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Killer-cell immunoglobulin-like receptors (KIRs) regulate the killing function of natural killer 
cells, which play an important role in the antibody-dependent cell-mediated cytotoxicity 
response exerted by therapeutic monoclonal antibodies (mAbs). However, it is unknown 
whether the extensive genetic variability of KIR genes and/or their human leukocyte 
antigen (HLA) ligands might influence the response to these treatments. This study 
aimed to explore whether the variability in KIR/HLA genes may be associated with 
the variable response observed to mAbs based anti-epidermal growth factor receptor 
(EGFR) therapies. Thirty-nine patients treated with anti-EGFR mAbs (trastuzumab for 
advanced breast cancer, or cetuximab for advanced colorectal or advanced head 
and neck cancer) were included in the study. All the patients had progressed to mAbs 
therapy and were grouped into two categories taking into account time to treatment 
failure (TTF ≤6 and ≥10 months). KIR genotyping (16 genetic variability) was performed 
in genomic DNA from peripheral blood by PCR sequence-specific primer technique, and 
HLA ligand typing was performed for HLA-B and -C loci by reverse polymerase chain 
reaction sequence-specific oligonucleotide methodology. Subjects carrying the KIR/
HLA ligand combinations KIR2DS1/HLAC2C2-C1C2 and KIR3DS1/HLABw4w4-w4w6 
showed longer TTF than non-carriers counterparts (14.76 vs. 3.73 months, p < 0.001 
and 14.93 vs. 4.6  months, p  =  0.005, respectively). No other significant differences 
were observed. Two activating KIR/HLA ligand combinations predict better response 
of patients to anti-EGFR therapy. These findings increase the overall knowledge on the 
role of specific gene variants related to responsiveness to anti-EGFR treatment in solid 
tumors and highlight the importance of assessing gene polymorphisms related to cancer 
medications.

Keywords: Kir receptor, anti-egFr, advanced cancer, solid tumor, natural killer cells, Kir/hla ligands

Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; EDTA, ethylenediaminetetraacetic acid; EGFR, 
epidermal growth factor receptor; KIRs, killer-cell immunoglobulin-like receptors; mAbs, monoclonal antibodies; NK, natural 
killer; PCR-SSO, polymerase chain reaction sequence-specific oligonucleotide; TTF, time to treatment failure.
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inTrODUcTiOn

The anti-human epidermal growth factor receptor (EGFR) 
monoclonal antibodies (mAbs) are of special interest in treat-
ing several solid metastatic tumors. Trastuzumab, cetuximab, 
and panitumumab plus chemotherapy prolong the survival of 
patients with advanced cancers (1). However, the response to 
treatment is not identical, due to innate differences in activity/
function of an individual’s immune system, and expression of 
distinct genetic biomarkers that can differentially influence 
in the response (1, 2). Multiple hypotheses have been sug-
gested to explain the differences in antitumor activity of these 
therapeutic antibodies, occurring partly to antibody-dependent 
cell-mediated cytotoxicity (ADCC) (3, 4), which is dependent 
on immune effector cells, mainly natural killer (NK) cells, 
binding by their Fc receptor (FcγRIII, CD16) to the Fc portion 
of these mAbs (5). This process conducts to the activation of 
the NK cells and lysis of the mAb-bound tumoral cell (6). NK 
cell functions are regulated by a diversity of activating and 
inhibitory cell surface receptors (7, 8). One of these cell surface 
receptors controlling the effector function of NK cells are the 
killer-cell immunoglobulin-like receptors (KIRs) (9). In the last 
decade, several KIR genes have been described; specifically, six 
of them are activating (KIR2DS1–5 and KIR3DS1), seven are 
inhibitory (KIR2DL1–3, KIR3DL1–3, and KIR2DL5), one has 
both properties (KIR2DL4), and two are pseudogenes (KIR2DP1 
and KIR3DP1) (10–12). KIRs may either inhibit or stimulate 
NK cell activity after engagement with specific human leukocyte 
antigen (HLA) class I ligands (6, 13). HLA and KIR genes have 
high genetic variability (14), and KIR/HLA ligand interactions 
are especially diverse (15). These receptors allow the NK cells 
to self-discriminate healthy cells from transformed or pathogen-
infected cells and regulate their effector function (16, 17).

