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Leptospirosis is a neglected infectious disease caused by spirochetes from the genus 
Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation 
such as Leptospira, have evolved multiple strategies to escape the host complement 
system, which is important for innate and acquired immunity. Leptospira avoid com-
plement-mediated killing through: (i) recruitment of host complement regulators; (ii) 
acquisition of host proteases that cleave complement proteins on the bacterial surface; 
and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira 
surroundings. The recruitment of host soluble complement regulatory proteins includes 
the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein 
(C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once 
bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the 
cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in termi-
nal pathway inhibition by blocking C9 polymerization. The second evasion mechanism 
lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host 
activators, PLG is converted to enzymatically active plasmin, which is able to degrade 
C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires 
to escape from complement system is the active secretion of proteases. Pathogenic, 
but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 
(central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical 
and lectin pathways). The purpose of this review is to fully explore these complement 
evasion mechanisms, which act together to favor Leptospira survival and multiplication 
in the host.
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inTRODUCTiOn

Spirochetes of the genus Leptospira are highly motile Gram-negative bacteria that cause a worldwide 
zoonosis (1). This bacterium colonizes a wide range of hosts including humans, domestic and wild 
animal species. Patients with leptospirosis may present either very mild symptoms or subclinical 
disease (80–90% of infections) or a more severe illness characterized by jaundice, acute renal failure 
and bleeding (Weil’s disease), or pulmonary hemorrhage syndrome [reviewed in Ref. (2)].

The genus Leptospira comprises bacteria having distinct ecological adaptations: exclusively non-
pathogenic free-living species, exclusively host-dependent organisms and pathogenic species capable 
of surviving both inside and outside the host for long periods (3). Molecular phylogenetic analysis of 
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16S rRNA gene sequences allowed clustering of Leptospira species 
into three groups, comprising pathogens, non-pathogens, and an 
intermediate group (4).

Upon infection, pathogenic leptospires spread and propagate 
in susceptible hosts because they have evolved diverse immune 
evasion strategies. Conversely, saprophytic Leptospira strains are 
highly susceptible to serum bactericidal activity, an observation 
already made by Johnson and Muschel in the mid-1960s (5). 
Since our insights into complement evasion mechanisms of 
Leptospira have substantially increased during the last 10 years, 
we aim here to provide a comprehensive overview of the inter-
actions of this relevant human pathogen with the complement 
system.

THe ROLe OF THe COMPLeMenT 
SYSTeM in THe HOST’S DeFenSe 
AGAinST PATHOGenS

The complement system is composed of more than 50 plasma 
proteins and receptors. Traditionally considered as one of the 
first lines of defense against invading microorganisms due to 
its opsonic, inflammatory, and lytic activities, complement 
roles extend far beyond pathogen killing [reviewed in Ref. 
(6)]. Complement effector functions result from activation of 
three different pathways: classical, alternative, and/or lectin 
pathways (CP, AP, and LP, respectively). While the AP and LP 
participate in the innate immunity, the CP is generally activated 
by the presence of IgG or IgM specifically bound to antigens. 
The AP is initiated by the spontaneous hydrolysis of an intra-
chain thioester bond located in the C3 molecule, while the LP 
is activated when lectins, such as mannose-binding lectin or 
ficolins, bind to carbohydrates commonly found on microor-
ganisms’ surfaces. During activation, fragments C3b and C4b 
are generated and they bind covalently to acceptor surfaces 
such as immune complexes, foreign, and host cells located on 
the vicinity of the activation site. On these surfaces, C3 and C5 
convertases are formed which further lead to the formation of 
the membrane attack complex culminating with microorgan-
ism lysis. As a consequence of activation, particles opsonized 
with iC3b, C3b, and C4b are more efficiently internalized by 
neutrophils, monocytes, and macrophages once bound to 
complement receptors present on these cells’ membranes. 
CR2 promotes activation and proliferation of B lymphocytes 
in the presence of C3d/C3dg fragments covalently bound to 
antigens inducing the production of antibodies. In addition, 
C3a and C5a fragments are important anaphylatoxins. They are 
also chemoattractant factors for inflammatory cells [reviewed 
in Ref. (7)]. In order to protect the host against self-damage, 
complement activation is tightly controlled at all stages of 
the cascade by several soluble and cell surface regulators. 
C1 inhibitor, Factor I (FI), Factor H (FH), and C4b-binding 
protein (C4BP) are soluble complement regulators whereas 
complement receptor type 1 (CR1 or CD35), membrane cofac-
tor protein (MCP or CD46), decay accelerator factor (DAF 
or CD55), and CD59 are cell-anchored regulatory receptors 
[reviewed in Ref. (7, 8)].

