  al. reported that IL-2 
substantially enhances the cytotoxic functions of CD4 T  cells 
that are activated with low antigen dose in  vitro, suggesting 
that inflammatory cytokines may amplify T cell receptor (TCR) 
signals to promote the differentiation of cytotoxic CD4 T cells 
(32). Two additional common cytokine receptor γ-chain (γc) 
family cytokines, IL-7 and IL-15, however, are dispensable for 
the formation of cytotoxic CD4 T cells, although IL-15 may 
promote their effector functions upon reactivation with TCR 
stimulus (24). Interestingly, IL-21, which is another member 
of the γc family, has been shown to increase the production of 
the cytotoxic molecule granzyme B in CD8 T cells both in vivo 
and in vitro (45, 46). Thus, it would be interesting to investigate 
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FiGURe 1 | Regulation of cytotoxic CD4 T cell differentiation by a network of signaling and transcriptional pathways. ThPOK is essential for the lineage 
specification and stability of CD4 helper T cells and counteracts Runx3, which coordinate the differentiation of CD8 T cells. Nevertheless, signals mediated by 
antigens, TGF-β, and retinoic acid (RA) can repress ThPOK expression in CD4 T cells, which results in elevated levels of Runx3. Since ThPOK inhibits Eomes, the 
suppression of ThPOK may also lead to increased Eomes expression. Furthermore, cytokines such as IL-2 and IFN-α, costimulatory molecules including OX40 and 
4-1BB, as well as the transmembrane protein CRTAM can increase the expression and/or activities of Eomes as well as additional transcription factors such as 
Blimp1 and T-bet, which together with Runx3 direct the differentiation program of cytotoxic CD4 T cells.
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whether IL-21 also plays a role in the generation and/or func-
tional maturation of cytotoxic CD4 T cells.

MOLeCULAR ReGULATiON OF 
CYTOTOXiC CD4 T CeLL 
DiFFeReNTiATiON

The integration and interpretation of numerous cellular and 
environmental parameters are mediated by transcriptional 
factors, and a number of transcriptional regulators have been 
implicated in the differentiation program of cytotoxic CD4 T cells 
(Figure 1). T-helper-inducing POZ/Kruppel-like factor (ThPOK) 
and Runt-related transcription factor 3 (Runx3), which suppress 
each other’s expression, control the development of CD4 and 
CD8 T cells in the thymus, respectively (47). After exiting the 
thymus, mature CD4 T cells continue to express ThPOK, which 
suppresses Runx3 and maintains the lineage stability of CD4 
T  cells (48–50). Ectopic expression of ThPOK in CD8 T cells 
results in reduced expression of CD8, the T-box transcription fac-
tor eomesodermin (Eomes), as well as effector molecules such as 

IFN-γ, granzyme B, and perforin, further supporting the notion 
that ThPOK restricts the initiation of cytotoxic T lymphocyte 
(CTL) differentiation program in CD4 T cells (51). In contrast, 
Runx3 promotes CD8 expression by binding its enhancer 
regions (52, 53) and also cooperates with Eomes and another 
T-box transcription factor, T-bet, to induce the manufacture of 
IFN-γ, perforin, and granzyme B (54, 55). Intriguingly, a por-
tion of CD4 T cells downregulates their expression of ThPOK in 
the intestine, especially in the intraepithelial lymphocyte (IEL) 
compartment, under unimmunized conditions or following 
activation with their cognate antigen (24, 25). Conversely, these 
ThPOKlow CD4 T cells upregulate the expression of Runx3, thus 
resembling their CD8 T cell counterparts (24, 25). Consequently, 
these cells showed enhanced expression of cytotoxic effector 
lymphocytes-associated molecules, including 2B4, granzyme B, 
and CD107a, and demonstrated cytotoxicity in vitro (24, 25). It 
is further proposed that sustained antigenic stimulation and/or 
local environmental cues such as TGF-β and retinoic acid (RA) 
induce the downregulation of ThPOK and the upregulation of 
Runx3, although the underlying signaling and transcriptional 
mechanisms are less well defined (24, 25). Thus, the antagonistic 
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expression of ThPOK and Runx3 not only dictate the lineage 
stability of CD4 and CD8 T cells but also direct the establishment 
of cytotoxic CD4 T cells. Further studies are needed to determine 
whether and how the expression of ThPOK and Runx3 dictate the 
development of cytotoxic CD4 T cells following viral infections 
as well as the cellular and environmental factors that modulate 
their expression.

