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Myriad experiments have identified an important role for CD8+ T cell response mecha-
nisms in determining recovery from influenza A virus infection. Animal models of influenza
infection further implicate multiple elements of the immune response in defining the
dynamical characteristics of viral infection. To date, influenza virus models, while capturing
particular aspects of the natural infection history, have been unable to reproduce the
full gamut of observed viral kinetic behavior in a single coherent framework. Here, we
introduce a mathematical model of influenza viral dynamics incorporating innate, humoral,
and cellular immune components and explore its properties with a particular emphasis
on the role of cellular immunity. Calibrated against a range of murine data, our model
is capable of recapitulating observed viral kinetics from a multitude of experiments.
Importantly, the model predicts a robust exponential relationship between the level of
effector CD8+ T cells and recovery time, whereby recovery time rapidly decreases to a
fixed minimum recovery time with an increasing level of effector CD8+ T cells. We find
support for this relationship in recent clinical data from influenza A (H7N9) hospitalized
patients. The exponential relationship implies that people with a lower level of naive CD8+

T cells may receive significantly more benefit from induction of additional effector CD8+

T cells arising from immunological memory, itself established through either previous viral
infection or T cell-based vaccines.

Keywords: influenza, viral dynamics, mathematical model, cellular immunity, recovery time

1. INTRODUCTION

Invasion of influenza virus into a host’s upper respiratory tract leads to infection of healthy epithelial
cells and subsequent production of progeny virions (1). Infection also triggers a variety of immune
responses. In the early stage of infection, a temporary non-specific response (innate immunity)
contributes to the rapid control of viral growth, while in the late stage of infection, the adaptive
immune response dominates viral clearance (2). The early immune response involves production of
antiviral cytokines and cells, e.g., type 1 interferon (IFN) and natural killer cells (NK cells), and is
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independent of virus type (3–7). In the special case of a first
infection in a naive host, the adaptive immune response, mediated
by the differentiation of naive T cells and B cells and subsequent
production of virus-specific T cells and antibodies (2, 8), leads to
not only a prolonged killing of infected cells and virus but also
the formation of memory cells that can generate a rapid immune
response to secondary infection with the same virus (9, 10).

CD8+ T cells, which form a major component of adaptive
immunity, play an important role in efficient viral clearance (11).
However, available evidence suggests that they are unable to
clear virus in the absence of antibodies (12, 13) except in hosts
with a very high level of preexisting naive or memory CD8+

T cells (14–16). Some studies indicate that depletion of CD8+

T cells could decrease the viral clearance rate and thus prolong
the duration of infection (17–20). Furthermore, a recent study of
human influenza A (H7N9) hospitalized patients has implicated
the number of effector CD8+ T cells as an important driver of the
duration of infection (21). These diverse experimental and clinical
data, sourced from a number of host species, indicate that timely
activation and elevation of CD8+ T cell levels may play a major
role in the rapid and successful clearance of influenza virus from
the host. These observations motivate our modeling study of the
role of CD8+ T cells in influenza virus clearance.

Viral dynamics models have been extensively applied to the
investigation of the antiviral mechanisms of CD8+ T cell immu-
nity against a range of pathogens, with major contributions
for chronic infections such as HIV/SIV (22–27), HTLV-I (28),
and chronic LCMV (29, 30). However, for acute infections
such as measles (31) and influenza (32–42), highly dynamical
interactions between the viral load and the immune response
occur within a very short-time window, presenting new chal-
lenges for the development of models incorporating CD8+ T cell
immunity.

Existing influenza viral dynamics models, introduced to study
specific aspects of influenza infection, are limited in their ability
to capture all major aspects of the natural history of infection,
hindering their use in studying the role of CD8+ T cells in viral
clearance. Some models show a severe depletion of target cells
(i.e., healthy epithelial cells susceptible to viral infection) after
viral infection (34, 36–38, 40). Depletion may be due to either
infection or immune-mediated protection. Either way, thesemod-
els are arguably incompatible with recent evidence that the host
is susceptible to reinfection with a second strain of influenza,
a short period following primary exposure (43). Furthermore,
as reviewed by Dobrovolny et al. (39), target cell depletion in
these models strongly limits viral expansion so that virus can
be effectively controlled or cleared at early stage of infection
even in the absence of adaptive immunity, which contradicts the
experimental finding that influenza virus remains elevated in the
absence of adaptive immune response (44).While a fewmodels do
avoid target cell depletion (32, 33), they assume either immediate
replenishment of target cells (32) or a slow rate of viral invasion
into target cells resulting in a much delayed peak of virus titer at
day 5 postinfection (rather than the observed peak at day 2) (33).
Moreover, models with missing or unspecified major immune
components, e.g., no innate immunity (24, 25, 36, 38), no antibod-
ies (24, 25, 33, 41, 42), or unspecified adaptive immunity (40), also
indicate the need for further model development. For an in-depth

review of the current viral dynamics literature on influenza, we
refer the reader to the excellent article by Dobrovolny et al. (39).

In this article, we construct a within-host model of influenza
viral dynamics in naive (i.e., previously unexposed) hosts that
incorporates the major components of both innate and adaptive
immunity and use it to investigate the role of CD8+ T cells
in influenza viral clearance. The model is calibrated against a
set of published murine data by Miao et al. (38) and is then
validated through demonstration of its ability to qualitatively
reproduce a range of published data from immune-knockout
experiments (12, 13, 17, 18, 38, 44). By using the model, we
find that the recovery time—defined to be the time when virus
titer first drops below a chosen threshold in the (deterministic)
model—is negatively correlated with the level of effector CD8+

T cells in an approximately exponential manner. To the best
of our knowledge, this relationship, with support from both
H3N2-infected mice and H7N9-infected humans (21), has not
been previously identified. The exponential relationship between
CD8+ T cell level and recovery time is shown to be remarkably
robust to variation in a number of key parameters, such as viral
production rate, IFN production rate, delay of effector CD8+ T
cell production, and the level of antibodies. Moreover, by using
themodel, we predict that people with a lower level of naive CD8+

T cells may receive significantly more benefit from induction
of additional effector CD8+ T cells. Such production, arising
from immunological memory, may be established through either
previous viral infection or T cell-based vaccines.