Natural killer cells can lyse tumor cells directly by their KIR 
receptors. It is observed that KIR receptors specific for major 
histocompatibility complex (MHC) class I molecules play a major 
role in the anti-leukemia effect (mediating either inhibitory or 
activating signals) (18). Others studies have shown associations 
between KIR genes, their ligands, and either protection or suscep-
tibility to solid tumors. However, the evidence for a role for KIR 
in solid cancer has largely been discussed (19, 20). It has been also 
suggested that NK cells in combination with mAbs may confer 
more rapid killing of tumor cells, due to the additive benefit of the 
two modalities of treatment and the potent cytotoxic capability of 
NK cells (21). Currently, it is unknown whether these KIR recep-
tors might influence the response to treatment with mAbs in solid 
cancer. Because of the extensive genetic variability of KIR and/
or their HLA ligands and the importance of these combinations 
in the response of NK cells, the present study aimed to explore 
whether the variability in KIR/HLA genes may be associated 
with the variable response observed to mAbs based anti-EGFR 
therapies.

MaTerials anD MeThODs

The study was designed and performed by the authors, and the 
protocol and all amendments were presented and approved by the 

Ethics and Research Committee of Hospital Universitario Reina 
Sofia, Cordoba, Spain, local ethics committees, all of which fol-
low the Helsinki Declaration and good clinical practices (March 
25, 2013). The experimental protocol conforms to International 
Ethical Standards.

calculation of sample size
The number of patients to include in the analysis to find differ-
ences of at least 30% between the groups time to treatment failure 
(TTF) ≤6 and ≥10 months considering a minimum frequency 
of 30% for the KIR polymorphisms was 33 patients with a confi-
dence level of 95% and a statistical power of 80%.

Population
The patients included in this study (n  =  39) were eligible tak-
ing into account the next inclusion criteria: (A) aged 18  years 
or older; (B) signed informed consent; and (C) all patients 
should have been treated with anti-EGFR therapy (trastuzumab 
for advanced breast cancer and cetuximab for head and neck 
cancer or advanced colorectal). All the patients had progressed 
before 6  months treatment with anti-EGFR mAb (short TTF, 
TTF  ≤  6  months, n  =  19) or after 10  months (long TTF, 
TTF ≥ 10 months, n = 20), establishing two extreme phenotypes 
of response (TTF ≤6 and ≥10  months). These two groups of 
analysis are established, taking into account the median time 
to progression published in control and treatment arms in the 
pivotal studies (22, 23).

Kir and hla genotyping
Genomic DNA was extracted from peripheral blood samples 
drawn in ethylenediaminetetraacetic acid (EDTA) anticoagulant 
tubes using Maxwell 16 Instrument to provide an automated 
method of purification of nucleic acids (Promega Corporation, 
Madison, WI, USA) and was typed for both KIR and HLA 
class I alleles following the manufacturer’s instructions. HLA-A, 
-B, and -C genotyping were performed with the INNO-LIPA 
HLA-A Multiplex, HLA-B Multiplex plus, and HLA-C kits, 
respectively (Fujirebio Europe N.V., Gante, Belgium), using 
HLA-specific primers for nucleic acid amplification of the 
different Loci. HLA-Bw4 primers for exon 2 of the HLA-Bw4 
alleles were also used. These are based on the polymerase 
chain reaction sequence-specific oligonucleotide (PCR-SSO) 
reverse method. Then, HLA alleles were determined using the 
LIRASTM software for INNO-LIPA HLA. SSP technique was 
used on samples that have failed to be analyzed by SSO or for 
situations where higher resolutions were required. These analy-
ses were made using A, B, and C locus High Res SSP Unitray Kits 
(Invitrogen by Life Technologies Corporation, Brown Dee, WI, 
USA). KIR genotyping was performed using sequence-specific 
primers (KIR Ready gene of Inno-train Diagnostik GmbH, 
Kronberg, Taunus, Germany) able to detect the presence of 
14 different KIR genes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 
2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, and 3DS1), 2 
pseudogenes (2DP1 and 3DP1), and the common variants of 
KIRDL5, the KIR2DS4 allele, and KIR3DP1 allele. This method 
provided a high degree of resolution, since each primer pair 
identifies two linked, cis-located polymorphic sites. Genotyping 
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Table 1 | characteristics of patients according to the time to treatment 
failure (TTF ≤6 or ≥10 months).

