
December 2016 | Volume 7 | Article 6141

Original research
published: 19 December 2016

doi: 10.3389/fimmu.2016.00614

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Aurelio Cafaro,  

Istituto Superiore di Sanità, Italy

Reviewed by: 
Seema Desai,  

Rush University, USA  
Antonella Caputo,  

University of Padua, Italy

*Correspondence:
Giulia Carla Marchetti 

giulia.marchetti@unimi.it

Specialty section: 
This article was submitted to  

HIV and AIDS,  
a section of the journal  

Frontiers in Immunology

Received: 04 October 2016
Accepted: 05 December 2016
Published: 19 December 2016

Citation: 
Merlini E, Tincati C, Biasin M, Saulle I, 
Cazzaniga FA, d’Arminio Monforte A, 
Cappione AJ III, Snyder-Cappione J, 

Clerici M and Marchetti GC (2016) 
Stimulation of PBMC and  

Monocyte-Derived Macrophages via 
Toll-Like Receptor Activates Innate 
Immune Pathways in HIV-Infected 

Patients on Virally Suppressive 
Combination Antiretroviral Therapy. 

Front. Immunol. 7:614. 
doi: 10.3389/fimmu.2016.00614

stimulation of PBMc and  
Monocyte-Derived Macrophages via 
Toll-like receptor activates innate 
immune Pathways in hiV-infected 
Patients on Virally suppressive 
combination antiretroviral Therapy
Esther Merlini1, Camilla Tincati1, Mara Biasin2, Irma Saulle2, Federico Angelo Cazzaniga1, 
Antonella d’Arminio Monforte1, Amedeo J. Cappione III3, Jennifer Snyder-Cappione4, 
Mario Clerici5,6 and Giulia Carla Marchetti1*

1 Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy, 
2 Department of Biomedical and Clinical Sciences – “L. Sacco”, University of Milan, Milan, Italy, 3 EMD Millipore, 
Danvers, MA, USA, 4 Flow Cytometry Core, Boston University, Boston, MA, USA, 5 Department of Physiopathology and 
Transplants, University of Milan, Milan, Italy, 6Don C. Gnocchi Foundation, Istituti di Ricovero e Cura a Carattere Scientifico 
(IRCCS), Milan, Italy

In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune acti-
vation and microbial translocation persist and associate with inadequate CD4 recovery 
and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) 
pathway could be responsible for the immune hyperactivation seen in these patients. 
PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-
treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 
Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls 
were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/
HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR 
pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopoly-
saccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded 
weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. 
MDM from these patients were characterized by a reduced expression of HLA-DR+ 
MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM 
from cART patients responded more robustly to ssRNA stimulation; this resulted in a 
significant expansion of activated CD38  +  CD8 and the release of amounts of pro- 
inflammatory cytokines comparable to those seen in untreated viremic patients. Despite 
greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregu-
late only type I IFN genes following TLR stimulation, whereas PBMC from full responders 
showed a broader response. Systemic exposure to microbial antigens drives immune 
activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/
pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests 
translocating bacteria as selective stimulus to chronic innate activation during cART. 
High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting an 
exhausted immune milieu, anergic to further antigen encounters.
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inTrODUcTiOn

Virally effective combination antiretroviral therapy (cART) is char-
acterized by persistent immune hyperactivation, which has been 
proven a potent determinant of impaired immune recovery (1–4) 
and non-AIDS morbidity/mortality (5–9), urging the identification 
of causative pathways. Indeed, a convincing body of data has accu-
mulated that indicates immune activation not only as a consequence 
of viral-specific challenge but also as a reflection of bystander activa-
tion, resulting from innate immune responses (10, 11).

Microbial and viral components are known to trigger the 
innate immune response via toll-like receptor (TLR) signaling 
(12). In turn, TLR-driven cytokine production from monocytes/
macrophages and dendritic cells prompts T-cell activation, thus 
establishing the adaptive immune response (13–18). In untreated 
HIV infection, altered TLR expression and responsiveness have 
been described (19–21) and are only partially normalized by 
cART (21). Indeed, HIV-1 encodes for various TLR7/8 ligands 
that can mediate direct activation of the immune system in vitro 
(22–24). Likewise, HIV-driven gut barrier damage is not reverted 
by cART (25–28) and leads to the passage of microbial products 
in peripheral blood, mainly lipopolysaccharide (LPS), which is a 
TLR4 agonist (29, 30). Circulating LPS levels have been associ-
ated with immune activation both in treated and untreated HIV 
(31–35); furthermore, exogenous in  vivo LPS administration 
has been described to enhance immune activation (34). Besides, 
recent literature in both HIV-negative and HIV-positive indi-
viduals provided ex vivo evidence for a direct role of translocating 
microbial products in driving immune activation. In particular, 
ex vivo stimulation of PBMCs and antigen-presenting cells with 
bacterial ligands (including LPS), commensal bacteria, and 
combined bacterial and viral stimulus results in the production of 
pro- and anti-inflammatory cytokines (36–50). In cART-treated 
patients, increased CD8+ CD38+ cells have been reported upon 
LPS exposure in subjects with poor CD4+ T-cell restoration (50) 
as well as impaired IFN-α production, following stimulation of 
plasmacytoid dendritic cells with TLR7 and TLR9 agonists (51).

These data would altogether imply the testable hypothesis 
of TLR pathway as mediator of persistent immune activation/
inflammation upon effective cART. However, a thorough investi-
gation of the contribution of TLR pathway in sustaining immune 
activation in HIV+ patients on virologically suppressive cART as 
compared to both HIV+ untreated and uninfected individuals, 
and whether it might be associated to poor CD4 recovery on 
cART, has not been established yet.

To bridge this gap, we determined the effect of TLR challenge 
on downstream pathways in T-lymphocytes and monocytes/
macrophages from HIV-infected cART-untreated and treated 
individuals with different degrees of immune reconstitution who 
had evidence of microbial translocation and compared them to 
uninfected controls.

PaTienTs anD MeThODs

Patients
Sixty-three HIV-infected individuals were consecutively enrolled 
at the Clinic of Infectious Diseases and Tropical Medicine, ASST 

Santi Paolo e Carlo, University of Milan, Italy. Thirty-five patients 
were on stable cART for at least 12 months, with undetectable 
plasma HIV-RNA load (<40 cp/mL) in at least two consecutive 
assessments and CD4 nadir ≤350/mmc. Twenty-eight patients 
were antiretroviral naïve, with any CD4 count. Individuals 
with either signs/symptoms of gastrointestinal diseases or on 
antibiotic therapy at the time of study were excluded. HIV+ 
on cART were divided into two groups according to the degree 
of immune reconstitution following the introduction of cART: 
Full Responders (FRs, n  =  20) with CD4+ ≥350/mmc and 
Immunological Non-Responders (INRs, n  =  15) with CD4+ 
<350/mmc. We also enrolled 16 HIV-negative healthy subjects 
as controls.

All of the enrolled patients provided written informed consent 
according to the Ethical Committee of our Institution (Comitato 
Etico, ASST “Santi Paolo e Carlo”, Milan, Italy). The ethics com-
mittee specifically approved this study. All subjects gave written 
informed consent in accordance with the Declaration of Helsinki.

isolation and culturing of Primary 
Monocytes to Obtain Monocyte-Derived 
Macrophages
Monocytes from Ficoll-isolated PBMCs were separated from 
lymphocytes by adherence to tissue culture-treated plates (52). 
After 48 h of incubation, non-adherent cells were removed via 
two washes with warm RPMI. The purity of the monocytes 
was >90%, as determined by immunofluorescent staining with 
antiCD14 FITC antibody (BD Pharmigen, San Diego, CA, USA). 
The monocytes were differentiated into macrophages (MDMs) by 
culturing in RPMI medium supplemented with 10% fetal bovine 
serum, 2 mM glutamine, 100 U of penicillin/ml, and 100 µg of 
streptomycin/ml for 15 days prior to stimulation. The monocyte-
derived macrophages (MDMs) were washed with phosphate-
buffered saline (PBS), and the culture medium was replaced every 
2 days. After 15 days, the MDMs were removed by gently scraping 
with a plastic cell scraper and cold PBS.

stimulation of PBMcs and MDMs
Dose–response and timing curves were performed for each 
stimulus. Ficoll-separated PBMCs (4  ×  106  cells/well) and 
MDMs (5 × 105 cells/well) were stimulated for 24 h with LPS 
(50 µg/mL), peptidoglycan (PGN) (10 µg/mL), lipoteichoic acid 
(LTA) (1  µg/mL), ssRNA40, a uridine-rich ssRNA analog of 
HIV-1 ssRNA (6,25 µg/mL) (InvivoGen, San Diego, CA, USA), 
interferon-γ (IFNγ) (100  U/mL), anti-CD28 (1.25  µg/mL) 
(R&D System, Minneapolis, MN, USA), and anti-CD3 (2.5 µg/
mL) (BD Pharmigen, San Diego, CA, USA). After 24 h, the cells 
were harvested for flow cytometry analyses; the supernatants of 
a subset of 5 HIV−, 5 HIV+ untreated, and 11 HIV +  cART 
(5 INRs and 6 FRs) patients were collected and stored for the 
Luminex assay.

Flow cytometry
Cell-surface molecule expression of the cultured PBMCs and 
MDMs was evaluated by flow cytometry (FC500, Beckman 
Coulter) using the following fluorochrome-labeled antibodies: 
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CD4-PECy7, CD8-PECy5, CD14-PECy7, CD69-PECy5, 
CD45-PE, CD3-PECy7 (Beckman Coulter, Milan, Italy), 
CCR7-PE, CD45RA-FITC, HLA-DR-FITC, CD38-PE, CD4-PE, 
CD8-PerCPCy5.5, Ki67-FITC, CD14-FITC (BD Bioscience, San 
Diego, CA, USA), TLR-4-PE (R&D Systems, Minneapolis, MN, 
USA), and TLR-8-PE (Thermoscientific, Tema Ricerca, Milan, 
Italy). Activation (HLA-DR and CD38), apoptosis (Annexin V), 
proliferation (Ki67), maturation (CCR7/CD45RA), and TLR 
expression (TLR-4,-8) were determined from the total PBMC 
cultures. MDM activation and function markers were measured 
by the expression of CD69 and HLA-DR, respectively.