2. MATERIALS AND METHODS

2.1. The Model
The model of primary viral infection is a coupled system of
ordinary and delay differential equations, consisting of three
major components (see Figure 1 for a schematic diagram).
Equations (1)–(3) describe the process of infection of target cells
by influenza virus and are amajor component in almost all models
of viral dynamics in the literature. Equations (4) and (5) model
IFN-mediated innate immunity (45, 46). Third, adaptive immu-
nity including CD8+ T cells and B cell-produced antibodies for
killing infected cells and neutralizing influenza virus, respectively,
are described by equations (6)–(11).

dV
dt = pVI − δVV − κSVAS − κLVAL − βVT, (1)

dT
dt = gT(T + R)

(
1 − T + R + I

T0

)
− β′VT + ρR − ϕFT,

(2)
dI
dt = β′VT − δII − κNIF − κEIE, (3)

dF
dt = pFI − δFF, (4)

dR
dt = ϕFT − ρR, (5)

dCn

dt = −βCn

(
V

V + hC

)
Cn, (6)

dE
dt = βCn

(
V(t − τC)

V(t − τC) + hC

)
Cn(t − τC)e(pCτC) − δEE, (7)
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FIGURE 1 | Schematic diagram showing the major components of viral
infection and the immune response. Infection starts when virus binds to
healthy epithelial cells (target cells). Infected cells release new virus and
produce cytokines such as IFN. IFN is a major driver of innate immunity,
responsible for effective control of rapid viral growth and expansion. Virus
further stimulates naive CD8+ T cells and B cells to produce effector CD8+

T cells and antibodies, responsible for final clearance of virus.

dBn

dt = −βBn

(
V

V + hB

)
Bn, (8)

dP
dt = βBn

(
V(t − τB)

V(t − τB) + hB

)
Bn(t − τB)e(pBτB) − δPP, (9)

dAS

dt = pSP − δSAS, (10)

dAL

dt = pLP − δLAL. (11)

In further detail, equation (1) indicates that the change in viral
load (V) is controlled by four factors: the production term (pVI)
in which virions are produced by infected cells (I) at a rate of pV
(37, 45, 47); the viral natural decay/clearance (δVV) with a decay
rate of δV; the viral neutralization terms (κSVAS and κLVAL)
by antibodies (both a short-lived antibody response AS driven
by, e.g., IgM, and a longer-lived antibody response AL driven by,
e.g., IgG and IgA (12, 38)), and a consumption term (βVT) due
to binding to and infection of target cells (T). In equation (2),
the term gT(T+R)(1− (T+R+ I)/T0) models logistic regrowth
of the target cell pool (46). Both target cells (T) and resistant
cells (R, those protected due to IFN-induced antiviral effect) can
produce new target cells, with a net growth rate proportional
to the severity of infection, 1− (T+R+ I)/T0 (i.e., the fraction
of dead cells). T0 is the initial number of target cells and the
maximum value for the target cell pool (34). Target cells (T) are
consumed by virus (V) due to binding (β′VT), the same process
as βVT. Note that β and β′ have different measurement units
due to different units for viral load (V) and infected cells (I). As
mentioned earlier, the innate response may trigger target cells (T)

to become resistant (R) to virus at a rate ϕFT. Resistant cells lose
protection at a rate ρ (45). This process also governs the evolution
of virus-resistant cells (R) in equation (5).

Equation (3) describes the change of infected cells (I). They
increase due to the infection of target cells by virus (β′VT) and
die at a (basal) rate δI. Two components of the immune response
increase the rate of killing of infected cells. IFN-activated NK
cells kill infected cells at a rate κNIF (6, 45, 46, 48). Effector
CD8+ T cells (E)—produced through differentiation from naive
CD8+ T cells Cn in equation (6)—kill at a rate κEIE. Of note, our
previous work has suggested that models of the innate response
containing only IFN-induced resistance for target cells (state R;
equation (5)), while able to maintain a population of healthy
uninfected cells, still control viral kinetics through target cell
depletion.While it remains possible that thesemodelsmay be able
to reproduce features of the viral reexposure data (43, 46), that
work also demonstrated that inclusion of IFN-activated NK cells
(term κNIF) provides a natural explanation for the observed viral
reexposure data.

Equation (4) models the innate response, as mediated by IFN
(F). IFN is produced by infected cells at a rate pF and decays at a
rate δF (46).