TTF

≤6 months ≥10 months

Gender Female 10 (43.48%) 13 (56.52%)
Male 10 (62.5%) 6 (37.5%)

Primary tumor Breast 5 (33.33%) 10 (66.67%)
Colon 10 (62.5%) 6 (37.5%)
Head  
and neck

5 (62.5%) 3 (37.5%)

Primary tumor diagnosis  
age (median)

59 59

Metastatic disease  
diagnosis age (median)

59 59

Grade 2 13 (61.9%) 8 (38.1%)
3 5 (50%) 5 (50%)
Unknown 2 (25%) 6 (75%)

Breast cancer ER + 5 (55.56%) 4 (44.44%)
− 0 (0%) 6 (100%)

PR + 5 (55.56%) 4 (44.44%)
− 0 (0%) 6 (100%)

HER2 Overexpressed 5 (33.33%) 10 (66.67%)
Not  
overexpressed

0 (0%) 0 (0%)

Colon cancer WT 10 (62.5%) 6 (37.5%)
RAS Mutated 0 (0%) 0 (0%)

ER, estrogen receptor; PR, progesterone receptor; RAS, RAS mutation status.
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was done at a level of resolution, which allowed determining 
the KIR-binding epitope to distinguish Bw4 specificities and 
the HLA-C dimorphism at position 80 of the α1 helix. HLA 
alleles were grouped into four major categories based on the 
amino acid sequence determining the KIR-binding epitope in 
HLA-C and HLA-B molecules. HLA-C alleles are of the C1 or 
C2 group, and HLA-B alleles can be classified as either Bw4 or 
Bw6. HLA-C allotypes express C1 epitopes (characterized by 
an asparagine in position 80) or C2 epitopes (sharing a lysine 
in position 80). Moreover, two HLA-B alleles (HLA-B*46:01 
and B*73:01) were considered as C1 group (24). All HLA-B 
molecules, and some HLA-A molecules, can be classified as 
either Bw4 or Bw6 allotypes on the basis of residues at posi-
tions 77–83 in the A1 domain. Among Bw4+ HLA-A allotypes, 
HLA-A*24:02, A*32:01, and A*23:01, but not HLA-A*25:01, 
were considered (25). However, HLA-A*03 and *11 ligands for 
KIR3DL2 were not studied.

statistical Methods
Fisher’s exact and Chi-square tests were used to examine the 
association between two categorical variables [i.e., KIRs/HLA 
pairs vs. duration of the anti-EGFR therapy (≤6 or ≥10 months)]. 
For time variables (duration of therapy), the Kaplan–Meier and 
log-rang tests were used. Statistical significance was defined 
as a two-tailed p-value <0.05, and a p-value from 0.05 to 0.1 
was regarded as marginally statistically significant. Due to the 
exploratory nature of this study, no multiplicity adjustment was 
made for significance tests, using the SPSS program.

resUlTs

The characteristics of the included patients are shown in 
Table  1. Patients were grouped into two categories according 
to the progression criteria to the anti-EGFR therapy: short TTF 
(≤6 months, n = 20) or long TTF (≥10 months, n = 19) (22, 23). 
All breast cancer over expressed HER2, and all colorectal cancers 
were RAS wild type.

Kir genotypes and hla ligand 
Polymorphisms
Table 2 lists all the inhibitory and activating KIR genes, and pseu-
dogenes evaluated in this study; after analyzing the frequencies in 
the two groups, non-significant differences were observed in the 
inhibitory, activating, and pseudogenes KIR genes.

According to the expected KIR framework genes, KIR2DL4, 
KIR3DL2, KIR3DL3, and KIR3DP1 were present in all patients 
among groups, suggesting the correct internal controls. Table 3 
shows their corresponding HLA ligands (HLA-C1, HLA-C2, 
HLABw4, or HLABw6) and the frequency distributions of taking 
into account the TTF (≤6 or ≥10 months).

The frequencies of the HLA class I ligands of the KIR 
(Bw4, C1, and C2 in homozygosity and heterozygosity) were 
analyzed. As previously described, different groups (Bw4/Bw4, 
Bw4/Bw6, or Bw6/Bw6 for HLA-B and C1/C1, C1/C2, and 
C2C2 for HLA-C) were defined on the basis to homozygosis or 
heterozygosis status. We observed non-significant differences 
in the frequency between two groups (TTF ≤6 or ≥10 months).