The following reagent combinations were used: CD8/CD4/
CD38/HLA-DR, CD4/AnnexinV/7AAD, CD8/AnnexinV/ 
7AAD, CD8/CD4/Ki67, CD45RA/CCR7/CD4/CD8, CD45/
CD14/CD69/HLA-DR, CD3/CD14/TLR4, and CD3/CD14/
TLR8. CXP software from Beckman Coulter was used for the 
analyses. PBMCs were gated first based on side- and forward-
scatter properties, then as CD4+ or CD8+ and finally as CD38/
HLA-DR or Annexin V/7AAD or Ki67 or CCR7/CD45RA. To 
measure TLR expression, PBMCs were first gated based on side- 
and forward-scatter properties, then as CD3/CD14 and, within 
the CD14+ gate, cells were gated as TLR4+ or TLR8+. MDMs 
were gated first based on side-scatter properties and CD45+, then 
as CD14+, and finally as CD69/HLA-DR.

Microbial Translocation Markers
Plasma levels of sCD14 and LPS were measured by an ELISA 
assay (R&D Systems, Minneapolis, MN, USA) and the LAL test 
(Kinetic-QCL; Bio Whittaker, Walkersville, MD, USA), respec-
tively, and used according to the manufacturer’s instructions.

hiV-rna Quantification
Plasma HIV-RNA was quantified using the Abbott RealTime 
HIV-1 assay, with a detection limit of 40 cp/ml, according to man-
ufacturer’s instruction. The HIV-RNA copy numbers between 0 
and 40 (low-level residual viremia) were extrapolated from the 
standard curve of the assay (Abbott Laboratories, Princeton, NJ, 
USA).

Multiplex assays
The relative contents of 25 analytes in culture supernatants 
of a subset of 11 HIV+ cART-treated subjects (5 INRs and 6 
FRs) were determined using the human Th17 Magnetic Bead 
Panel (EMD Millipore; Billerica, MA, USA) with a Bio-Plex® 
MAGPIX™ Multiplex Reader (Bio-Rad Laboratories, Hercules, 
CA, USA), according to the manufacturer’s instructions. The rela-
tive content of 12 analytes in culture supernatants of a subset of 
five HIV + naïve subjects and five HIV-negative healthy controls 
was quantified using Luminex Screening Assay (R&D Systems, 
Minneapolis, MN, USA) with a Bio-Plex® MAGPIX™ Multiplex 
Reader (Bio-Rad Laboratories, Hercules, CA, USA). All samples 
were run in duplicate. The raw data were analyzed using Bio-
Plex Manager software. Standard curves were generated from 
lyophilized standards provided with each kit. The concentration 
for each analyte in each sample was determined via interpolation 
from each corresponding standard curve.

rna extraction and reverse Transcription
RNA was extracted from cultured PBMCs using the acid guan-
idium thiocyanate–phenol–chloroform method. RNA was puri-
fied from genomic DNA with RNase-free DNase (RQ1 DNase, 
Promega, Madison, WI, USA). Then, 1 µg of RNA was reverse 
transcribed into first-strand cDNA in a 20-µL final volume 
containing 1 µM random hexanucleotide primers, 1 µM oligo dT, 
and 200 U Moloney murine leukemia virus reverse transcriptase 
(Clontech, Palo Alto, CA, USA).

Tlr signaling Pathway
The TLR signaling pathway was analyzed in a PCR array that 
include a set of 84 optimized real-time PCR primers plus five 
housekeeping genes on a 96-well plates; the procedures suggested 
by the manufacturer were followed (SABiosciences Corporation, 
Frederick, MD, USA). Controls for genomic DNA contamination, 
RNA quality, and general PCR performance were also included 
on each array. The experiments were run on all HIV-negative 
healthy controls, HIV +  untreated, and cART (INRs and FRs) 
subjects included in the study and pooled into unique HIV-
negative, untreated HIV+, HIV + cART (INRs and FRs) samples, 
respectively (53). Thus, the results represent the mean value of 
the different targets analyzed in the study groups. Furthermore, 
the targets with marked differences between groups were retested 
by real-time PCR on each individual sample to confirm the data 
obtained in the array (data not shown).

statistical analysis
All continuous variables are presented as medians and interquar-
tile ranges (25th–75th percentile), whereas categorical data are 
shown as absolute numbers and percentages. Chi- squared or 
Fisher’s Exact test was used for the analyses of categorical vari-
ables. Mann–Whitney U test, Wilcoxon test, and Kruskal–Wallis 
test were used for the comparison of immunological parameters 
between the study groups. Correction for multiple comparisons 
was performed by post hoc analysis (Bonferroni or Dunn test). 
p-Values < 0.05 were considered significant. Statistical analyses 
and graphs were performed using GraphPad Prism 5 software.

resUlTs

study Population characteristics
The epidemiological, clinical, and immunological characteristics 
of the HIV-infected study groups and HIV-uninfected healthy 
controls are listed in Table  1. While all cART patients had an 
HIV-RNA <  40  cp/ml (as per inclusion criteria), median HIV 
low-level residual viremia was 20 cp/ml (IQR: 15–22). As shown 
in Table 1, cART patients featured lower CD4 nadir (p < 0.0001) 
and CD4 count at time of analysis (p = 0.003), displayed higher 
proportion of AIDS diagnosis (p = 0.003) and longer HIV infec-
tion (p < 0.0001).

Increased microbial translocation with HIV infection is 
evident as both cART and untreated HIV+ subject groups 
have, on average, higher LPS/sCD14 levels in the plasma than 
HIV-uninfected controls (LPS: p = 0.0045; sCD14: p = 0.0002). 
Furthermore, both HIV+ untreated and cART patients have 
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TaBle 1 | epidemiological, clinical, and immunological characteristics of the study groups.

hiV-negative (n = 16) hiV+ untreated (n = 28) hiV+ carT (n = 35) p-Value

Age, years (IQR)a 31 (28–35) 34 (29–39) 48 (41–64) <0.0001

Sex (%)b <0.0001

Female 11 (69) 3 (11) 7 (20)

Risk factors (%)b <0.0001

Heterosex 13 (81) 6 (21) 18 (51)

Homosex/bisex 3 (19) 22 (79) 11 (31)

IDU 0 (0) 0 (0) 6 (18)

HCV co-infection (%)b 0.231

Yes 0(0) 2 (7) 5 (14)

AIDS diagnosisb (%) (yes) N/A 2 (7) 14 (40) 0.003

Time since first HIV Ab+ test, years (IQR)a N/A 2 (2–4) 5 (4–7) <0.0001

CD4 T-cell count (IQR)a

Nadir (n) N/A 400 (324–524) 94 (26–217) <0.0001

Time of analysis (n) 521 (413–592) 372 (253–455) 0.003

HIV-RNA Log cp/mL (IQR)a at time of analysis N/A 4.39 (3.74–5.12) 1.59 (1.59–1.59) <0.0001

Low-level residual viremia HIV-RNA (cp/ml) N/A N/A 20 (15–22) N/A

cART duration, years (IQR)a N/A N/A 5 (3–6) N/A

cART regimen (%)b

NRTI + PI N/A 24 (68.5) N/A

NRTI + NNRTI N/A 8 (23)

Others 3 (8.5)

TLR4+ CD14+ (%) (IQR) 98.6 (97–99) 89.3 (47–99) 78 (57–87) 0.002

TLR8+ CD14+ (%) (IQR) 99.8 (99.7–100) 99.4 (97–100) 90.2 (84–96) 0.001

LPS, pg/ml (IQR) 75 (75–81) 187 (97–427) 203 (83–258) 0.0045

sCD14, μg/ml (IQR) 1.96 (1.39–2.10) 3.32 (2.81–5.14) 5.61 (3.25–7.92) 0.0002

CD45RA+ CCR7+ CD4+ (%) (IQR) 49.9 (2.4–57.4) 2.1 (1.1–22.7) 2.6 (1.9–8.8) 0.102

CD45RA− CCR7+ CD4+ (%) (IQR) 18.1 (3.6–23.2) 3.4 (2.1–8.1) 2.77 (1.7–11.7) 0.035

CD45RA− CCR7− CD4+ (%) (IQR) 21.1 (12.2–54.7) 48.6 (33.8–58.7) 45.4 (27.1–66.3) 0.242

CD45RA+ CCR7− CD4+ (%) (IQR) 5.8 (3.4–31.3) 36.6 (22.4–55.9) 32.3 (22.1–49.6) 0.026

CD45RA+ CCR7+ CD8+ (%) (IQR) 23.4 (12.9–24.6) 12.3 (4.5–46.1) 6.5 (2.6–17.9) 0.254

CD45RA− CCR7+ CD8+ (%) (IQR) 1.3 (1.1–2.2) 1.3 (0.6–7.3) 2.1 (0.8–5.7) 0.376

CD45RA− CCR7− CD8+ (%) (IQR) 25.1 (18.9–36.7) 49.1 (19.1–51.7) 36.2 (18.7–58.3) 0.494

CD45RA+ CCR7− CD8+ (%) (IQR) 43.1 (39.1–59.1) 35.4 (27.6–44.3) 42.9 (27.5–56.9) 0.727

aData are median (IQR). IQR, interquartile range; statistical analyses: Mann–Whitney U Test or Kruskall–Wallis with Dunn’s Multiple Comparison test.
bData are n (%), statistical analyses: Pearson chi squared or Fisher exact test; p values are referred to the comparison between the three study groups where applicable.
cART, combination of antiretroviral therapy; IDU, intravenous drug users; NRTI, nucleoside reverse transcriptase inhibitor; PI, protease inhibitor; NNRTI, non-nucleoside reverse 
transcriptase inhibitor; LPS, lipopolysaccharide; TLR, toll-like receptors.
Statistically significant p values (p < 0.05) are highlighted in bold font.
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skewed CD4 T-cell immune phenotypes, with lower frequencies 
of central memory (p = 0.035) and higher frequencies of termi-
nally differentiated (TD) CD4+ T cells (p = 0.026) as compared 
to healthy controls.