Equation (6) models stimulation of naive CD8+ T cells (Cn)
into the proliferation/differentiation process by virus at a rate
βCnV/(V+ hC), where βCn is the maximum stimulation rate and
hC indicates the viral load (titV) at which half of the stimulation
rate is achieved. Note that this formulation does not capture the
process of antigen presentation and CD8+ T cell activation, but
rather is a simple way to establish the essential coupling between
the viral load and the rate of CD8+ T cell activation in the model
(49). In equation (7), the production of effector CD8+ T cells (E)
is assumed to be an “advection flux” induced by a delayed virus
stimulation of naive CD8+ T cells [the first term on the right-
hand side of equation (7)]. The delayed variables, V(t− τC) and
Cn(t− τC), equal zero when t<τC. The introduction of the delay
τC is to phenomenologically model the delay induced by both
naive CD8+ T cell proliferation/differentiation and effector CD8+

T cell migration and localization to the site of infection for antivi-
ral action (42, 50, 51). The delay also captures the experimental
finding that naive CD8+ T cells continue to differentiate into
effector T cells in the absence of ongoing antigenic stimulation
(49, 52). The multiplication factor epCτC indicates the number of
effector CD8+ T cells produced from one naive CD8+ T cell, where
pC is the average of effector CD8+ T cell production rate over
the delay period τC. The exponential form of the multiplication
factor is derived based on the assumption that cell differentiation
and proliferation follow a first-order advection–reaction equation.
Effector CD8+ T cells decay at a rate δE.

Similar to CD8+ T cells, equations (8) and (9) model the pro-
liferation/differentiation of naive B cells, stimulated by virus pre-
sentation at rate βBnV/(V+ hB). Stimulation subsequently leads
to the production of plasma B cells (P) after a delay τB. The
multiplication factor epBτB indicates the number of plasma B cells
produced from one naive B cell, where pB is the production rate.
Plasma B cells secrete antibodies, which exhibit two types of
profiles in terms of experimental observation: a short-lived profile
(e.g., IgM lasting from about day 5 to day 20 postinfection) and a
longer lived profile (e.g., IgG and IgA lasting weeks to months)
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(12, 38). These two antibody responses are modeled by equations
(10) and (11), wherein different rates of production (PS and PL)
and consumption (δS and δL) are assumed.

2.2. Model Parameters and Simulation
Themodel contains 11 equations and 30 parameters (seeTable 1).
This represents a serious challenge in terms of parameter estima-
tion and clearly prevents a straightforward application of standard
statistical techniques. To reduce uncertainty, a number of param-
eters were taken directly from the literature, as per the citations
in Table 1. The rest were estimated (as indicated in Table 1)
by calibrating the model against the published data from Miao
et al. (38) who measured viral titer, CD8+ T cell counts, and IgM
and IgG antibodies in laboratory mice (exhibiting a full immune
response) over time during primary H3N2 A/Hong Kong/X31
influenza A virus infection (see Ref. (38) for a detailed description
of the experiment). The approach to estimating the parameters
based on Miao et al.’s data is provided in Supplementary Material,
and the estimated parameter values are given in Table 1. Note
that the data were presented in scatter plots in the original paper
(38), while we presented the data here in mean± SD at each data
collection time point for a direct comparison with our mean-field
mathematical model.

For model simulation, the initial condition is set to be (V, T,
I, F, R, Cn, E, Bn, P, AS, AL)= (V0, T0, 0, 0, 0, 100, 0, 100, 0, 0,
0) unless otherwise specified. The initial target cell number (T0)
was estimated by Petrie et al. (53). We estimate that of order 100
cells (resident in the spleen) are able to respond to viral infection
(Cn) (personal communication, N. LaGruta, Monash University,
Australia). Note that 100 naive CD8+ T cells might underestimate
the actual number of naive precursors that could respond to all
the epitopes contained within the virus but does not qualitatively
alter themodel dynamics and predictions (see Section 3 where the
naive CD8+ T cell number is varied between 0 and 200, where
the upper bound is sufficient to show the model’s full range of
behaviors). In the absence of further data, we also use this value
for the initial naive B cell number (Bn), but again this choice
does not qualitatively alter the model predictions. The numerical
method and code (implemented inMATLAB, version R2014b, the
MathWorks, Natick,MA,USA) for solving themodel are provided
in Supplementary Material.

2.3. Analysis of Clinical Influenza A (H7N9)
Data
Clinical influenza A (H7N9) patient data were used to test our
model predictions on the relationship between CD8+ T cell

TABLE 1 | Model parameter values obtained by fitting the model to experimental data.

Parmeter Description Value and unit Reference

V0 Initial viral load 104 [uV] Estimated
T0 Initial number of epithelial cells in the URT 7×107 cells (53)
gT Base growth rate of healthy cells 0.8 d−1 Fixed
pV Viral production rate 210 [uV]cell

−1 d−1 Estimated
pF IFN production rate 10−5 [uF ]cell

−1 d−1 Estimated
pC Naive CD8+ T cell proliferation rate 1.2 d−1 (32)
pB Naive B cell proliferation rate 0.52 d−1 Estimated
pS Short-lived antibody production rate 12 [uA]cell

−1 d−1 Estimated
pL Long-lived antibody production rate 4 [uA]cell

−1 d−1 Estimated
δV Non-specific viral clearance rate 5 d−1 (47)
δI Non-specific death rate of infected cells 2 d−1 (32)
δF IFN degradation rate 2 d−1 (45)
δE Death rate of effector CD8+ T cells 0.57 d−1 (54)
δP Death rate of plasma B cells 0.5 d−1 Estimated
δS Short-lived antibody consumption rate 2 d−1 Estimated
δL Long-lived antibody consumption rate 0.015 d−1 Estimated
β Rate of viral consumption by binding to target cells 5×10−7 cell−1 d−1 Estimated
β′ Rate of infection of target cells by virus 3×10−8 [uV]

−1 d−1 Estimated
ϕ Rate of conversion to virus-resistant state 0.33 [uF]

−1 d−1 (45)
ρ Rate of recovery from virus-resistant state 2.6 d−1 (45)
κS Rate of viral neutralization by short-lived antibodies 0.8 [uA]

−1 d−1 Estimated
κL Rate of viral neutralization by long-lived antibodies 0.4 [uA]