In addition to ThPOK and Runx3, several other transcription 
regulators have been suggested to regulate the differentiation 
of cytotoxic CD4 T cells. T-bet promotes the differentiation 
of effector CD8 T cells (56) and also induces the expression 
of Runx3 in CD4 T cells (54), suggesting that it may play a 
role in the formation of cytotoxic CD4 T cells. Indeed, T-bet-
deficient CD4 T cells demonstrated substantially reduced 
production of granzyme B following influenza virus infection 
(33). Furthermore, the acquisition of cytotoxic functions by 
CD4 T cells is also dependent upon B lymphocyte-induced 
maturation protein 1 (Blimp1), which facilitates the binding 
of T-bet to the granzyme B and perforin promoters (33). The 
upstream signals that drive the expression of T-bet and Blimp1 
in CD4 T cells include IL-2 and IFN-α, and IFN-α may also 
exert its effects partially via signal transducer and activator of 
transcription 2 (STAT2) as evidenced by decreased T-bet and 
granzyme B expression in the absence of STAT2 (33). Since 
heterodimerization with activated STAT1 is required for the 
nuclear accumulation of phosphorylated STAT2 (57), whether 
STAT1 promotes cytotoxic CD4 T cell development in conjunc-
tion with STAT2 warrants further investigation. Surprisingly, 
STAT4, which has been shown to promote T-bet expression and 
Th1 cell differentiation in response to IL-12 signals (58–60), is 
dispensable for the upregulation of T-bet and granzyme B in 
CD4 T cells following influenza virus infection (33), indicating 
that cytotoxic CD4 T cells and Th1 cells may rely on distinct 
pathways for their differentiation. As discussed above, ThPOK 
suppresses the expression of Eomes, which cooperates with 
T-bet and Runx3 to promote the effector functions of CD8 
T cells (55, 61–63), suggesting that Eomes may also participate 
in programing cytotoxic CD4 T cells when its expression is 
increased. Indeed, the engagement of costimulatory molecules 
OX40 and/or 4-1BB induces the expression of Eomes, which 
then upregulates the production of granzyme B by CD4 T cells 
and enhances their antitumor activities (29–31). In addition, 
a recent report shows that class I-restricted T cell-associated 
molecule (CRTAM) can promote the expression of Eomes 
and cytotoxic proteins including granzyme B and perforin in 
CD4 T  cells (64). Therefore, Eomes may coordinate multiple 
signaling pathways to direct the development of cytotoxic CD4 
T cells. Additional transcriptional regulators such as Notch2 
(65), STAT5 (66), and interferon regulatory factor 4 (IRF4) 
(67) have been implicated in the manufacture of cytotoxic 
weaponry in CD8 T cells, and it would be interesting to investi-
gate whether these transcriptional regulators also modulate the 
cytotoxic potential of CD4 T cells. In sum, the signals mediated 
by TCR, cytokines, costimulatory molecules, and other cell 
surface receptors are integrated and interpreted by a network 
of transcriptional regulators, which collectively orchestrate the 
differentiation of cytotoxic CD4 T cells.