Table  2 summarizes the characteristics of HIV+  cART 
individuals, which were stratified into two groups FRs (n = 20) 
and INRs (n = 15) according to the degree of immune recovery. 
Patients were comparable for all epidemiological and immuno-
logical features. No differences in T-cell maturation phenotypes 
and microbial translocation markers were found between the 
groups (Table 2).

effect of Tlr stimulation on PBMc
We first investigated possible differences in the response of 
PBMC to TLR stimulation in HIV-infected untreated and treated 
patients versus uninfected controls.

In Vitro TLR Challenge on PBMCs: T Cell Activation, 
Proliferation, and Apoptosis
The effect of TLR stimulation on T cell activation, proliferation, 
and apoptosis was first determined. Interestingly, while the 
frequencies of activated HLA-DR+ CD4 and CD38 + CD8, pro-
liferating Ki67+ and pro-apoptotic Annexin V + CD4, and CD8 
T-cell subpopulations were not affected by bacterial stimulation 
in all study groups (Figures 1A–F), activated CD38 + CD8 T-cells 
were expanded by viral stimulation uniquely in cART-treated 
patients who reached significantly higher proportions than the 
other groups (ssRNA p = 0.044; Figure 1B).

The levels of activated HLA-DR+ CD4 and CD38  +  CD8 
T-cells (Figures 2A,B), proliferating Ki67+ (Figures 2C–E), and 
apoptotic Annexin V + CD4 and CD8 T-cells (Figures 2F,G) after 
TLR stimulation were similar between the FRs and INRs among 
the cART subjects.
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TaBle 2 | epidemiological, clinical, and immunological characteristics of the study groups.

Frs (n = 20) inrs (n = 15) p-Value

Age, years (IQR)a 51 (41–68) 45 (39–54) 0.278

Sex (%)b

Female 6 (30) 1 (7) 0.198

Risk factors (%)b 0.271

Heterosex 11 (55) 7 (47)

Homosex/bisex 6 (30) 5 (33)

IDU 3 (15) 3 (20)

HCV co-infection (%)b 0.722

Yes 3 (15) 2 (13)

AIDS diagnosisb (%) (yes) 5 (25) 9 (60) 0.079

Time since first HIV Ab+, years (IQR)a 5 (5–7) 5 (3–7) 0.552

CD4 T-cell count (IQR)a

Nadir (n) 97 (42–230) 94 (26–124) 0.342

Time of analysis (n) 451 (404–585) 237 (164–299) <0.0001

HIV-RNA Log cp/mL (IQR)a at time of analysis 1.59 (1.59–1.59) 1.59 (1.59–1.59) 0.901

Low-level residual viremia HIV-RNA, cp/ml 20 (14–21) 20 (17–28) 0.321

cART duration, years (IQR)a 4.5 (3–5) 5 (3–6) 0.444

cART regimen (%)b 0.112

NRTI + PI 11 (55) 13 (86)

NRTI + NNRTI 7 (35) 1 (7)

Others 2 (10) 1 (7)

Plasma LPS, pg/mL (IQR)a 146 (75–264) 235 (108–258) 0.447

Plasma sCD14, μg/mL (IQR)a 6.36 (3.5–7.98) 4.23 (2.84–5.99) 0.139

Toll-like receptor (TLR) 4+ CD14+, % (IQR) 79.5 (62.8–86.1) 77.7 (44.3–90.5) 0.680

TLR8+ CD14+, % (IQR) 84.9 (69.7–93.8) 80.2 (76.1–87.8) 0.770

CD45RA+ CCR7+ CD4+ (%) (IQR) 3.4 (2.4–53.3) 2.4 (0.7–7.7) 0.231

CD45RA− CCR7+ CD4+ (%) (IQR) 3.7 (1.5–18.8) 2.5 (1.8–4.4) 0.536

CD45RA− CCR7− CD4+ (%) (IQR) 42.1 (13.8–45.7) 58.8 (42.3–67.5) 0.107

CD45RA+ CCR7− CD4+ (%) (IQR) 23.1 (4.3–53.2) 35.5 (26.8–47.4) 0.649

CD45RA+ CCR7+ CD8+ (%) (IQR) 6.3 (2–37.3) 5.2 (2.9–10.6) 0.837

CD45RA− CCR7+ CD8+ (%) (IQR) 3.8 (0.5–6.9) 1.7 (0.5–6.8) 0.620

CD45RA− CCR7− CD8+ (%) (IQR) 36.2 (9.7–54.1) 42.5 (16.5–58.4) 0.649

CD45RA+ CCR7− CD8+ (%) (IQR) 42.6 (26–56.2) 40.4 (24.7–55.3) 0.901

aData are median (IQR). IQR, interquartile range; statistical analyses: Mann–Whitney U Test.
bData are n (%), statistical analyses: Pearson chi squared or Fisher exact test; FRs: full responders (CD4 ≥ 350/mmc; HIV-RNA < 40 cp/mL); INRs: immunological non-responders 
(CD4 < 350/mmc; HIV-RNA < 40 cp/mL).
IDU, intravenous drug users; LPS, lipopolysaccharide; cART, combination of antiretroviral therapy; NRTI, nucleoside reverse transcriptase inhibitor; PI, protease inhibitor; NNRTI, 
non-nucleoside reverse transcriptase inhibitor.
Statistically significant p values (p < 0.05) are highlighted in bold font.
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mRNA Expression of Genes Involved in the  
TLR-Mediated Pathway
To further investigate the effect of TLR stimulation on PBMCs, 
we next measured gene transcription and cytokine/chemokine 
response following exposure to the representative TLR4 and 
TLR7/8 agonists LPS and ssRNA, respectively. We first screened 
84 genes involved in the TLR-activation pathway by real-time 
PCR array in PBMCs from untreated and treated HIV+ patients 
(FRs and INRs) and HIV-negative controls.

In cART-treated patients, LPS stimulation resulted in a mod-
est upregulation of mRNA transcription of TLR2 and TLR7 that 
was not seen in untreated HIV+ patients (Figure 3A), of genes 
involved in the pathogen-specific response (CD14, CLEC4E, 
PTGS2), and pro-inflammatory cytokines IL-1α, IL-6, and CSF3 
(Figure  3B). Interestingly, we observed an upregulation of the 

type I interferon genes (indicated by the arrows) in both HIV+ 
untreated and cART group compared to HIV-uninfected controls 
(Figure 3B).

Viral (ssRNA) stimulation induced a more potent upregula-
tion of TLR-activation pathway in HIV+ subjects as compared 
to uninfected controls (Figures 3C,D). HIV+ untreated subjects 
showed highest transcription of genes that modulate NFκB 
activity (IRAK2, NFKBIA, RIPK2, TBK1; Figure  3C), as well 
as pro-inflammatory cytokines/chemokines (CSF3, CXCL-10, 
IFN-γ, IL-1a, IL-1b, IL-6, IL-8, TNF-α; Figure 3D). cART group 
upregulated mRNA specific for CCL2, CSF2, and type I interfer-
ons (Figure 3D).

Upon a comparative analysis of treated individuals with differ-
ent response to cART, INRs presented higher constitutive mRNA 
expression levels (up to 20-fold) of effector molecules, such as 
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FigUre 1 | In vitro toll-like receptor (Tlr) challenge on PBMcs: cD4 and cD8 T-cell activation, proliferation, and apoptosis. Data shown as a fold 
change: (stimulated percentage value)/(unstimulated percentage value). *indicates which comparison is the most significant (a) No upregulation of HLA-DR on CD4 
T-cells in all the three study groups following TLR challenge [lipopolysaccharide (LPS) p = 0.754; lipoteichoic acid (LTA) p = 0.945; peptidoglycan (PGN) p = 0.739; 
ssRNA p = 0.623; IFNγ p = 0.396; aCD3/CD28 p < 0.0001]. (B) Significant increase of CD38 + CD8 T-cell upon viral challenge alone in combination antiretroviral 
therapy group (LPS p = 0.081; LTA p = 0.587; PGN p = 0.360; ssRNA p = 0.044; IFNγ p = 0.764; aCD3/CD28 p = 0.304). (c,D) No differences in the proportion 
of Ki67 + CD4 T-cells (LPS p = 0.193; LTA p = 0.083; PGN p = 0.149; ssRNA p = 0.358; IFNγ p = 0.762; aCD3/CD28 p = 0.024) and Ki67 + CD8 T-cells following 
the exposure to TLR ligands (LPS p = 0.609; LTA p = 0.549; PGN p = 0.317; ssRNA p = 0.237; IFNγ p = 0.507; aCD3/CD28 p = 0.069). (e,F) No changes in 
pro-apoptotic Annexin V + CD4 (LPS p = 0.268; LTA p = 0.638; PGN p = 0.672; ssRNA p = 0.685; IFNγ p = 0.491; aCD3/CD28 p = 0.672) and CD8 (LPS 
p = 0.606; LTA p = 0.503; PGN p = 0.149; ssRNA p = 0.335; IFNγ p = 0.251; aCD3/CD28 p = 0.038) T-cells.
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CCL2, CSF2, CSF3, CXCL10, IFN-γ, IL1-a, IL-1b, IL-6, IL-8, and 
of genes involved in the pathogen-specific response (CLEC4E, 
HSPA1A, CD80, TLR3) (Figure 4A).

Both INRs and FRs failed to show a substantial upregulation 
of genes involved in the TLR downstream pathway upon LPS and 
ssRNA exposure (Figures 4B,C).

Interestingly, LPS exposure resulted in the upregulation of IL-1a, 
IL-6, and IL-8 in FRs alone (Figure 4D). Similarly, FRs were more 
responsive to ssRNA challenge (IFN-γ, IL-6, CSF2, and CSF3), 
except for type I interferons, which were higher in INRs (Figure 4E).