−1 d−1 Estimated
κN Killing rate of infected cells by IFN-activated NK cells 2.5 [uF]

−1 d−1 (45)
κE Killing rate of infected cells by effector CD8+ T cells 5×10−5 cell−1 d−1 Estimated
βCn Maximum rate of stimulation of naive CD8+ T cells by virus 1 d−1 (9)
βBn Maximum rate of stimulation of naive B cells by virus 0.03 d−1 Estimated
hC Half-maximal stimulating viral load for naive CD8+ T cells 104 [uV] Estimated
hB Half-maximal stimulating viral load for naive B cells 104 [uV] Estimated
τC Delay for effector CD8+ T cell production 6 days (51)
τB Delay for plasma B cell production 4 days Estimated

[uV ], [uF ], and [uA ] represent the units of viral load, IFN, and antibodies respectively. [uV ] and [uA ] are measured as EID50/ml (50% egg infective dose) and pg/ml, consistent with the
units of data. IFN is assumed to be a non-dimensionalized variable in the model, and therefore, [uF ] can be ignored. Some parameters are obtained from the literature, and the rest are
obtained by fitting the model to experimental data in the study by Miao et al. (38), except gT, which is of minor importance when considering a single infection and is thus fixed to reduce
uncertainty.
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number and recovery time. The data were collected from 12
surviving patients infected with H7N9 virus during the first wave
of infection inChina in 2013. (Rawdata are provided inData Sheet
S1 in SupplementaryMaterial; see the paper ofWang et al. (21) for
details of data collection; this study was reviewed and approved by
the SHAPHC Ethics Committee.) Note that the clinical data were
scarce for some patients. For those patients, we have assumed that
the available data are representative of the unobserved values in
the neighboring time period. For each patient, we took the average
IFNγ+ CD8+ T cell number in 106 peripheral blood mononuclear
cells (PBMC) for the period from day 8 to day 22 (or the recovery
day if it comes earlier) postadmission as a measure of the effector
CD8+ T cell level. This period was chosen a priori as it roughly
matches the duration of the CD8+ T cell profile, and clinical
samples were frequently collected in this period. The average
CD8+ T cell count was given by the ratio of the total area under the
data points (using trapezoidal integration) to the number of days
from day 8 to day 22 (or the recovery day if it comes earlier). For
those patients for whom samples at days 8 and/or 22 weremissing,
we specified the averageCD8+ T cell level at themissing time point
to be equal to the value from the nearest sampled time available.

3. RESULTS

3.1. Model Properties and Reproduction
of Published Experimental Data
We first analyze the model behavior to establish a clear under-
standing of the model dynamics. Figure 2 shows solutions (time
series) for the model compartments (viral load, CD8+ T cells, and
IgM and IgG antibody) calibrated against the murine data from
the study by Miao et al. (38). Solutions for the remaining model
compartments are shown in Figure 3. The model (with both
innate and adaptive components active) prevents the depletion of

FIGURE 2 | The model with estimated parameters (solid curves)
captures the murine data from the study by Miao et al. (38). The data
are shown as error bars (mean±SD). Note that due to the limit of detection
for the viral load (occurring after 10 days postinfection as seen in viral load
data), the last three data points in the upper left panel were not taken into
consideration for model fitting.

target cells (see Figure 3 wherein over 50% of target cells remain
during infection) and results in a minor loss of just 10–20% of
healthy epithelial cells (i.e., the sum of target cells (T) and virus-
resistant cells (R); see Figure S1 in Supplementary Material). We
note the important difference between prevention of target cell
depletion on the one hand and maintenance of healthy cells on
the other hand. To be compatible with heterologous reexposure
studies (43, 46), a model must not only maintain the population
of healthy cells (as many of the aforementioned models do) but
must also prevent depletion of target cells to enable infection on
rapid reexposure. Otherwise, if T is driven low and R high, while
the healthy cell population will be maintained, infection on reex-
posure may still be blocked. In our model, the primary driver for
themaintenance of the target cell pool during acute viral infection
is a timely activation of the innate immune response (Figure S2
in Supplementary Material), indicating that our model improves
upon previous models where viral clearance was only achieved
through depletion of target cells (a typical solution shown in
Figure S2B in Supplementary Material).

The modeled viral dynamics exhibits three phases, each dom-
inated by the involvement of different elements of the immune
responses (Figure 4). Immediately following infection (0–2 days
postinfection) and prior to the activation of the innate (and
adaptive) immune responses, virus undergoes a rapid exponential
growth (Figure 4A). In the second phase (2–5 days postinfec-
tion), the innate immune response successfully limits viral growth
(Figure 4A). In the third phase (4–6 days postinfection), adaptive

FIGURE 3 | Model solution for non-fitted variables. T, I, and R represent
the numbers of target cells, infected cells, and resistant cells, respectively.
F represents the level of IFN (a dimensionless variable). Cn and Bn represent
the numbers of naive CD8+ T cells and naive B cells, respectively. P
represents the number of antibody-secreting plasma cells. Parameter values
used to generate the results are given in Table 1. Note that model solutions
for fitted variables are shown in Figure 2.
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A