THe DeveLOPMeNT OF CYTOTOXiC CD4 
T CeLLS FOLLOwiNG DeNv iNFeCTiONS

DENV-specific CD4 T cells with cytotoxic potential were initially 
observed with T cell clones isolated from a DENV-infected donor 
(68). These CD4 T cell clones demonstrate in  vitro killing of 
target cells that display DENV antigens as assessed by chromium 
release assays, which are restricted by HLA class II molecules 
(68). Subsequent studies discovered that DENV non-structural 
(NS) proteins especially NS3 are the major targets of cytotoxic 
CD4 T cell clones and that many of these cell clones exhibit cross-
reactivity against several DENV serotypes (69–72). Thus, cyto-
toxic CD4 T cell may preferentially recognize conserved DENV 
antigens, and repeated antigenic stimulation may favor their for-
mation. In addition to antigen-specific killing, anti-DENV cyto-
toxic CD4 T cell clones generated from DENV-immune donor 
can also mediate the lysis of non-antigen-presenting bystander 
target cells (73). While cytotoxic CD4 T cells lyse target cells 
pulsed with DENV antigens primarily via perforin-dependent 
mechanisms, the lysis of bystander target cells mainly relies on 
the Fas/Fas ligand (FasL) pathway (73). Additionally, a cytotoxic 
CD4 T cell clone has also been isolated from DENV-infected 
mice and is able to kill DENV antigen-pulsed target cells in vitro 
(74). Furthermore, Yauch et al. showed, using a mouse model of 
DENV infection, that CD4 T cells can mediate DENV-specific 
killing of target cells in vivo, although the production of cytotoxic 
molecules by CD4 T cells was not assessed (75). Immunization 
with CD4 T  cell epitopes derived from DENV NS proteins 
NS2B and NS3 can accelerate viral clearance following DENV 
challenge, suggesting that the induction of cytotoxic CD4 T cells 
by vaccination may be beneficial for the control of secondary 
infections with DENV (75).

Previous studies have demonstrated that CD4 T cells with cyto-
toxic potential as assessed by the expression of CD107a are present 
in patients associated with both primary and secondary DENV 
infections, although the frequencies of these cells vary according 
to infection history and disease severity (12). Interestingly, the 
frequency of DENV-specific CD107a+ CD4 T cells is higher in 
DF patients compared with those who had a more severe form 
of the disease, DHF, implicating a protective role for cytotoxic 
CD4 T  cells in DENV-infected patients (12). Our laboratory 
has recently discovered that a subset of CD4 T cells expand as 
a function of DENV infection history and is most prominently 
represented in donors associated with multiple DENV infections 
(27). These CD4 T cells display a CD45RAhighCCR7low phenotype, 
which is distinct from their CD45RAlowCCR7high central memory 
T (Tcm) and CD45RAlowCCR7low effector memory T (Tem) 
counterparts, and thus are designated effector memory RA 
T (Temra) cells. Compared with CD4 Tcm or Tem cells, a higher 
proportion of CD4 Temra cells express CD8α, the degranulation 
marker CD107a, as well as other cytotoxic effector molecules 
such as granzyme B and perforin, suggesting that CD4 Temra 
population contains anti-DENV cytotoxic CD4 T cells (27). 
Additionally, CD4 Temra cells also had increased expression of 
CD226 (27), which is a costimulatory molecule that has been 
shown to enhance the effector and cytotoxic functions of CD8 
T  cells (76, 77). Conversely, these cells downregulate CD28 
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FiGURe 2 | The generation of cytotoxic CD4 T cells following DeNv infections. DENV-specific naïve CD4 T cells are activated during primary DENV infection 
and acquire an effector phenotype and the ability to produce inflammatory cytokines such as IFN-γ. Following reexposure to secondary heterologous infections, 
DENV-specific CD4 T cells receive repeated antigenic signals and differentiate into cytotoxic CD4 T cells, which display a CD45RAhighCCR7low Temra phenotype and 
are characterized by their expression of the chemokine receptor CX3CR1. Cytotoxic CD4 T cells also upregulate the expression of CD8α and CD226, as well as the 
transcription factors T-bet and Eomes, which may cooperate with additional transcription regulators to induce the production of cytotoxic molecules such as 
CD107a, perforin, and granzyme B. In addition to recurring antigens, costimulatory molecules, cytokines, and other environmental cues are all likely to modulate the 
differentiation of cytotoxic CD4 T cells.
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expression (19), which is consistent with previous observations 
that CD4+CD28− T cells are associated with enhanced cytotoxic 
functions following infections with CMV and hepatitis B virus 
(HBV) (78, 79). As discussed earlier, the T-box transcription fac-
tors T-bet and Eomes coordinate the development of cytotoxic 
CD4 T cells. Notably, the vast majority of CD4 Temra cells express 
high levels of T-bet and Eomes, further supporting the notion 
that CD4 Temra cells encompass cytotoxic CD4 T cell subset in 
terms of their phenotypic and functional attributes, as well as 
their transcriptional signatures. Since cytotoxic CD4 Temra cells 
are generally detected following secondary DENV infections, 
these findings further support that DENV-specific cytotoxic CD4 
T cells are induced by repeated TCR stimulation from conserved 
DENV antigens, which is consistent with in vitro studies using 
cytotoxic CD4 T cell clones. Intriguingly, CD4 Temra cells with 
cytotoxic potential observed in secondary DENV-infected donors 
phenotypically and functionally resemble the live attenuated yel-
low fever vaccine 17D (YF-17D)-elicited CD8 Temra cells, which 
are highly proliferative and polyfunctional as evidenced by their 
ability to produce various cytokines and cytotoxic molecules 
including CD107a (80). Since vaccination with YF-17D has been 
tremendously successful in controlling yellow fever virus (81), 
Temra phenotype cytotoxic CD4 T cells may be highly relevant in 
vaccine-elicited protection against DENV infection.