Kir–hla ligand combinations
Activating and inhibitory combinations with different KIR 
genotypes and their HLA ligands are shown in Table  4. TTF, 
according to the KIR–HLA ligand combinations, was explored. 
We found a significant association between the activating combi-
nations KIR2DS1/HLAC2C2-C1C2 with the TTF > 10 months 
(p = 0.002) and a statistical trend within KIR3DS1/HLABw4w4-
w4w6 with the TTF  >  10  months (p  =  0.079). Interestingly, 
subjects carrying these two activating combinations showed 
longer TTF than non-carriers; KIR2DS1/HLAC2C2-C1C2, TTF: 
14.76 vs. 3.73  months (p  <  0.001) (Figure  1), and KIR3DS1/
HLABw4w4-w4w6, TTF: 14.93 vs. 4.6  months (p  =  0.005) 
(Figure 2). With 2DS1, the difference was observed only when 
the ligand was C1C2; similarly, the same occurs with 3DS1with 
their ligands (differ only for heterozygotes).

DiscUssiOn

Our results provide new evidence indicating that two activating 
combinations of KIRs and their HLA ligands predict longer 
TTF in patients treated with mAbs based anti-EGFR therapies. 
Specifically, subjects carrying the KIR2DS1/HLAC2C2-C1C2 
and KIR3DS1/HLABw4w4-w4w6 showed longer TTF than non-
carriers. These findings increase the knowledge on the role of 
specific variants of KIRs related to responsiveness to anti-EGFR 
treatment in solid tumors.
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FigUre 1 | Time to treatment failure (TTF) according to 2Ds1 
polymorphisms and their ligands.

Table 4 | activating and inhibitory combinations with different Kir 
genotypes and their hla ligands according to the time to treatment 
failure (TTF ≤6 or ≥10 months).

Kir/hla activating 
combinations presence

TTF ≤ 6 months TTF ≥ 10 months p

KIR 2DS1-HLA C2C2 or C1C2
Yes 6 (28.6%) 15 (71.4%) p = 0.002
No 14 (77.8%) 4 (22.2%)
KIR 2DS2-HLA C1C1 or C1C2
Yes 9 (45%) 11 (55%)
No 11 (57.9%) 8 (42.1%) p = 0.42
KIR 3DS1-HLA w4w4 or w4w6
Yes 6 (35.3%) 11 (64.7%) p = 0.079
No 14 (63.6%) 8 (36.4%)

Kir/hla inhibitory 
combinations presence

TTF ≤ 6 months TTF ≥ 10 months p

2DL1-HLA C2C2 or C1C2
Yes 14 (48.3%) 15 (51.7%) p = 0.52
No 6 (60%) 4 (40%)
2DL2-HLA C1C1 or C1C2
Yes 9 (45%) 11 (55%) p = 0.42
No 11 (57.9%) 8 (42.1%)
2DL3-HLA C1C1 or C1C2
Yes 14 (50%) 14 (50%) p = 0.79
No 6 (54.5%) 5 (45.5%)
3DL1-HLA w4w4 or w4w6
Yes 16 (51.6%) 15 (48.4%) p = 0.93
No 4 (50%) 4 (50%)

Table 3 | hla according to the time to treatment failure (TTF ≤6 or 
≥10 months).

hla TTF ≤ 6 months TTF ≥ 10 months

HLA-B w4w4 3 (33.3%) 6 (66.7%)
w4w6 13 (52%) 12 (48%)
w6w6 4 (80%) 1 (20%)

HLA-C C1C1 7 (77.8%) 2 (22.2%)
C1C2 8 (38%) 13 (62%)
C2C2 5 (55.5%) 4 (44.5%)

Table 2 | lists all the inhibitory, activating Kir genes, and pseudogenes 
according to the time to treatment failure (TTF ≤6 or ≥10 months).

inhibitory Kir  
genes presence

TTF < 6 months TTF > 10 months

2DL1 Yes 18 (50%) 18 (50%)
No 2 (66.7%) 1 (33.3%)

2DL2 Yes 12 (48%) 13 (52%)
No 8 (57.1%) 6 (42.9%)

2DL3 Yes 18 (51.4%) 17 (48.6%)
No 2 (50%) 2 (50%)