These data suggest a hyper-responsiveness to viral stimulation 
in both untreated and cART-treated HIV-infected subjects, con-
firming ssRNA as a potent immune activator in the setting of HIV 
infection. These results also suggest that despite an higher basal 

expression of genes involved in the TLR pathway, INRs are less 
responsive to TLR-specific stimulation and show upregulation of 
only type I IFNs following microbial challenge.

Cytokine/Chemokine Release in Supernatants
Last, we assessed cytokine/chemokine levels in LPS/ssRNA-
stimulated PBMC supernatants in a subset of 5 HIV-neg, 5 HIV+ 
untreated, and 11 HIV+ cART (5 INRs and 6 FRs), as proof of 
concept to be further investigated in larger cohorts (Figure 5).

Interestingly, in response to LPS, PBMCs from untreated 
HIV+ patients produced significantly higher IL-23 (p = 0.016) 
compared with cART-treated group, whereas PBMCs from 
cART-treated patients released higher TNF-α, IL-6, IL-1b, and 
CCL-20 as compared to untreated patients, however, lower than 
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FigUre 2 | In vitro toll-like receptor (Tlr) challenge on PBMcs: cD4 and cD8 T-cell activation, proliferation, and apoptosis in Full responders (Frs) 
and immunological non-responders (inrs). Data shown as a fold change: (stimulated percentage value)/(unstimulated percentage value). (a) No upregulation 
of HLA-DR on CD4 T-cell following TLR stimulation between FRs and INRs [lipopolysaccharide (LPS) p = 0.300; lipoteichoic acid (LTA) p = 0.271; peptidoglycan 
(PGN) p = 0.258; ssRNA p = 0.683; IFNγ p = 0.287; aCD3/CD28 p = 0.975]. (B) No differences in CD38 + CD8 T-cell, according to the degree of immune recovery 
(LPS p = 0.141; LTA p = 0.091; PGN p = 0.573; ssRNA p = 0.442; IFNγ p = 0.271; aCD3/CD28 p = 0.257). (c) Gating strategy for Ki67 measurement in both CD4 
and CD8 T-cell subset before and after TLR stimulation (flow cytometry). (D,e) No changes in the proportion of Ki67 + CD4 T-cells (LPS p = 0.271; lipoteichoic acid 
(LTA) p = 0.240; PGN p = 0.896; ssRNA p = 0.798; IFNγ p = 0.267; aCD3/CD28 p = 0.183) and Ki67 + CD8 T-cells following the exposure to TLR ligands (LPS 
p = 0.671; LTA p = 0.741; PGN p = 0.403; ssRNA p = 0.471; IFNγ p = 0.182; aCD3/CD28 p = 0.929). (F,g) No changes in pro-apoptotic Annexin V + CD4 (LPS 
p = 0.182; LTA p = 0.237; PGN p = 0.387; ssRNA p = 0.669; IFNγ p = 0.963; aCD3/CD28 p = 0.079) and CD8 (LPS p = 0.661; LTA p = 0.905; PGN p = 0.546; 
ssRNA p = 0.813; IFNγ p = 0.370; aCD3/CD28 p = 0.842) T-cells.
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FigUre 3 | In vitro toll-like receptor (Tlr) challenge on PBMcs: mrna expression of genes involved in the Tlr pathway. TLR signaling pathway mRNA 
expression in HIV-negative healthy controls (white bars), HIV + untreated subjects (gray bars), and HIV + combination antiretroviral therapy (cART) subjects (black 
bars) for TLR4 and TLR 7/8 stimulation with lipopolysaccharide (LPS) and ssRNA respectively. (a,B) Modest upregulation of TLR2, TLR7, CD14, CLE4E, PTGS2, 
and IL-1α mRNA in HIV + cART patients alone following LPS stimulation. Upregulation of the type I interferon genes (indicated by the arrows) in both treated and 
untreated HIV-infected patients versus HIV-neg controls. (c,D) Higher transcription of IRAK2, NFKBIA, RIPK2, TBK1, CSF3, CXCL-10, IFN-γ, IL-1α, IL-1b, IL-6, IL-8, 
and TNF-α in untreated HIV+, following viral challenge. Upregulation of CCL2, CSF2, and type I interferons mRNA in cART-treated HIV+ subjects.
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uninfected controls (TNF-α: p = 0.014; IL-6: p = 0.034; IL-1b: 
p = 0.330; CCL-20: p = 0.093; Figure 5A).

Viral stimulation accounted for greater release of cytokines/
chemokines in all the study groups. In particular, upon ssRNA 
exposure PBMCs from both treated and untreated HIV-infected 
subjects produced highest CD14 (p  =  0.014), whereas HIV+ 
untreated patients released highest IL-23 (p = 0.0008) (Figure 5B). 
HIV+ cART-treated patients tended to release higher TNF-α, 
IFN-γ, IL-6, and CCL-20 versus untreated patients, however, 
lower than uninfected controls (TNF-α: p = 0.015; IL-6: p = 0.067; 
IFN-γ: p = 0.164; CCL-20: p = 0.113; Figure 5B).

However, when we stratified HIV+ cART patients according 
to immune recovery degree, there were no significant differences 
upon LPS and ssRNA exposure between FRs and INRs (Figure 6).

effect of Tlr stimulation on MDMs:  
hla-Dr/cD69 cell-surface expression 
and cytokine/chemokine release
Because our data on PBMC TLR challenge in HIV-infected 
patients failed to demonstrate major effects on the T-lymphocyte 

compartment, in the face of different patterns of cytokine/
chemokine production according to presence or absence of 
therapy, we next sought to explore TLR challenge on an in vitro 
MDM system.

We first assessed the membrane expression of HLA-DR 
receptor. As expected, both treated and untreated HIV+ subjects 
consistently showed lower HLA-DR expression on MDM as 
compared to HIV-uninfected controls (Figure 7A).

We then studied MDM responsiveness to TLR challenge 
by the cell-surface expression of the activation marker CD69. 
Interestingly, in untreated HIV+ patients ssRNA stimulation was 
less efficient in increasing the proportion of CD69 + MDM as 
compared to HIV+ treated patients and HIV-negative controls 
(p = 0.015). No differences in both HLA-DR+ and CD69+ MDM 
were shown between INRs and FRs (data not shown).

To further investigate the effect of TLR stimulation on MDMs, 
cytokine and chemokine release was measured in supernatants 
following exposure to LPS and ssRNA (Figures 7B,C).

Interestingly, upon bacterial stimulation, MDMs of untreated 
HIV+ were characterized by lowest cytokine/chemokine release 
(<4-fold) (Figure  7B). Conversely, in cART-treated patients, 
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FigUre 4 | In vitro toll-like receptor (Tlr) challenge on PBMcs: mrna expression of genes involved in the Tlr pathway in Full responders (Frs) 
and immunological non-responders (inrs). TLR signaling pathway mRNA expression in HIV + combination antiretroviral therapy (cART) FRs (white bars) and 
HIV + cART INRs (black bars) for TLR4 and TLR 7/8 stimulation with lipopolysaccharide (LPS) and ssRNA, respectively. (a) Higher constitutive mRNA (up to 20-fold) 
of CCL2, CSF2, CSF3, CXCL10, IFNγ, IL1α, IL1b, IL6, IL8, CLEC4E, HSPA1A, CD80, and TLR3, in INRs as compared to FRs. (B,c) No effect on TLR downstream 
pathway after LPS and ssRNA stimulation. (D) Upregulation of IL-1α, IL-6, and IL-8 in FRs alone following LPS stimulation. (e) Higher mRNA transcription of IFN-γ, 
IL-6, CSF2, and CSF3 in FRs and higher type I interferons in INRs after ssRNA stimulation.
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LPS challenge raised TNF-α and IL-6 release despite not reach-
ing statistical significance in comparison to the other groups 
(Figure 7B).

Viral stimulation accounted for greater cytokine/chemokine 
release, particularly TNF-α and IL-6 in both treated and untreated 
HIV+ subjects compared to HIV− controls (Figure 7C). No sig-
nificant differences were found within cART patients following 
FRs and INRs categorization (data not shown).

Taken together, these findings point to ex vivo viral challenge 
as a more potent pro-inflammatory/activatory stimulus in both 
untreated and treated HIV when compared to bacterial stimulus. 
In particular, LPS failed to elicit strong immune responses in 
untreated individuals, suggesting tolerance to already elevated 
endotoxemia in these patients.

DiscUssiOn

Our report sought to help elucidate the role of signaling via TLR 
pathways in sustaining immune activation in cART-treated HIV-
infected patients as compared to both HIV+ untreated patients 
and uninfected controls.

Despite complete or near-complete suppression of HIV repli-
cation with cART, chronic inflammation and immune activation 
persist indefinitely (54, 55) and have been implicated in the 

pathogenesis of both impaired immunological recovery (1–4) 
and clinical outcome (8, 9, 56, 57).

Therefore, dissecting the mechanisms that sustain such 
persistent chronic immune activation and its relationship with 
poor immune reconstitution will provide important avenues to 
improve disease management in HIV-infected cART-treated 
individuals.

Prior in  vivo studies have shown an association between 
microbial translocation, immune activation, and inadequate 
CD4 recovery on cART (32, 58). Along the same line, in  vitro 
research has shown a direct link between microbial stimulation 
and immune activation in both HIV-uninfected (12, 37–39, 53) 
and HIV-infected untreated individuals through TLR signaling 
(18, 31, 33, 50, 59–61).