COMPLeMenT evASiOn STRATeGieS BY 
LEPTOSPIRA

Pathogens use a range of strategies to avoid complement attack, 
and Leptospira is no exception to this phenomenon. While 
pathogenic Leptospira strains resist complement-mediated 
killing, saprophyte Leptospira strains are highly susceptible to 
serum killing (9, 10). Concerning the group of leptospires of 
intermediate pathogenicity, such as Leptospira licerasiae, noth-
ing is known about their response to complement. Pathogenic 
Leptospira escape from complement-mediated killing through: 
(i) recruitment of host complement regulators; (ii) acquisition of 
host proteases that cleave complement proteins on the bacterial 
surface; and (iii) secretion of proteases that inactivate complement 
in the Leptospira surroundings (Figure  1). These mechanisms 
are universal strategies employed by diverse pathogens including 
bacteria, viruses, and fungi to circumvent complement attack 
[reviewed in Ref. (11)].

Recruitment of Mammalian Host 
Complement Soluble Regulatory Proteins
Pathogenic Leptospira are potentially able to control all pathways 
of the complement system by acquiring soluble negative host reg-
ulators. Control of the AP is achieved by interaction of Leptospira 
with FH, a 155 kDa plasma glycoprotein [443 ± 106 μg/mL in 
human serum (12)] composed of 20 globular domains (termed 
complement control protein domains, CCPs). FH inhibits AP 
activation by preventing binding of Factor B (FB) to C3b, by 
accelerating the decay of the C3-convertase C3bBb and by act-
ing as a cofactor for the cleavage of C3b by FI (13–15). Serum-
resistant Leptospira strains bind three members of the FH family: 
FH itself, Factor H-like protein 1 (FHL-1), and Factor H-related 
protein 1 (FHR-1) (9, 16). Once bound to the Leptospira surface, 
FH remains functional and promotes FI-mediated cleavage 
of C3b, thus generating the iC3b fragment (9, 16). Moreover, 
Leptospira survival in FH-depleted serum was shown to be 
impaired by 60%, and reconstitution of this serum with purified 
FH up to physiological concentrations restored bacterial survival 
in a dose-dependent manner, further supporting a role for FH in 
Leptospira serum resistance (16). Control of the CP by pathogenic 
Leptospira is mediated by surface-bound C4BP, a 570 kDa plasma 
glycoprotein [335 ± 83 μg/ml (12)] that is found in three isoforms 
with different subunit composition. The major isoform, α7/β1, is 
a complex of seven α-chains and one β-chain. The other C4BP 
isoforms in plasma are α7/β0 and α6/β1. Each α-chain is com-
prised of eight CCPs, and the β-chain is comprised of three CCPs 
(17). C4BP inhibits CP and LP activation by interfering with the 
assembly and decay of the C3 convertase (C4bC2a) and by acting 
as a cofactor for FI in the proteolytic inactivation of C4b (18, 19). 
Both virulent and culture-attenuated Leptospira strains express 
ligands for C4BP, in contrast to non-pathogenic strains, which 
have been shown to bind insignificant amounts of this comple-
ment regulator (10). As expected, C4b is more efficiently cleaved 
by FI in the presence of C4BP bound to Leptospira interrogans 
virulent strains, which may probably explain their higher survival 
rate in normal human serum as compared to culture-attenuated 
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FiGURe 1 | Complement evasion strategies of pathogenic Leptospira. To circumvent the complement system, Leptospira has evolved different immune 
evasion strategies: (i) acquisition of host soluble complement regulators: Factor H (FH)—AP regulator, C4b-binding protein (C4BP) —CP and LP regulator, and 
vitronectin (Vn) —terminal pathway regulator. FH and C4BP accelerate the decay of the C3 convertases (C3bBb and C4b2a, respectively) and act as cofactors for 
Factor I in C3b and C4b cleavages. Vn and the leptospiral protein LcpA bind C9 and inhibit its polymerization, thus potentially blocking MAC formation; (ii) 
acquisition of host proteases: pathogenic Leptospira binds plasminogen, which in the presence of activators, such as Urokinase-type plasminogen activator (uPA), is 
converted in the enzymatically active plasmin. This serine protease cleaves C3b, C4b, and C5, promoting a downregulation of complement activation on the 
Leptospira surface, and (iii) Direct inactivation of complement proteins by Leptospira endogenous proteases. Metalloproteases secreted by pathogenic Leptospira 
strains are able to cleave and inactivate the complement proteins: C3 (central complement molecule), Factor B (from AP), and C2 and C4 (CP and LP). Thermolysin 
is one of the proteases responsible for these cleavages, degrading C3. The combination of host-derived and endogenous factors from pathogenic Leptospira 
enables the bacteria to successfully establish infection and colonize target organs of the host.