2DL5 Yes 10 (43.5%) 13 (56.5)
No 10 (62.5%) 6 (37.5%)

3DL1 Yes 19 (54.3%) 16 (45.7%)
No 1 (25%) 3 (75%)

3DL2a Yes 20 (51.3%) 19 (48.7%)
No 0 0

3DL3a Yes 20 (51.3%) 19 (48.7%)
No 0 0

2DL4a Yes 20 (51.3%) 19 (48.7%)
No 0 0

activating Kir  
genes presence

TTF < 6 months TTF > 10 months

2DS1 Yes 9 (37.5%) 15 (62.5%)
No 11 (73.3%) 4 (26.7%)

2DS2 Yes 12 (48%) 13 (52%)
No 8 (57.1%) 6 (42.9%)

2DS3 Yes 3 (27.3%) 8 (72.7%)
No 17 (60.7%) 11 (39.3%)

2DS4 Yes 19 (52.8%) 17 (47.2%)
No 1 (33.3%) 2 (66.7%)

2DS5 Yes 9 (47.4%) 10 (52.6%)
No 11 (55%) 9 (45%)

3DS1 Yes 9 (45%) 11 (55%)
No 11 (57.9%) 8 (42.1%)

2DL4a Yes 20 (51.3%) 19 (48.7%)
No 0 0

Kir pseudogene  
presence

TTF < 6 months TTF > 10 months

2DP1 Yes 18 (51.4%) 17 (48.6%)
No 2 (50%) 2 (50%)

3DP1a Yes 20 (51.3%) 19 (48.7%)
No 0 0

aPresent in 100% of the population.
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Understanding of the variety of KIR/HLA ligands interactions 
is improving, but our findings and others studies are revealing 
increasing levels of complexity. KIR/HLA class I interaction is a 
clear example of genetic epistasis in which the presence of receptor/
ligand pairs is necessary for the induction of functional activity, 

while the presence of one but the absence of the other is not suffi-
cient to influence NK cell function. It is becoming clear, however, 
that the interactions between the extensive polymorphism KIR 
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FigUre 2 | Time to treatment failure (TTF) according to 3Ds1 
polymorphisms and their ligands.
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and their HLA ligands can alter immune function to influence 
susceptibility to several diseases including hematological and 
solid cancer. Most of these studies only explored the association 
between the presence of KIR/HLA frequencies in cancer with 
the aim to test the impact of KIR/HLA status on individual’s 
susceptibility (26). A recent study performed in patients with 
metastatic colon cancer demonstrated that the genotyping KIR/
HLA pairs helps to predict overall survival to treatment with 
FOLFIRI (27). In the same context, the critical early role of NK 
cells in facilitating response to imatinib in patients with chronic 
phase-chronic myeloid leukemia (CP-CML) that cannot be 
overcome by subsequent intensification of therapy is well known. 
KIR genotyping may add valuable prognostic information to 
future baseline predictive scoring systems in CP-CML patients 
and facilitate optimal frontline treatment selection (28). Patients 
with non-small lung cancer, positive for KIR2DL2 and KIR2DS2 
gene, and homozygous for the C1 ligand were six times more 
likely to respond to treatment than those with other genotypes. In 
accordance with this, patients with the KIR2DL2+/KIR2DS2+, 
C1C1 genotype survived longer than others (29).

It is well known that the activity of NK cells is controlled by a 
balance of signals generated from the cell surface receptor inhibi-
tors and activators. Furthermore, some of the clinically approved 
therapeutic mAbs to treat solid tumor are considered to function 
partially through triggering NK cell-mediated ADCC activity 
(30). A recent study suggests that transfer of allogeneic NK cells 
in combination with a cancer-targeting antibody such as trastu-
zumab may represent an effective approach to adoptive immuno-
therapy (31). In this regard, it was found that ADCC mediated by 
allogeneic NK cells occurred despite combinations of NK cells and 
breast cancer targets predicted to trigger inhibitory KIR signaling. 

Overall, in spite of the central role of NK cells in host immune 
responses and the fact that the KIR/HLA gene system is the main 
receptor system able to modulate NK cell function, it is unknown 
whether these KIR/HLA ligands combinations could influence 
the response to anti-EGFR therapies. It would be possible that 
the efficiency of anti-EGFR antibody is stronger due to the target 
cells are lysed, on one hand, through ADCC and, on the other, 
through the lack of inhibitory signal or even through an activating 
signal due to KIR2DS1 and the binding of HLA-I corresponding 
allele. In addition, some groups have studied the relationship 
between different genotypes gamma receptor Fc and effectiveness 
of therapy anti EGFR with conflicting results (32). A reason for 
that could be explained due to the participation of other important 
variables in ADCC, such as KIR different genotypes.