The majority of DENV-specific CD4 Temra cells are not asso-
ciated with the phenotypes of Th1, Th2, or Th17 cells as evidenced 
by their lack of expression of the chemokine receptors CXCR3, 
CCR4, and CCR6, which have been used to distinguish between 
these distinct CD4 T cell subsets (27, 82). Since CD4 Temra 
cells encompass cytotoxic populations, these findings further 
support the notion that cytotoxic CD4 T cells may represent an 

independent CD4 T cell lineage. Notably, Temra cells upregulate 
the expression of the chemokine receptor CX3CR1, which binds 
to CX3CL1 (fractalkine) and has been implicated in promot-
ing the adhesion and migration of CD8 T cells (83, 84). Thus, 
CX3CR1 may facilitate the trafficking of DENV-specific CD4 
T cells, particularly cytotoxic CD4 T cells, to infected tissues. 
Intriguingly, accumulating studies have demonstrated that CD4 
tissue-resident memory T (Trm) cells reside in sites of pathogen 
entry and are crucial for the control of viral pathogens such as 
influenza virus and herpes simplex virus by providing immedi-
ate effector functions (85, 86). Therefore, it would be interesting 
to investigate whether DENV-specific CD4 Trm cells develop 
following infections and whether CX3CR1 plays a role in their 
establishment and maintenance in non-lymphoid tissues such 
as the skin. Importantly, the expression of CX3CR1 is also 
associated with the cytotoxic functions of CD4 T cells as isolated 
CX3CR1+ CD4 T cells demonstrated specific killing of DENV 
epitopes-pulsed target cells ex vivo (27). This is consistent with 
a recent report showing that CX3CR1+ CD8 T cells have potent 
cytotoxic functions and express elevated levels of granzyme B and 
perforin (87). Thus, CX3CR1+ cytotoxic CD4 T cells may play 
an important role in viral control by directly targeting DENV-
infected cells in tissues.

CYTOTOXiC CD4 T CeLLS CORReLATe 
wiTH HLA-ASSOCiATeD PROTeCTiON 
AGAiNST DeNv iNFeCTiON