B C

FIGURE 4 | The model solution exhibits three-phase behavior
following influenza virus infection. (A) Schematic representation of three
phases of behavior based on involvement of immune responses. Following
infection, virus first undergoes rapid exponential growth before the innate
immune response is activated (on day 2). Innate immunity controls rapid viral
expansion to form a plateau in viral load. Adaptive immunity starts to take
effect 4–6 days postinfection and is responsible for viral clearance.
(B,C) demonstrate that the model dynamics follow the three-phase theory.
Viral kinetics in the presence of a full immune response is shown by the solid
line (B,C). (B) The dashed line shows viral kinetics in the complete absence of
immunity (innate and adaptive; by letting pF =0 and βCn =βBn = 0 in the
model). The trajectories overlap prior to the activation of the innate response,
before diverging due to target cell depletion. The shaded region highlights the
first phase (exponential growth). (C) The dashed line shows viral kinetics in the
absence of adaptive immunity (by letting βCn =βBn = 0; innate immunity
remains active). The trajectories overlap prior to the activation of the adaptive
response. The shaded region highlights the second phase (innate response).
Note: changes in model parameters shifts where the three phases occur, but
does not alter the underlying three-phase structure, i.e., existence of the three
phases is robust to variation in parameters (see Supplementary Material and
Figure S3 in Supplementary Material in particular).

immunity (antibodies andCD8+ T cells) is activated and viral load
decreases rapidly, achieving clearance. Figures 4B,C demonstrate
the dominance of the different immune mechanisms at differ-
ent phases. In Figure 4B, models with and without immunity
are indistinguishable until day 2 (shaded region), before diverg-
ing dramatically when the innate and then adaptive immune
responses influence the dynamics. In Figure 4C, models with and
without an adaptive response only diverge at around day 4 as
the adaptive response becomes active. We have further shown
that this three-phase property is a robust feature of the model,
emergent from its mathematical structure and not a property
of fine tuning of parameters (see Figure S3 in Supplementary
Material). Importantly, it clearly dissects the periods and effect of
innate immunity, extending on previous studies of viral infection
phases where the innate immune response was either ambiguous
or ignored (12, 38, 55).

As reviewed by Dobrovolny et al. (39), a number of in vivo
studies have been performed to dissect the contributions of CD8+

T cells and antibodies (12, 17, 18, 44, 56). We use the findings
of these studies to validate our model, by testing how well it is
able to reproduce the experimental findings (without any further
adjustment to parameters). Although the determination of the
role of CD8+ T cells is often hindered by co-inhibition of both

CD8+ T cells and the long-lived antibody response (e.g., using
nude mice), it is consistently observed that antibodies play a
dominant role in final viral clearance, while CD8+ T cells are
primarily responsible for the timely killing of infected cells and
so indirectly contribute to an increased rate of removal of free
virus toward the end of infection (13, 17, 18). Furthermore, exper-
imental data demonstrate that a long-lived antibody response is
crucial for achieving complete viral clearance, while short-lived
antibodies are only capable of driving a transient decrease in
viral load (12, 44). We find that our model (with parameters
calibrated against Miao et al.’s data (38)) is able to reproduce these
observations:

• Virus can rebound in the absence of long-lived antibody
response (see Figure 5; Figure S4 in Supplementary Material).

• Both the CD8+ T cell response and short-lived antibody
response only facilitate a faster viral clearance and are incapable
of achieving clearance in the absence of long-lived antibody
response (see Figure 5; Figure S4 in Supplementary Material).

• A lower level of CD8+ T cells (modulated by a decreased level
of initial naive CD8+ T cells,Cn) significantly prolongs the viral
clearance (see Figure S4 in Supplementary Material).

In addition, the model also predicts a rapid depletion of naive
CD8+ T cells after primary infection (see Figure 3), which rep-
resents a full recruitment of naive CD8+ T cell precursors. This
result may be associated with the experimental evidence suggest-
ing a strong correlation between the naive CD8+ T cell precursor
frequencies and effector CD8+ T cell magnitudes for different
pMHC-specific T cell populations (57). Note that in Figure 5, no
adjustments to the model (e.g., to the vertical scale) were made;
its behavior is completely determined by the calibration to the
aforementioned murine data (38), and so these findings represent
a (successful) prediction of the model.

In summary, we have demonstrated that our model—with
parameters calibrated against murine data (38)—exhibits three
important phases characterized by the involvement of various
immune responses. Advancing on previous models, our model
does not rely on target cell depletion and successfully reproduces a
multitude of behavior from knockout experiments where particu-
lar components of the adaptive immune response were removed.
This provides us with a well-tested platform, in which all major
components of the immune response have been included and
tested, with which to now make predictions on the effect of the
cellular adaptive response on viral clearance.

3.2. Dependence of the Recovery Time
on the Level of Effector CD8+ T Cells
Having established that our model is (from a structural point
of view) biologically plausible and that our parameterization is
capable of reproducing varied experimental data under different
immune conditions (i.e., knockout experiments), we now study
how the cellular adaptive response influences viral kinetics in
detail. We focus on the key clinical outcome of recovery time,
defined in the model as the time when viral titer first falls below
1 EID50/ml, the minimum value detected in relevant experiments
(e.g., Figure 2).
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A

B

FIGURE 5 | Consistency between mice data (left panels) and model results (right panels) shows that short-lived antibody response (e.g., IgM) is only
capable of generating a transient decrease in viral load while long-lived antibody response (e.g., IgA) plays a more dominant role in late-phase viral
clearance. (A) Data are from the paper of Kris et al. (44). Normal or nude BALB/c mice were infected with H3N2 virus. External antibodies were given at day 5 and
had waned by about day 21. The model simulation mimics the passive antibody input by introducing an extra amount of IgM (in addition to antigen-stimulated IgM),
whose time course faithfully follows the experimental measurement (see Figure 2A in the paper of Kris et al. (44)). “CD8+ T-, IgA-, IgG-” was modeled by letting
βCn = 0 and pL = 0. “External IgM” (in addition to the IgM produced by plasma cells) was modeled by adding a new term−κSVAe (t) to equation (1), where Ae(t)
follows a piecewise function Ae(t)= 0 for t<5, Ae(t)= 100(t−5) for t∈ [5, 7], Ae(t)= 200−14(t−7) for t∈ [7, 21], and Ae(t)= 0 for t≥21. (B) Data are from the
paper of Iwasaki and Nozima (12). The data indicate that the long-lasting IgA response, but not the long-lasting IgG response or the short-lasting IgM response, is
necessary for successful viral clearance. “No long-lived antibody response” was modeled by letting pL =0. Note that Miao et al. only measured IgM and IgG, but not
IgA. As such, our model’s long-lived antibody response was calibrated against IgG kinetics (see Figure 2). Therefore, we emphasize that we can only investigate the
relative contributions of short-lived and long-lived antibodies.