We, first, assessed the response of PBMCs to bacterial and 
viral TLR stimulation in all study groups. Upon bacterial 
(LPS) stimulation, PBMCs from both treated and untreated 
patients displayed an overall feeble cytokine release, possibly 
reflecting tolerance to the highest levels of circulating LPS or 
recent in vivo activation. PBMCs from cART patients featured 
greater production of cytokines/chemokines directly involved 
in inflammation, such as TNF-α, IL-6, IL-1b, and CCL-20 
(yet lower than healthy HIV-uninfected controls). Conversely, 
PBMCs from antiretroviral-naïve patients released highest 
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FigUre 5 | In vitro toll-like receptor challenge on PBMcs: cytokine/chemokine release. 12 different analytes were measured from PBMCs supernatant of 5 
HIV-negative healthy controls (white bars), 5 HIV+ untreated subjects (gray bars), and 11 HIV + combination antiretroviral therapy (cART) subjects (black bars) 
following lipopolysaccharide (LPS) and ssRNA, respectively. The figure depicts only cytokines/chemokines with a detectable production following LPS (a) and 
ssRNA (B) stimulation. Data shown as a fold change: (LPS-/ssRNA-stimulated cytokine value)/(unstimulated cytokine value). (a) LPS: PBMCs from untreated HIV+ 
produced significantly highest IL-23 (p = 0.016); PBMCs from cART-treated released higher TNF-α (p = 0.014), IL-6 (p = 0.034), IL-1b, and CCL-20 (p = 0.093) 
versus HIV+ untreated, lower than HIV-neg controls. (B) ssRNA: PBMCs from both HIV+ untreated and cART produced highest CD14 (p = 0.014), whereas HIV+ 
untreated patients released highest IL-23 (p = 0.0008). HIV + cART-treated patients tended to release higher TNF-α (p = 0.015), IFN-γ (p = 0.164), IL-6 (p = 0.067), 
and CCL-20 (p = 0.113) versus HIV+ untreated patients, lower, however, than uninfected controls.
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FigUre 6 | In vitro toll-like receptor challenge on PBMcs: cytokine/chemokine release in Full responders (Frs) and immunological  
non-responders (inrs). The 25 different analytes were measured from PBMCs supernatant of 5 INR and 6 FR patients following lipopolysaccharide (LPS) and 
ssRNA stimulation, respectively. The figure depicts only cytokines/chemokines with a detectable production following LPS (a) and ssRNA (B) stimulation. Data 
shown as a fold change: (LPS-/ssRNA-stimulated cytokine value)/(unstimulated cytokine value). (a) Each plot represents one individual, with the donor number 
noted at the top. In particular patient#1 is representative of FR group, whereas patient#2 is representative of INR group. The limits of detection of each analyte are 
shown in gray bars. (B,c) Data shown as a fold change: (LPS-/ssRNA-stimulated cytokine value)/(unstimulated cytokine value). (B) No significant differences in 
cytokine released between FRs and INRs after LPS exposure. (c) No major differences in cytokine release after ssRNA exposure.
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FigUre 7 | In vitro toll-like receptor (Tlr) challenge on monocyte-derived macrophages (MDMs): hla-Dr expression and cytokine/chemokine 
release. (a) Lower constitutively and TLR-driven HLA-DR expression on MDM in untreated and combination antiretroviral therapy (cART)-treated HIV+ versus 
HIV− controls. (B,c) Data presented as fold change (stimulated/unstimulated condition). Luminex quantification of 12 different analytes from MDM supernatant of 5 
HIV-negative, 5 HIV+ untreated, and 5 HIV + cART subjects. (B) Feeble cytokine/chemokine release (<4-fold) from MDMs of untreated HIV+ after lipopolysaccharide 
(LPS) exposure. Higher TNF-α and IL-6 release in cART-treated patients following LPS challenge. (c) Higher cytokine/chemokine release, particularly TNF-α and IL-6 
in both treated and untreated HIV-infected patients as compared to HIV− controls following ssRNA stimulation.
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IL-23, a finding consistent with previous research and that has 
been correlated with systemic immune activation and gut dam-
age (36, 62).

Similar findings were manifested in an experimental setting 
of TLR-stimulated MDMs from cART-treated patients, which 
displayed lowest HLA-DR expression and highest LPS-driven 
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release of pro-inflammatory TNF-α and IL-6, altogether indi-
cating severely impaired monocyte/macrophage function with 
a broader pro-inflammatory potential, reminiscent of what is 
observed in severe pro-inflammatory clinical settings (63).

Interestingly, in our patients’ cohort, none of the bacterial 
agonists that we tested and that mimic both Gram+ and Gram− 
bacteria (i.e., LPS, LTA, PGN) resulted in a significant expansion 
of activated, proliferating, apoptotic T-lymphocytes, confirming 
the modest effect of TLR stimulation alone in the direct activation 
of T-lymphocytes (37, 38).

We, next, evaluated the PBMC/MDM response to viral stimu-
lation, which proved a stronger pro-inflammatory challenge in 
HIV-infected individuals as a whole. Despite full HIV-viremia 
suppression, TLR7/8 stimulation, which has been shown to 
recognize HIV-1 ssRNA, resulted in high transcription of genes 
involved in the TLR pathway and pro-inflammatory cytokine/
chemokine release from PBMCs and MDMs of cART-treated 
patients, at levels not substantially lower than HIV+ untreated 
patients. Most interestingly, direct ssRNA stimulation resulted in 
a significant expansion of activated CD38+ CD8 T-cells uniquely 
in cART patients.

Two major observations stem from the findings of this 
first part of the study: (i) viral stimulation appears a stronger 
stimulus than LPS, clearly pointing to HIV itself, or its compo-
nents, as a major source of innate immune activation even in 
the presence of virally suppressive cART, as also suggested by 
the demonstration in our patients of low-level residual viremia, 
at levels below the threshold of commercially available assays. 
(ii) Bacterial stimulation seems to exert a superior effect on 
monocyte/macrophage activation from cART-treated versus 
untreated patients, with no major effect on T-lymphocytes, 
pointing to translocating bacteria as selective stimulus to innate 
immunity during virally suppressive cART. Because clinical and 
translational research strongly suggests that chronic activation 
of innate immunity drives morbidity/mortality in treated HIV 
(64–68), our data provide in  vitro evidence (tested in culture 
from both whole PBMCs and MDMs) of how monocyte/mac-
rophages from cART patients might be preferentially activated 
by circulating bacterial products. Given the persistence of gut 
damage and microbial translocation during cART (9, 25, 26, 
29, 69), we hereby provide an indication of how the systemic 
exposure to bacterial TLR agonists translocated from a dam-
aged gut may contribute to excessive morbidity/mortality in 
these patients.

In the second part of our research, we restricted the analysis 
to cART-treated patients with different CD4 recovery, with the 
ultimate aim to dissect possible role of TLR signaling in the 
inadequate CD4 reconstitution on cART. Despite our approach 
of gene expression analysis does not capture a statistical sig-
nificance also due to the small number of patients investigated, 
PBMCs from INRs seem to display greater constitutive mRNA 
expression of genes involved in the TLR-mediated pathway, yet 
upregulated only type I IFN genes following stimulation with 
TLR agonists. In contrast, TLR engagement in FRs seemed to 
result in the broad induction of genes involved in innate and 
adaptive immune responses. Taken together, these findings may 
suggest less efficient TLR-mediated signaling following exposure 

to TLR ligands in individuals with poor immune recovery after 
cART, which may be explained by tolerance (70, 71) or achieve-
ment of maximal transcription levels. Furthermore, by suggesting 
higher transcription of type I IFN genes in INRs in response to 
viral challenge, our findings support further investigation of IFN/
interferon-stimulated genes pathways, both of which have been 
proven to accelerate HIV/SIV pathogenesis, according to the 
response to cART (72–74).

In addition, while our failure to find any differences between 
INRs and FRs in cytokine/chemokine release by PBMCs and 
T-cell activation might be due to the limited number of patients 
analyzed, it may also reflect the mixed contribution of TLR-
dependent and -independent pathways in supporting immune 
activation and inflammation.

Several caveats in the experimental design of the present 
study must be acknowledged including prolonged cell culture, 
which might have selected the strongest and most functional 
MDMs, and the lack of cocultures of single APCs (macrophages, 
dendritic, or B cells) and CD3+ T-cell subpopulation, which 
could have more precisely highlighted the contribution to TLR 
signaling pathways of each cell subset. Despite these limita-
tions, we show an impairment in TLR pathway of HIV-infected 
subjects that seems to persist upon cART long-term treatment 
with possible differences according to the degree of immune 
recovery. Bacterial TLR agonists have little effect on MDM-
mediated signaling, implying a role of other cell populations 
in inducing T-cell activation in this setting. Viral components 
nonetheless appear to affect MDM activation in all subjects 
receiving cART.

Taken together, our findings indicate systemic exposure to 
microbial TLR agonists as driver of immune activation in treated 
HIV and suggest that the contribution of persistent (low-level) 
viral exposure might overweight microbial exposure. In this 
view, our research may partially facilitate an explanation of why 
rifaximin or sevelamer, by antagonizing microbial bioproducts 
in the systemic circulation, may not lower T-cell activation in 
HIV-infected humans (75, 76), despite the intriguing results 
obtained in the animal model (77). The research may also suggest 
the need for a more comprehensive elucidation of the role of the 
TLR system in promoting HIV-driven immune hyperactivation. 
Challenges include a broad analysis of the differential role of 
TLR-mediated signaling and the exact set of regulators of TLR 
pathway (e.g., miRNAs), as well as genes/molecules activated 
upon TLR stimulation within different cell subpopulations and 
their downstream effector functions. Unraveling the role of 
the TLR pathway(s) in orchestrating immune activation in the 
context of treated infection is mandatory for its exploitation 
for therapeutic purposes. Finally, the observation of cytokine 
release from MDMs of HIV-infected subjects pose monocytes/
macrophages as an important source of pro-inflammatory 
mediators, which have been associated with cardiovascular 
disease, HIV-associated neurocognitive development, and innate 
immune aging (78).