In addition to NK cells having inhibitory KIR receptors with a 
lower avidity to HLA-ligand (thus, having a decreased inhibitory 
function respect to other KIRs) and having several activating KIR 
receptors may induce an increase NK-mediated cytolysis of target 
cells. Therefore, our results support the hypothesis that the pres-
ence of activating KIRs (KIR2DS1/C2 and KIR3DS1/HLA-Bw4) 
favors longer TTF after anti-EGFR treatment.

However, no relationships between the presence/absence 
of KIR inhibitors and TTF were evident. At the cellular level, 
these effects could be mediated by an increase in activating KIR 
on NK cells and HLA ligands specific in tumor cells, which in 
turn may improve tumor NK-mediated immunity. However, 
the controversy of what is the reason NK cells, which under 
normal conditions not by activating receptors are activated to 
prevent autoimmune diseases, are released at this time arises to 
exercise its function. Another proposed mechanism is related 
to the presentation by HLA of “de novo.” mAb treatment could 
modify the complexes peptide/HLA influencing the function of 
NK cells in the tumoral microenvironment due to the increasing 
of activators KIR function (33). Similarly, it is possible that some 
peptides (new or only more abundant) may occur by HLA to KIR 
during tumor growth or even due to the treatment with mAb. 
In our case, it would be due to a predominance of KIR/activating 
ligand (2DS1/C2) on its corresponding inhibitory combination 
KIR/HLA (2DL1/C2). These activating KIRs would activate the 
sensitive NK cells or by the appearance of the previously men-
tioned new peptides (the possibility that in addition to HLA, KIR 
activators have other ligands present in healthy cells and would be 
present in these circumstances) or because activation by mAbs of 
a potent NK cell response; it is well known that when NK is very 
active, their activator KIR is functional (34).

The other mechanism for this hyperactivated microenviron-
ment is the local secretion of citoquinas IL-12 and IL-15. When 
NK cells are activated via IL-12 and IL-15, this protective mecha-
nism is released and lyses tumor cells by 2DS1 (35). The activation 
may be initiated due to the treatment with mAbs (trastuzumab or 
cetuximab) by NK CD16 pathway and this activation release IFN 
gamma other cytokines that may activate macrophages, which 
release more mediators increasing NK activity.

Another issue that supports the results observed in our study 
is the fact that 2DS1 is associated with homozygosity or heterozy-
gosity C2. In vitro studies showed that NK cells from donors with 
2DS1 C2C2 were not able to lyse C2-presenting targets cells. Thus, 
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C2C2 subjects would be hardly able to activate NK via 2DS1, and 
their activation would occur only in C1C2 subjects. In agreement, 
this study found that 2DS1/C1C2 subjects had a longer TTF (data 
not shown). Under normal condition, these activating receptors 
are inhibited in NK cells to prevent autoimmune response. 
However, there is controversy on this mechanism on activation 
under pathological conditions, including tumoral progression. In 
addition to the possible predictive value of KIRs receptors for the 
response to treatment with mAbs, our results support the potential 
therapeutic value of pharmacological modulation of KIR activity.

The current study has several limitations. First, the study sam-
ple includes a cohort of patients suffering from different tumors 
that have been pooled together, although all of them are under 
anti-EGFR therapy and are advanced solid tumors. Therefore, we 
cannot generalize our results to other kind of cancer or therapy. 
Another point is that our findings should be interpreted within 
the context of the experimental limitations, so the causal nature 
of the relationship between the interaction of KIR and HLA-I 
ligands and the delay in TTF remains uncertain and the potential 
mechanisms should be explored and validated in future studies.

cOnclUsiOn

Our results showed that two activating KIR/HLA ligand 
combinations predict better response of patients to anti-EGFR 

therapy. Future studies, currently underway, should confirm 
these results and support the possible predictive and therapeutic 
value of different KIR genotypes and its pharmacological 
modulation, in combination with mAbs in the treatment of 
solid tumors.
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