Time series of the viral load show that the recovery time
decreases as the initial naive CD8+ T cell number (Cn) increases
(Figure S4 in Supplementary Material). With that in mind, we
now examine how recovery time is associated with the clin-
ically relevant measure of effector CD8+ T cell level during
viral infection. With an increasing initial level of naive CD8+

T cells, the average level of effector CD8+ T cells over days
6–20 increases linearly (Figure 6A), while the recovery time
decreases in an approximately exponential manner (Figure 6B).
Combining these two effects gives rise to an approximately
exponential relation between the level of effector CD8+ T cells
and recovery time (Figure 6C). Note that the exponential/linear
fits shown in the figures are simply to aid in interpretation
of the results. They are not generated by the viral dynamics
model.

If varying the delay for naive CD8+ T cell activation and dif-
ferentiation, τC, while keeping the naive CD8+ T cell number
fixed (at the default value of 100), we find that the average level
of effector CD8+ T cells is exponentially related to the delay, while
the recovery time is dependent on the delay in a piecewise linear
manner (see Figure S5 in Supplementary Material). Nevertheless,
the combination still leads to an approximately exponential rela-
tionship between the level of effector CD8+ T cells and recovery
time (Figure S5C in Supplementary Material), which is almost

identical to that of varying naive CD8+ T cells (Figure 6D). We
also examine the sensitivity of the exponential relationship to
other model parameters generally accepted to be important in
influencing the major components of the system, such as the
viral production rate pV, IFN production rate pF, and naive B cell
number. We find that the exponential relationship is robust to
significant variation in all of these parameters (see Figures S6 and
S7 in Supplementary Material; the result for varying naive B cell
number is shown in the last section of Section 3). These results
suggest that a higher level of effector CD8+ T cells is critical for
early recovery, consistent with experimental findings (58).

Finally, and perhaps surprisingly given our model has been
calibrated purely on data from the mouse, a strikingly similar
relationship as shown in Figure 6C is found in clinical data from
influenza A (H7N9) virus-infected patients (Figure 7). Excluding
one patient (No. a79 in Data Sheet S1 in Supplementary Material;
the exclusion is considered further in Section 4), average IFNγ+

CD8+ T cells and recovery time are negatively correlated (Spear-
man’s ρ=− 0.8368, p= 0.0013) andwell captured by an exponen-
tial fit with an estimated offset (see Figure 7 caption for details).
The exponential relationship (observed in both model and data)
has features of a rapid decay for relatively low/intermediate levels
of effector CD8+ T cells and a strong saturation for relatively high
CD8+ T levels, implying that even with a very high level of naive
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A B

C D

FIGURE 6 | The level of effector CD8+ T cells plays an important role in determining recovery time. Recovery time is defined to be the time when viral load
falls to 1 EID50/ml. (A) shows that the average effector CD8+ T cell number over days 6–20 is linearly related to the naive CD8+ T cell number (i.e., Cn(0)). (B) shows
that the recovery time is approximately exponentially related to the initial naive CD8+ T cell number. Combined, these results give (C), wherein an approximately
exponential relationship is observed between the average CD8+ T cell number and recovery time, both of which are experimentally measurable. Note that the
exponential/linear fits shown in the figures are not generated by the viral dynamics model but are used to indicate the trends (evident visually) in the model’s behavior.
(D) shows that varying the delay τC (in a similar way to that shown in Figure S5 in Supplementary Material), rather than the naive CD8+ T cell number, does not alter
the exponential relationship. In (D), the crosses represent the results of varying τC and the empty circles are the same as those in (C) for comparison.

FIGURE 7 | Clinical influenza A (H7N9) data exhibit an exponential
relationship between the average CD8+ T cell number and recovery
time. The x-axis is the average level of functional effector CD8+ T cells (i.e.,
IFNγ+ CD8+ T cells) over the period from day 8 to day 22 (or the recovery day
if it comes earlier). Spearman’s rank correlation test indicates a significant
negative correlation between the average CD8+ T cell numbers and recovery
time (ρ=−0.8368, p= 0.0013). Excluding one of the patients (No. a79 in
Data Sheet S1 in Supplementary Material; discussed in Section 4), all other
data points (solid dots) are fitted by an offset exponential function
y= 24.8755e−0.0073x + 17.5356, indicating that the best achievable recovery
time for individuals with a high CD8+ T cell response is approximately
17.5356days.

CD8+ T cells, recovery time cannot be reduced below a certain
value (in this case, estimated to be approximately 17 days).Of note,
the exponential relationship (i.e., the scale of CD8+ T cell level

or recovery time) is only a qualitative one, as we have no way
to determine the scaling between different x-axis measurement
units, nor adjust for particular host and/or viral factors that differ
between the two experiments (i.e., H3N2-infection in the mouse
(38) versus H7N9 infection in humans (21)).