Additional insights into the question of whether cytotoxic CD4 
T cells are beneficial in the context of DENV infections come 
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from the association of HLA allelic variants with relative sus-
ceptibility or resistance to severe DENV-associated diseases. For 
instance, HLA class II molecules DRB1*04:01 and DRB1*08:02 
are associated with resistance and susceptibility to severe DENV 
diseases, respectively (88–90). Intriguingly, the frequency of 
DENV-specific CD4 Temra cells is higher in donors expressing 
the protective allele DRB1*04:01 compared with those expressing 
the susceptible allele DRB1*08:02. Moreover, CD4 Temra cells 
restricted by DRB1*04:01 express substantially higher levels of 
cytotoxic proteins including CD107a, perforin, and granzyme 
B compared with their DRB1*08:02-restricted counterparts. Thus, 
increased abundance and functionality of cytotoxic CD4 Temra 
cells may be associated with enhanced protection against severe 
dengue disease. Furthermore, the capacity of CX3CR1+ CD4 
T cells to kill target cells varies according to HLA restrictions with 
the protective allele DRB1*04:01-restricted cells showing higher 
cytotoxic activities than their susceptible allele DRB1*08:02-
restricted counterparts, which again indicates that cytotoxic CD4 
T cell responses correlate with protection from severe dengue 
disease. Since DENV primarily infects major histocompatibility 
complex (MHC) class II-expressing antigen-presenting cells such 
as monocytes, macrophages, and DCs (91, 92), which could be 
exacerbated by antibody-dependent enhancement (ADE) mech-
anism (93), cytotoxic CD4 T cells may play important roles in 
controlling the spread of DENV infection by directly eliminating 
these cells. Other cell types such as epithelial cells can be induced 
to upregulate the expression of MHC class II molecules follow-
ing viral infection and potentially become additional targets for 
cytotoxic CD4 T cells (43). Therefore, cytotoxic CD4 T cells may 
contribute to HLA-associated protection against DENV infection 
by targeting DENV-infected cells of various types. Taken together, 
we propose a model where repeated antigenic signals as well as 
other potential cellular and environmental stimuli facilitate the 
formation of DENV-specific cytotoxic CD4 T cells, which exhibit 
a Temra phenotype with upregulated CX3CR1 expression and 
mediate protective responses against DENV infection (Figure 2).

CONCLUSiON AND PeRSPeCTive

Despite the recent approval of Dengvaxia® in several countries 
where DENV is epidemic, our need for an efficacious DENV 
vaccine is still unsatisfied. Accumulating studies strongly indi-
cate that, in addition to CD8 T cells, cytotoxic CD4 T cells may 

play an important role in eliminating DENV-infected cells and 
 protecting the hosts from severe dengue disease. Since the genera-
tion of cytotoxic CD4 T cells is concurrent with multiple DENV 
infections, it would be interesting to identify the TCR-specificity 
of cytotoxic CD4 T cells and confirm whether they respond to 
conserved epitopes shared by different DENV serotypes. This 
would allow for the design of vaccines that include such epitopes 
and preferentially induce the formation of cytotoxic CD4 T cells. 
In addition to vaccines, adoptive transfer of engineered CD4 
T  cells that are specific for such antigens may accelerate viral 
clearance and benefit the treatment of DENV infection, as clini-
cal trials of T cells that are engineered to express transgenic TCRs 
or chimeric antigen receptors (CARs) have generated promising 
results in treating cancers (94). Furthermore, costimulatory 
molecules and cytokines that are involved in the differentiation 
and function of cytotoxic CD4 T cells may potentially be used 
as adjuvants to enhance the cytotoxic effects of DENV-specific 
CD4 T cells. Additionally, elucidating the factors that control 
the development of cytotoxic CD4 T cells may allow one to 
manipulate their expression, availability, and activity in order to 
reshape CD4 T cell responses in patients expressing susceptible 
alleles and redirect antiviral CD4 T cells to differentiate into 
potent cytotoxic cells. Finally, T cell differentiation and func-
tion is greatly influenced by nutrients and metabolism (95). 
For instance, glucose and glycolysis promote the expression of 
cytotoxic molecules in CD8 T cells (96). Thus, modulation of 
the metabolic program may provide additional opportunities 
to enhance cytotoxic CD4 T cell response. In summary, future 
investigations into the antigenic, environmental, and cellular 
parameters that configure the formation, migration, and main-
tenance of cytotoxic CD4 T  cells may reveal novel strategies 
for developing and improving vaccines and therapies that fight 
DENV as well as other emerging pathogens.
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