Thus, therapeutically targeting sources and pathways of 
monocyte activation could be a useful strategy to limit immune 
activation associated with the premature development of age-
related diseases for HIV-infected persons treated with cART.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


14

Merlini et al. TLR Pathway in HIV-1 Infection

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 614

reFerences

1. Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, et al. T cell acti-
vation is associated with lower CD4+ T cell gains in human immunodeficiency 
virus-infected patients with sustained viral suppression during antiretroviral 
therapy. J Infect Dis (2003) 187(10):1534–43. doi:10.1086/374786 

2. Marchetti G, Gori A, Casabianca A, Magnani M, Franzetti F, Clerici M, 
et  al. Comparative analysis of T-cell turnover and homeostatic parameters 
in HIV-infected patients with discordant immune-virological responses to 
HAART. AIDS (2006) 20(13):1727–36. doi:10.1097/01.aids.0000242819. 
72839.db 

3. Saison J, Ferry T, Demaret J, Maucort Boulch D, Venet F, Perpoint T, et al. 
Association between discordant immunological response to highly active 
anti-retroviral therapy, regulatory T cell percentage, immune cell activation 
and very low-level viraemia in HIV-infected patients. Clin Exp Immunol 
(2014) 176(3):401–9. doi:10.1111/cei.12278 

4. Anthony KB, Yoder C, Metcalf JA, DerSimonian R, Orenstein JM, Stevens RA, 
et  al. Incomplete CD4 T cell recovery in HIV-1 infection after 12 months 
of highly active antiretroviral therapy is associated with ongoing increased 
CD4 T cell activation and turnover. J Acquir Immune Defic Syndr (2003) 
33(2):125–33. doi:10.1097/00126334-200306010-00002 

5. Hunt PW, Cao HL, Muzoora C, Ssewanyana I, Bennett J, Emenyonu N, et al. 
Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality 
in HIV-infected Ugandans initiating antiretroviral therapy. AIDS (2011) 
25(17):2123–31. doi:10.1097/QAD.0b013e32834c4ac1 

6. Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et  al. 
Inflammatory and coagulation biomarkers and mortality in patients with HIV 
infection. PLoS Med (2008) 5(10):e203. doi:10.1371/journal.pmed.0050203 

7. Lok JJ, Hunt PW, Collier AC, Benson CA, Witt MD, Luque AE, et  al. The 
impact of age on the prognostic capacity of CD8+ T-cell activation during 
suppressive antiretroviral therapy. AIDS (2013) 27(13):2101–10. doi:10.1097/
QAD.0b013e32836191b1 

8. Tenorio AR, Zheng Y, Bosch RJ, Krishnan S, Rodriguez B, Hunt PW, et al. 
Soluble markers of inflammation and coagulation but not T-cell activation 
predict non-AIDS-defining morbid events during suppressive antiretroviral 
treatment. J Infect Dis (2014) 210(8):1248–59. doi:10.1093/infdis/jiu254 

9. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut 
epithelial barrier dysfunction and innate immune activation predict mortality 
in treated HIV infection. J Infect Dis (2014) 210(8):1228–38. doi:10.1093/
infdis/jiu238 

10. Boasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 
immunopathogenesis. Clin Immunol (2008) 126(3):235–42. doi:10.1016/ 
j.clim.2007.08.015 

11. Fortis C, Poli G. Dendritic cells and natural killer cells in the pathogenesis of 
HIV infection. Immunol Res (2005) 33(1):1–21. doi:10.1385/IR:33:1:001 

12. Funderburg N, Luciano AA, Jiang W, Rodriguez B, Sieg SF, Lederman MM. 
Toll-like receptor ligands induce human T cell activation and death, a model 
for HIV pathogenesis. PLoS One (2008) 3(4):e1915. doi:10.1371/journal.
pone.0001915 

13. Tilton JC, Johnson AJ, Luskin MR, Manion MM, Yang J, Adelsberger JW, 
et al. Diminished production of monocyte proinflammatory cytokines during 
human immunodeficiency virus viremia is mediated by type I interferons. 
J Virol (2006) 80(23):11486–97. doi:10.1128/JVI.00324-06 

14. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et  al. 
Intestinal microbiota, microbial translocation, and systemic inflammation in 
chronic HIV infection. J Infect Dis (2015) 211(1):19–27. doi:10.1093/infdis/
jiu409

15. Shan L, Siliciano RF. Unraveling the relationship between microbial translo-
cation and systemic immune activation in HIV infection. J Clin Invest (2014) 
124(6):2368–71. doi:10.1172/JCI75799 

16. Steele AK, Lee EJ, Vestal B, Hecht D, Dong Z, Rapaport E, et al. Contribution of 
intestinal barrier damage, microbial translocation and HIV-1 infection status 
to an inflammaging signature. PLoS One (2014) 9(5):e97171. doi:10.1371/
journal.pone.0097171 

17. Vassallo M, Mercié P, Cottalorda J, Ticchioni M, Dellamonica P. The role of lipo-
polysaccharide as a marker of immune activation in HIV-1 infected patients: a 
systematic literature review. Virol J (2012) 9:174. doi:10.1186/1743-422X-9-174 

18. Trinchieri G, Sher A. Cooperation of toll-like receptor signals in innate 
immune defence. Nat Rev Immunol (2007) 7(3):179–90. doi:10.1038/nri2038 

19. Heggelund L, Müller F, Lien E, Yndestad A, Ueland T, Kristiansen KI, et al. 
Increased expression of toll-like receptor 2 on monocytes in HIV infection: 
possible roles in inflammation and viral replication. Clin Infect Dis (2004) 
39(2):264–9. doi:10.1086/421780 

20. Heggelund L, Damås JK, Yndestad A, Holm AM, Mūller F, Lien E, et  al. 
Stimulation of toll-like receptor 2 in mononuclear cells from HIV-infected 
patients induces chemokine responses: possible pathogenic consequences. 
Clin Exp Immunol (2004) 138(1):116–21. doi:10.1111/j.1365-2249.2004. 
02595.x 

21. Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C, et al. Toll-
like receptor expression and responsiveness are increased in viraemic HIV-1 
infection. AIDS (2008) 22(6):685–94. doi:10.1097/QAD.0b013e3282f4de35 

22. Meier A, Alter G, Frahm N, Sidhu H, Li B, Bagchi A, et  al. MyD88-
dependent immune activation mediated by human immunodeficiency virus 
type 1-encoded Toll-like receptor ligands. J Virol (2007) 81(15):8180–91. 
doi:10.1128/JVI.00421-07 

23. Chung NP, Matthews K, Klasse PJ, Sanders RW, Moore JP. HIV-1 gp120 impairs 
the induction of B cell responses by TLR9-activated plasmacytoid dendritic 
cells. J Immunol (2012) 189(11):5257–65. doi:10.4049/jimmunol.1201905 

24. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh 
DG, et  al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via 

eThics sTaTeMenT

This study was carried out in accordance with the recommenda-
tions of Ethical Committee of ASST “Santi Paolo e Carlo”, Milan, 
Italy with written informed consent from all subjects. All subjects 
gave written informed consent in accordance with the Declaration 
of Helsinki. The protocol was approved by the Comitato Etico, 
ASST “Santi Paolo e Carlo”, Milan, Italy.

aUThOr cOnTriBUTiOns

EM designed the study, designed and performed experiments, 
analyzed and interpreted the data, designed the figures, and 
wrote the manuscript. MB, IS, FC, AC, and JS-C performed the 
experiments and analyzed the data. CT analyzed and interpreted 
the data and wrote the manuscript. MC and AdM helped with 
interpreting the results and edited the manuscript. GM conceived 

and designed the study, interpreted the data, and wrote the 
manuscript.

acKnOWleDgMenTs

The authors thank all of the patients who participated in the 
study and the staff of the Clinic of Infectious Diseases and 
Tropical Medicine at “ASST Santi Paolo e Carlo” who cared for 
the patients. They are thankful to Javier Sanchez-Martinez for 
excellent assistance with study patients and the processing of 
biological samples. They also thank EMD Millipore Corporation 
(Billerica, MA, USA) for providing ELISA Multiplex assays. 
This study was supported by grant number GR 2009-1592029 
from the Ministero della Salute – Regione Lombardia to 
GM. Presented in part at 15th ICI, International Congress of 
Immunology, 22nd–27th August, 2013, Milan, Italy. Poster 
#P4.03.37.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1086/374786
https://doi.org/10.1097/01.aids.0000242819.72839.db
https://doi.org/10.1097/01.aids.0000242819.72839.db
https://doi.org/10.1111/cei.12278
https://doi.org/10.1097/00126334-200306010-00002
https://doi.org/10.1097/QAD.0b013e32834c4ac1
https://doi.org/10.1371/journal.pmed.0050203
https://doi.org/10.1097/QAD.0b013e32836191b1
https://doi.org/10.1097/QAD.0b013e32836191b1
https://doi.org/10.1093/infdis/jiu254
https://doi.org/10.1093/infdis/jiu238
https://doi.org/10.1093/infdis/jiu238
https://doi.org/10.1016/j.clim.2007.08.015
https://doi.org/10.1016/j.clim.2007.08.015
https://doi.org/10.1385/IR:33:1:001
https://doi.org/10.1371/journal.pone.0001915
https://doi.org/10.1371/journal.pone.0001915
https://doi.org/10.1128/JVI.00324-06
https://doi.org/10.1093/infdis/jiu409
https://doi.org/10.1093/infdis/jiu409
https://doi.org/10.1172/JCI75799
https://doi.org/10.1371/journal.pone.0097171
https://doi.org/10.1371/journal.pone.0097171
https://doi.org/10.1186/1743-422X-9-174
https://doi.org/10.1038/nri2038
https://doi.org/10.1086/421780
https://doi.org/10.1111/j.1365-2249.2004.02595.x
https://doi.org/10.1111/j.1365-2249.2004.02595.x
https://doi.org/10.1097/QAD.0b013e3282f4de35
https://doi.org/10.1128/JVI.00421-07
https://doi.org/10.4049/jimmunol.1201905


15

Merlini et al. TLR Pathway in HIV-1 Infection

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 614

Toll-like receptor-viral RNA interactions. J Clin Invest (2005) 115(11):3265–
75. doi:10.1172/JCI26032 

25. Tincati C, Merlini E, Braidotti P, Ancona G, Savi F, Tosi D, et al. Impaired gut 
junctional complexes feature late-treated individuals with suboptimal CD4+ 
T-cell recovery upon virologically suppressive combination antiretroviral 
therapy. AIDS (2016) 30(7):991–1003. doi:10.1097/QAD.0000000000001015 

26. Chung CY, Alden SL, Funderburg NT, Fu P, Levine AD. Progressive proxi-
mal-to-distal reduction in expression of the tight junction complex in colonic 
epithelium of virally-suppressed HIV+ individuals. PLoS Pathog (2014) 
10(6):e1004198. doi:10.1371/journal.ppat.1004198 

27. Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastro-
intestinal immune system: does highly active antiretroviral therapy restore 
gut immunity? Mucosal Immunol (2012) 5(6):596–604. doi:10.1038/mi. 
2012.82 

28. Kim CJ, Kovacs C, Chun TW, Kandel G, Osborne BJ, Huibner S, et  al. 
Antiretroviral therapy in HIV-infected elite controllers: impact on gut 
immunology, microbial translocation, and biomarkers of serious non-AIDS 
conditions. J Acquir Immune Defic Syndr (2014) 67(5):514–8. doi:10.1097/
QAI.0000000000000359 

29. Merlini E, Bai F, Bellistrì GM, Tincati C, d’Arminio Monforte A, Marchetti G. 
Evidence for polymicrobic flora translocating in peripheral blood of HIV-
infected patients with poor immune response to antiretroviral therapy. PLoS 
One (2011) 6(4):e18580. doi:10.1371/journal.pone.0018580 

30. Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, Paiardini M, et al. Damaged 
intestinal epithelial integrity linked to microbial translocation in pathogenic 
simian immunodeficiency virus infections. PLoS Pathog (2010) 6(8):e1001052. 
doi:10.1371/journal.ppat.1001052 

31. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma 
levels of bacterial DNA correlate with immune activation and the magnitude 
of immune restoration in persons with antiretroviral-treated HIV infection. 
J Infect Dis (2009) 199(8):1177–85. doi:10.1086/597476 

32. Marchetti G, Bellistri GM, Borghi E, Tincati C, Ferramosca S, La Francesca 
M, et  al. Microbial translocation is associated with sustained failure in 
CD4+ T-cell reconstitution in HIV-infected patients on long-term highly 
active antiretroviral therapy. AIDS (2008) 22(15):2035–8. doi:10.1097/
QAD.0b013e3283112d29 

33. Mavigner M, Delobel P, Cazabat M, Dubois M, L’faqihi-Olive FE, Raymond S, 
et  al. HIV-1 residual viremia correlates with persistent T-cell activation in 
poor immunological responders to combination antiretroviral therapy. PLoS 
One (2009) 4(10):e7658. doi:10.1371/journal.pone.0007658 

34. Pandrea I, Gaufin T, Brenchley JM, Gautam R, Monjure C, Gautam A, et al. 
Cutting edge: experimentally induced immune activation in natural hosts 
of simian immunodeficiency virus induces significant increases in viral 
replication and CD4+ T cell depletion. J Immunol (2008) 181(10):6687–91. 
doi:10.4049/jimmunol.181.10.6687 

35. Pandrea I, Cornell E, Wilson C, Ribeiro RM, Ma D, Kristoff J, et al. Coagulation 
biomarkers predict disease progression in SIV-infected nonhuman primates. 
Blood (2012) 120(7):1357–66. doi:10.1182/blood-2012-03-414706 

36. Manuzak JA, Dillon SM, Lee EJ, Dong ZM, Hecht DK, Wilson CC. Increased 
Escherichia coli-induced interleukin-23 production by CD16+ monocytes 
correlates with systemic immune activation in untreated HIV-1-infected 
individuals. J Virol (2013) 87(24):13252–62. doi:10.1128/JVI.01767-13 

37. Caron G, Duluc D, Frémaux I, Jeannin P, David C, Gascan H, et al. Direct 
stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 
up-regulate proliferation and IFN-gamma production by memory CD4+ 
T cells. J Immunol (2005) 175(3):1551–7. doi:10.4049/jimmunol.175.3.1551 

38. Voo KS, Bover L, Harline ML, Weng J, Sugimoto N, Liu YJ. Targeting of 
TLRs inhibits CD4+ regulatory T cell function and activates lymphocytes in 
human peripheral blood mononuclear cells. J Immunol (2014) 193(2):627–34. 
doi:10.4049/jimmunol.1203334 

39. Gelman AE, Zhang J, Choi Y, Turka LA. Toll-like receptor ligands directly 
promote activated CD4+ T cell survival. J Immunol (2004) 172(10):6065–73. 
doi:10.4049/jimmunol.172.10.6065 

40. Fink LN, Zeuthen LH, Ferlazzo G, Frokiaer H. Human antigen-presenting 
cells respond differently to gut-derived probiotic bacteria but mediate similar 
strain-dependent NK and T cell activation. FEMS Immunol Med Microbiol 
(2007) 51(3):535–46. doi:10.1111/j.1574-695X.2007.00333.x 

41. Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, et  al. 
Modulation of human dendritic cell phenotype and function by probiotic 
bacteria. Gut (2004) 53(11):1602–9. doi:10.1136/gut.2003.037325 

42. Hessle C, Andersson B, Wold AE. Gram-positive bacteria are potent 
inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria 
preferentially stimulate IL-10 production. Infect Immun (2000) 68(6):3581–6. 
doi:10.1128/IAI.68.6.3581-3586.2000 

43. Hessle CC, Andersson B, Wold AE. Gram-positive and gram-negative bacteria 
elicit different patterns of pro-inflammatory cytokines in human monocytes. 
Cytokine (2005) 30(6):311–8. doi:10.1016/j.cyto.2004.05.008 

44. Karlsson H, Larsson P, Wold AE, Rudin A. Pattern of cytokine responses to 
gram-positive and gram-negative commensal bacteria is profoundly changed 
when monocytes differentiate into dendritic cells. Infect Immun (2004) 
72(5):2671–8. doi:10.1128/IAI.72.5.2671-2678.2004 

45. Lester RT, Yao XD, Ball TB, McKinnon LR, Omange WR, Kaul R, et al. HIV-1 
RNA dysregulates the natural TLR response to subclinical endotoxemia 
in Kenyan female sex-workers. PLoS One (2009) 4(5):e5644. doi:10.1371/
journal.pone.0005644 

46. Mureith MW, Chang JJ, Lifson JD, Ndung’u T, Altfeld M. Exposure to 
HIV-1-encoded Toll-like receptor 8 ligands enhances monocyte response to 
microbial encoded Toll-like receptor 2/4 ligands. AIDS (2010) 24(12):1841–8. 
doi:10.1097/QAD.0b013e32833ad89a 

47. Dillon SM, Rogers LM, Howe R, Hostetler LA, Buhrman J, McCarter MD, et al. 
Human intestinal lamina propria CD1c+ dendritic cells display an activated 
phenotype at steady state and produce IL-23 in response to TLR7/8 stimu-
lation. J Immunol (2010) 184(12):6612–21. doi:10.4049/jimmunol.1000041 

48. Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, et  al. Gut 
dendritic cell activation links an altered colonic microbiome to mucosal and 
systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 
(2016) 9(1):24–37. doi:10.1038/mi.2015.33 

49. Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, Kalinowska M, et al. 
Increased tissue factor expression on circulating monocytes in chronic HIV 
infection: relationship to in vivo coagulation and immune activation. Blood 
(2010) 115(2):161–7. doi:10.1182/blood-2009-03-210179 

50. Tincati C, Bellistrì GM, Ancona G, Merlini E, d’Arminio Monforte A, 
Marchetti G. Role of in vitro stimulation with lipopolysaccharide on T-Cell 
activation in HIV-infected antiretroviral-treated patients. Clin Dev Immunol 
(2012) 2012:935425. doi:10.1155/2012/935425 

51. Sachdeva N, Asthana V, Brewer TH, Garcia D, Asthana D. Impaired restoration 
of plasmacytoid dendritic cells in HIV-1-infected patients with poor CD4 
T cell reconstitution is associated with decrease in capacity to produce IFN-
alpha but not proinflammatory cytokines. J Immunol (2008) 181(4):2887–97. 
doi:10.4049/jimmunol.181.4.2887 

52. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The iden-
tification of markers of macrophage differentiation in PMA-stimulated THP-1 
cells and monocyte-derived macrophages. PLoS One (2010) 5(1):e8668. 
doi:10.1371/journal.pone.0008668 

53. Biasin M, Piacentini L, Lo Caputo S, Naddeo V, Pierotti P, Borelli M, et al. TLR 
activation pathways in HIV-1-exposed seronegative individuals. J Immunol 
(2010) 184(5):2710–7. doi:10.4049/jimmunol.0902463 

54. French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune 
activation markers are persistently increased in patients with HIV infection 
after 6 years of antiretroviral therapy despite suppression of viral replication 
and reconstitution of CD4+ T cells. J Infect Dis (2009) 200(8):1212–5. 
doi:10.1086/605890 

55. Cassol E, Malfeld S, Mahasha P, van der Merwe S, Cassol S, Seebregts C, et al. 
Persistent microbial translocation and immune activation in HIV-1-infected 
South Africans receiving combination antiretroviral therapy. J Infect Dis 
(2010) 202(5):723–33. doi:10.1086/655229 

56. Liu Z, Cumberland WG, Hultin LE, Prince HE, Detels R, Giorgi JV. Elevated 
CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of 
chronic HIV disease progression to AIDS and death in the Multicenter AIDS 
Cohort Study than CD4+ cell count, soluble immune activation markers, or 
combinations of HLA-DR and CD38 expression. J Acquir Immune Defic Syndr 
Hum Retrovirol (1997) 16(2):83–92. 

57. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, 
et  al. Shorter survival in advanced human immunodeficiency virus type 1 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1172/JCI26032
https://doi.org/10.1097/QAD.0000000000001015
https://doi.org/10.1371/journal.ppat.1004198
https://doi.org/10.1038/mi.2012.82
https://doi.org/10.1038/mi.2012.82
https://doi.org/10.1097/QAI.0000000000000359
https://doi.org/10.1097/QAI.0000000000000359
https://doi.org/10.1371/journal.pone.0018580
https://doi.org/10.1371/journal.ppat.1001052
https://doi.org/10.1086/597476
https://doi.org/10.1097/QAD.0b013e3283112d29
https://doi.org/10.1097/QAD.0b013e3283112d29
https://doi.org/10.1371/journal.pone.0007658
https://doi.org/10.4049/jimmunol.181.10.6687
https://doi.org/10.1182/blood-2012-03-414706
https://doi.org/10.1128/JVI.01767-13
https://doi.org/10.4049/jimmunol.175.3.1551
https://doi.org/10.4049/jimmunol.1203334
https://doi.org/10.4049/jimmunol.172.10.6065
https://doi.org/10.1111/j.1574-695X.2007.00333.x
https://doi.org/10.1136/gut.2003.037325
https://doi.org/10.1128/IAI.68.6.3581-3586.2000
https://doi.org/10.1016/j.cyto.2004.05.008
https://doi.org/10.1128/IAI.72.5.2671-2678.2004
https://doi.org/10.1371/journal.pone.0005644
https://doi.org/10.1371/journal.pone.0005644
https://doi.org/10.1097/QAD.0b013e32833ad89a
https://doi.org/10.4049/jimmunol.1000041
https://doi.org/10.1038/mi.2015.33
https://doi.org/10.1182/blood-2009-03-210179
https://doi.org/10.1155/2012/935425
https://doi.org/10.4049/jimmunol.181.4.2887
https://doi.org/10.1371/journal.pone.0008668
https://doi.org/10.4049/jimmunol.0902463
https://doi.org/10.1086/605890
https://doi.org/10.1086/655229


16

Merlini et al. TLR Pathway in HIV-1 Infection

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 614

infection is more closely associated with T lymphocyte activation than with 
plasma virus burden or virus chemokine coreceptor usage. J Infect Dis (1999) 
179(4):859–70. doi:10.1086/314660 

58. Brenchley J, Price D, Schacker T, Asher T, Silvestri G, Rao S, et al. Microbial 
translocation is a cause of systemic immune activation in chronic HIV infec-
tion. Nat Med (2006) 12(12):1365–71. doi:10.1038/nm1511 

59. Brichacek B, Vanpouille C, Kiselyeva Y, Biancotto A, Merbah M, Hirsch I, et al. 
Contrasting roles for TLR ligands in HIV-1 pathogenesis. PLoS One (2010) 
5(9):e12831. doi:10.1371/journal.pone.0012831 

60. Marchetti G, Cozzi-Lepri A, Merlini E, Bellistrì GM, Castagna A, Galli M, 
et  al. Microbial translocation predicts disease progression of HIV-infected 
antiretroviral-naive patients with high CD4+ cell count. AIDS (2011) 
25(11):1385–94. doi:10.1097/QAD.0b013e3283471d10 

61. Korolevskaya LB, Shmagel KV, Shmagel NG, Saidakova EV. Systemic activation 
of the immune system in HIV infection: the role of the immune complexes 
(hypothesis). Med Hypotheses (2016) 88:53–6. doi:10.1016/j.mehy.2016.01.009 

62. Bixler SL, Sandler NG, Douek DC, Mattapallil JJ. Suppressed Th17 levels 
correlate with elevated PIAS3, SHP2, and SOCS3 expression in CD4 T cells 
during acute simian immunodeficiency virus infection. J Virol (2013) 
87(12):7093–101. doi:10.1128/JVI.00600-13 

63. Kim OY, Monsel A, Bertrand M, Coriat P, Cavaillon JM, Adib-Conquy M. 
Differential down-regulation of HLA-DR on monocyte subpopulations during 
systemic inflammation. Crit Care (2010) 14(2):R61. doi:10.1186/cc8959 

64. Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS, Borglykke A, 
et  al. Inflammatory cytokines and risk of coronary heart disease: new pro-
spective study and updated meta-analysis. Eur Heart J (2014) 35(9):578–89. 
doi:10.1093/eurheartj/eht367 

65. Baker JV, Duprez D. Biomarkers and HIV-associated cardiovascular disease. 
Curr Opin HIV AIDS (2010) 5(6):511–6. doi:10.1097/COH.0b013e32833ed7ec 

66. Longenecker CT, Sullivan C, Baker JV. Immune activation and cardiovascular 
disease in chronic HIV infection. Curr Opin HIV AIDS (2016) 11(2):216–25. 
doi:10.1097/COH.0000000000000227 

67. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, et  al. 
Inflammation, coagulation and cardiovascular disease in HIV-infected 
individuals. PLoS One (2012) 7(9):e44454. doi:10.1371/journal.pone.0044454 

68. Passacquale G, Di Giosia P, Ferro A. The role of inflammatory biomarkers 
in developing targeted cardiovascular therapies: lessons from the cardio-
vascular inflammation reduction trials. Cardiovasc Res (2016) 109(1):9–23. 
doi:10.1093/cvr/cvv227 

69. Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM, 
et al. Gut epithelial barrier and systemic inflammation during chronic HIV 
infection. AIDS (2015) 29(1):43–51. doi:10.1097/QAD.0000000000000511

70. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, 
molecules and clinical significance. Trends Immunol (2009) 30(10):475–87. 
doi:10.1016/j.it.2009.07.009 

71. Morris M, Li L. Molecular mechanisms and pathological consequences of 
endotoxin tolerance and priming. Arch Immunol Ther Exp (Warsz) (2012) 
60(1):13–8. doi:10.1007/s00005-011-0155-9 

72. Rotger M, Dang KK, Fellay J, Heinzen EL, Feng S, Descombes P, et al. Genome-
wide mRNA expression correlates of viral control in CD4+ T-cells from 
HIV-1-infected individuals. PLoS Pathog (2010) 6(2):e1000781. doi:10.1371/
journal.ppat.1000781 

73. Bosinger SE, Li Q, Gordon SN, Klatt NR, Duan L, Xu L, et al. Global genomic 
analysis reveals rapid control of a robust innate response in SIV-infected sooty 
mangabeys. J Clin Invest (2009) 119(12):3556–72. doi:10.1172/JCI40115 

74. Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, et al. Type I 
interferon responses in rhesus macaques prevent SIV infection and slow dis-
ease progression. Nature (2014) 511(7511):601–5. doi:10.1038/nature13554 

75. Sandler NG, Zhang X, Bosch RJ, Funderburg NT, Choi AI, Robinson JK, et al. 
Sevelamer does not decrease lipopolysaccharide or soluble CD14 but does 
decrease soluble tissue factor, LDL, and oxidized LDL levels in untreated HIV 
infection. J Infect Dis (2014) 1549–54. doi:10.1093/infdis/jiu305

76. Tenorio AR, Chan ES, Bosch RJ, Macatangay BJ, Read SW, Yesmin S, et al. 
Rifaximin has a marginal impact on microbial translocation, t-cell activation 
and inflammation in HIV-positive immune non-responders to antiretroviral 
therapy – ACTG A5286. J Infect Dis (2015) 211(5):780–90. doi:10.1093/infdis/
jiu515

77. Kristoff J, Haret-Richter G, Ma D, Ribeiro RM, Xu C, Cornell E, et al. Early 
microbial translocation blockade reduces SIV-mediated inflammation and 
viral replication. J Clin Invest (2014) 124(6):2802–6. doi:10.1172/JCI75090 

78. Hearps AC, Martin GE, Rajasuriar R, Crowe SM. Inflammatory co-morbid-
ities in HIV+ individuals: learning lessons from healthy ageing. Curr HIV/
AIDS Rep (2014) 11(1):20–34. doi:10.1007/s11904-013-0190-8 

Conflict of Interest Statement: EM reports other from Gilead Italia, outside the 
submitted work. AC reports other from MilliporeSigma, outside the submitted 
work. GM reports other from janssen-cilag, grants from Gilead, personal fees from 
Gilead, AbbVie, and Janssen-Cilag, outside the submitted work. CT reports non-fi-
nancial support from Janssen-Cilag, personal fees from BMS, personal fees from 
Merck, Gilead, AbbVie, and Janssen-Cilag, outside the submitted work. The other 
authors declare that the research was conducted in the absence of any commercial 
or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Merlini, Tincati, Biasin, Saulle, Cazzaniga, d’Arminio Monforte, 
Cappione, Snyder-Cappione, Clerici and Marchetti. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1086/314660
https://doi.org/10.1038/nm1511
https://doi.org/10.1371/journal.pone.0012831
https://doi.org/10.1097/QAD.0b013e3283471d10
https://doi.org/10.1016/j.mehy.2016.01.009
https://doi.org/10.1128/JVI.00600-13
https://doi.org/10.1186/cc8959
https://doi.org/10.1093/eurheartj/eht367
https://doi.org/10.1097/COH.0b013e32833ed7ec
https://doi.org/10.1097/COH.0000000000000227
https://doi.org/10.1371/journal.pone.0044454
https://doi.org/10.1093/cvr/cvv227
https://doi.org/10.1097/QAD.0000000000000511
https://doi.org/10.1016/j.it.2009.07.009
https://doi.org/10.1007/s00005-011-0155-9
https://doi.org/10.1371/journal.ppat.1000781
https://doi.org/10.1371/journal.ppat.1000781
https://doi.org/10.1172/JCI40115
https://doi.org/10.1038/nature13554
https://doi.org/10.1093/infdis/jiu305
https://doi.org/10.1093/infdis/jiu515
https://doi.org/10.1093/infdis/jiu515
https://doi.org/10.1172/JCI75090
https://doi.org/10.1007/s11904-013-0190-8
http://creativecommons.org/licenses/by/4.0/

	Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy
	Introduction
	Patients and Methods
	Patients
	Isolation and Culturing of Primary Monocytes to Obtain Monocyte-Derived Macrophages
	Stimulation of PBMCs and MDMs
	Flow Cytometry
	Microbial Translocation Markers
	HIV-RNA Quantification
	Multiplex Assays
	RNA Extraction and Reverse Transcription
	TLR Signaling Pathway
	Statistical Analysis

	Results
	Study Population Characteristics
	Effect of TLR Stimulation on PBMC
	In Vitro TLR Challenge on PBMCs: T Cell Activation, Proliferation, and Apoptosis
	mRNA Expression of Genes Involved in the 
TLR-Mediated Pathway
	Cytokine/Chemokine Release in Supernatants

	Effect of TLR Stimulation on MDMs: 
HLA-DR/CD69 Cell-Surface Expression and Cytokine/Chemokine Release

	Discussion
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