3.3. Dependence of the Recovery Time on
the Level of Memory CD8+ T Cells
In addition to naive CD8+ T cells, memory CD8+ T cells (estab-
lished through previous viral infection) may also significantly
affect recovery time due to both their rapid activation on antigen
stimulus and faster replication rate (54, 59–61). To study the
role of memory CD8+ T cells, we must first extend our model.
As we are only concerned with how the presence of memory
CD8+T cells influences the dynamics, as opposed to the devel-
opment of the memory response itself, the model is modified
in a straightforward manner through addition of two additional
equations that describe memory CD8+ T cell (Cm) prolifera-
tion/differentiation:

dCm

dt = −βCm

(
V

V + hCm

)
Cm, (12)

dEm
dt = βCm

(
V(t − τCm)

V(t − τCm) + hCm

)
Cm(t − τCm)e(pCmτCm)− δEEm.

(13)
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Accordingly, the term κEIE in equation (3) is modified to
κEI(E+Em). The full model and details on the choice of the
additional parameters are provided in Supplementary Material.
Note that the model component, Cm, may include different popu-
lations of memory CD8+ T cells, including those directly specific
to the virus and those stimulated by a different virus but which
provide cross-protection (62, 63).

Figure 8A shows how the preexisting memory CD8+ T cell
number (Cm) changes the exponential relationship between naive
CD8+ T cells and recovery time. Importantly, as the number of
memory CD8+ T cells increases, the recovery time decreases for
any level of naive CD8+ T cells and the exponential relationship
remains. For patients with a relatively low level of naive CD8+

T cells (i.e., on the left of Figure 8A), the extent of reduction in
the recovery time is greater than that for patients with a relatively
high level of naive CD8+ T cells (i.e., on the right of Figure 8A).
This suggests that people with a lower level of naive CD8+ T cells
may benefit more through induction of memory CD8+ T cells,
emphasizing the potential importance for taking prior population
immunity into consideration when designing CD8+ T cell-based
vaccines (64).

The above result is based on the assumption that the initial
memory CD8+ T cell number upon reinfection is independent of
the number of naive CD8+ T cells available during the previous
infection. However, it has also been found that the stationary level
of memory CD8+ T cells is usually maintained at about 5–10% of
the maximum antigen-specific CD8+ T cell number during pri-
mary viral infection (8, 65). This indicates that people with a low
naive CD8+ T cell numbermay also develop a low level ofmemory
CD8+ Tcells following infection. In consequence, such individuals
may be relatively more susceptible to viral reinfection (66). This
alternative and arguably more realistic relationship between the
numbers of naive and memory CD8+ T cells is simulated in
Figure 8B where memory CD8+ T cell levels are set to 5% of the
maximum of the effector CD8+ T cell level. Results suggest that,
on viral reinfection, preexisting memory CD8+ T cells are able to
significantly improve recovery time except for hosts with a very
low level of naive CD8+ T cells (Figure 8B). This is in accordance

with the assumption that a smaller naive pool leads to a smaller
memory pool and in turn a weaker shortening in recovery time.
Although the model suggests that the failure of memory CD8+

T cells to protect the host is unlikely to be observed (because of
the approximately 30-fold increase in the size of the memory pool
relative to the naive pool), the failure rangemay be increased if the
memory pool size is much smaller (modulated by, say, changing
5 to 1% in the model). Therefore, for people with a low naive
CD8+ T cell number, the level of memory CD8+ T cells may be
insufficient and prior infection may provide very limited benefit,
further emphasizing the opportunity for novel vaccines that are
able to induce a strong memory CD8+ T cell response to improve
clinical outcomes.

3.4. Dependence of the Recovery Time on
Antibody Level
Antibodies appear at a similar time as effector CD8+ T cells during
influenza viral infection and may enhance the reduction in the
recovery time in addition to CD8+ T cells. By varying the naive
B cell number Bn (as a convenient, but by no means unique, way
to influence antibody level), we find that increasing the antibody
level shortens the recovery time regardless of the initial naive
CD8+ T cell number, leaving the exponential relation largely intact
(Figure 9). A slight saturation occurs for the case in which levels
of both naive B cells and CD8+ T cells are low.Moreover, variation
in naive B cell number also results in a wider variation in recovery
time for a lower naive CD8+ T cell level, suggesting that people
with a lower level of naive CD8+ T cells may, once again, receive
a more significant benefit (in terms of recovery time) through
effective induction of an antibody response via vaccination.

4. DISCUSSION

In this article, we have studied the role of CD8+ T cells in clearing
influenza virus from the host using a viral dynamics model. The
model was calibrated on a set of published murine data from the
study by Miao et al. (38) and has been further shown to be able to

A B

FIGURE 8 | Effects of naive and memory CD8+ T cells on viral clearance. Recovery time is defined to be the time when the viral load falls to 1 EID50/ml. (A)
demonstrates that varying the number of memory CD8+ T cells (Cm) reduces the recovery time for any naive CD8+ T cell number (i.e. Cn(0)). Note that saturation is
observed for Cm >100 where the recovery time is about 6 days, independent of the naive cell numbers. (B) demonstrates how the presence of preexisting memory
CD8+ T cells (solid dots) leads to a shorter recovery time when compared to the case where no memory CD8+ T cells are established (open circles). Note the time
scale difference in (A,B). This simulation is based on the assumption that the level of preexisting memory CD8+ T cells is assumed to be either 1 or 5% (as indicated
in the legend) of the maximum effector CD8+ T cell number due to primary viral infection. The memory cell number (which is not shown in this figure) is about 30
times as many as the naive cell number shown in the figure, i.e., 30 naive cells result in about 900 memory cells before reinfection.
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FIGURE 9 | Influence of antibody level on the relationship between the
naive CD8+ T cell number and recovery time. Recovery time is defined to
be the time when viral load falls to 1 EID50/ml. Different antibody levels are
simulated by varying the initial number of naive B cells (i.e., Bn at t= 0).

reproduce a range of published data from experiments with dif-
ferent immune components knocked out. By avoiding target cell
depletion, ourmodel is also compatible with reinfection data (43),
providing a strong platform onwhich to examine the role of CD8+

T cells in determining recovery time from infection. Our primary
finding is that the time of recovery from influenza viral infection
is negatively correlated with the level of effector CD8+ T cells
in an approximately exponential manner. This robust property
of infection has been identified from the model when calibrated
against low pathogenic influenza A (H3N2) infection data inmice
(38), but also observed in clinical case series of (severe) influenza
A (H7N9) infection in humans (Figure 7) (21). Our findings,
in conjunction with conclusions on the potential role for a T
cell vaccine that stimulates and/or boosts the memory response,
suggest new directions for research in both non-human species
and further studies in humans on the association between CD8+

T cell levels and clinical outcomes. Further research, including
detailed statistical fitting of our model to an extensive panel of
infection data (as yet unavailable) from human and non-human
species, is required to establish the generality of these relationships
and provide quantitative insights for specific viruses in relevant
hosts.

The non-linear relationship between effector CD8+ T cell level
and recovery time may be useful in clinical treatment. The satu-
rated property of the relation implies that a linear increase in the
effector CD8+ T cell level may result in diminishing incremen-
tal improvements in patient recovery times. With evidence of a
possible age-dependent loss of naive T cells (67–69), our model
results imply that boosting the CD8+ T cell response via T cell
vaccination may be particularly useful for those with insufficient
naive CD8+ T cells. The population-level consequences of such
boosting strategies, while beyond the scope of this work, have
previously been considered by the authors (64).

We also investigated the effect of memory CD8+ T cell level on
viral clearance and found unsurprisingly that a high preexisting
level of memory CD8+ T cells was always beneficial. However,
our results suggest that preexisting memory CD8+ T cells may be
particularly beneficial for certain groups of people. For example,
if the memory CD8+ T cell number induced by viral infection
or vaccination is assumed to be relatively constant for everyone,

people with less naive CD8+ T cells would benefit more on viral
reinfection (see Figure 8A). On the other hand, if assuming
preexisting memory CD8+ T cell number is positively correlated
with the number of naive CD8+ T cells (simulated in Figure 8B),
people with more naive CD8+ T cells would benefit more on
viral reinfection. Emerging evidence suggests that the relationship
between the level of memory CD8+ T cells and naive precursor
frequencies is likely to be deeply complicated (57, 70–72). In
that context, our model predictions emphasize the importance
for further research in this area and the necessity to take prior
population immunity into consideration when designing CD8+ T
cell vaccines (64).

We modeled both short-lived and long-lived antibody
responses. Experimental data and model predictions consistently
show that the short-lived antibody response results in a temporary
reduction in virus level, whereas the long-lived antibody response
is responsible for complete viral clearance (Figure 5). We
emphasize here that although the model is able to capture the
observed short-lived and long-lived antibody responses (to study
the virus–immune response interactions), it is not designed
to investigate the mechanisms inducing different antibody
responses. The observed difference in antibody decay profile may
be a result of many factors including the life times of different
antibody-secreting cell types (73, 74), different antibody life
times (75), and antibody consumption through neutralizing
free virions. Detailed study of these phenomena requires a more
detailed model and associated data for parameter estimation and
model validation and is thus left for future work. Similarly, CD4+

T cells are also known to perform a variety of functions in the
development of immunity, such as facilitation of the formation
and optimal recall of CD8+ T cells or even direct killing of
infected cells during viral infection (9, 10, 76, 77). Their depletion
due to, say, HIV infection has also been associated with more
severe clinical outcomes following influenza infection (78). Some
of the major functions of CD4+ T cells may be considered to be
implicitlymodeled through relevant parameters such as the rate of
recall of memory CD8+ T cells (modeled by the delay τCm) in our
extended model that includes memory CD8+ T cells. However,
a detailed viral dynamics study of the role of CD4+ T cells in
influenza infection, including in HIV-infected patients with
depleted CD4+ T cells, remains an open and important challenge.

In a recent theoretical study, it was found that spatial hetero-
geneity in the T cell distribution may influence viral clearance
(42). Resident CD8+ T cells in the lungs have a more direct and
significant effect on timely viral clearance than do naive andmem-
ory pools resident in lymph nodes. Although this factor has been
partially taken into consideration in our model by introducing a
delay for naive/memory CD8+ T cells, lack of explicit modeling
of the spatial dynamics limits a direct application of our model to
investigate these spatial effects.

Finally, as noted in the results, one of the influenza A (H7N9)-
infected patients (patient a79) was not included in our analysis of
the clinical data (Figure 7). Although our model suggests some
possibilities for the source of variation due to possible variation
in parameter values, large variations in recovery time are only
expected to occur for relatively low levels of naive CD8+ T cells,
nominally incompatible with this patient’s moderate CD8+ T cell
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response but a relatively long recovery time. However, we note
that IFNγ+ CD8+ T cell counts for this patient were only collected
at days 10 and 23 and that the count at day 10 was particularly
low and much lower than that at day 23 (see Data Sheet S1 in
Supplementary Material). We suspect that delayed, rather than
weakened, production (to at least day 10) of the IFNγ+ CD8+ Tcell
response in this patient substantially contributed to the observed
delay in recovery. Further investigation of this patient’s clinical
course and clinical samples is currently being undertaken.
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