3

Fraga et al. Complement Evasion by Pathogenic Leptospira

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 623

strains (10). Leptospires also acquire vitronectin (Vn) on their 
surfaces (20). Vn is a glycoprotein that circulates in the blood-
stream as a monomer [65–75 kDa, 104 ± 25 μg/mL (12)] or is 
deposited in the extracellular matrix (ECM) as a multimer that 
interacts with several macromolecular components, including 
glycosaminoglycans and collagens (21, 22). Vn plays multiple 
roles in many biological processes including the regulation of the 
terminal pathway of complement by inhibiting C5b7 complex 
formation and C9 polymerization. Once bound to the bacterial 
surface, it may protect the microorganism against lysis by impair-
ing MAC formation. A number of strains belonging to different 
Leptospira species have been shown to interact with human Vn 
(20). Acquisition of this terminal pathway regulatory protein may 
assist Leptospira to evade complement attack.

Leptospira Ligands for Host Complement  
Regulators
Pathogenic Leptospira bind soluble host complement regulators 
via surface proteins and multiple ligands for those regulators have 
been described. The most extensively characterized complement 
evasion molecules from Leptospira are (i) leptospiral endostatin-
like proteins A and B [LenA and LenB (23, 24)], (ii) Leptospira 
immunoglobulin-like (Lig) proteins A and B [LigA and LigB 
(16, 25)], and (iii) Leptospiral complement regulator-acquiring 
protein A [LcpA (26)]. All of these proteins have been shown 
to bind more than one complement regulator and seem to be 
involved not only in immune evasion but also in adhesion and 
invasion by interacting with ECM and plasma proteins such as 
plasminogen (PLG) (27).
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TABLe 1 | Host molecules that interact with Leptospira ligands to evade 
the complement system.

Host molecule Ligands (Leptospira proteins) Reference

Factor H (FH) LenA and LenB (leptospiral endostatin-
like proteins A and B)

(24)

LigA and LigB (Leptospira 
immunoglobulin-like proteins A and B)

(16)

EF-Tu (elongation factor Tu) (35)
LcpA (leptospiral complement  
regulator-acquiring protein A)

(20)

Lsa23 (23 kDa adhesin) (34)

C4b-binding protein LcpA (26)

LigA and LigB (16)

Lsa30 (30 kDa adhesin) (33)
Lsa23 (23 kDa adhesin) (34)

Vitronectin LcpA (20)

Plasminogen EF-Tu (35)
Lsa23 (34)
LigA and LigB (36)
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Leptospira interrogans strains encode up to six distinct paralo-
gous proteins called LenA–F, harboring domains that presumably 
share structural and functional similarities with mammalian 
endostatins (24). Two proteins of this family, LenA (formerly 
called LfhA and Lsa24) and LenB, have affinities for complement 
regulators. While LenA binds both FH and FHR-1, LenB has been 
shown to interact only with FH (23, 24).

LigA and LigB are multifunctional proteins capable of interact-
ing with the ECM, cell lines, and complement regulators in vitro. 
The family of Lig proteins is composed of LigA, LigB, and LigC, 
which respectively consist of 13, 12, and 13 Ig-like domains. In 
certain Leptospira species ligC is a pseudogene (28). The lig genes 
are present only in pathogenic Leptospira species, and they are 
expressed during mammalian infection (28). Recombinant LigA 
and LigB bind FH, FHL-1, FHR-1, and C4BP, thus potentially 
allowing control of all complement activation pathways (16). FH 
CCP5 and CCP20 domains interact with both LigA and LigB (16). 
C4BP CCP4, CCP7, and CCP8 domains are involved in the inter-
action with both LigA and LigB (29). Fine mapping of the LigA 
and LigB domains involved in binding to C4BP has demonstrated 
that interactions occur through the bacterial immunoglobulin-
like (Big) domains 7 and 8 (LigA7–8 and LigB7–8) of both LigA 
and LigB and also through LigB9–10 (29). As FH and C4BP do 
not compete for binding to Lig proteins, they probably have dis-
tinct binding sites on these molecules and may then interact with 
their targets simultaneously (16). It has been shown that ectopic 
LigB expression promotes survival of the saprophyte Leptospira 
biflexa in normal human serum (30). LigB binds C3b and C4b 
directly through repeats 9–11 (LigB9–11) and inhibits both 
the alternative and classical pathways in hemolytic assays with 
erythrocytes (30). Given the susceptibility of non-pathogenic 
Leptospira to the alternative pathway (9, 10), the increased resist-
ance of ligB-transformed L. biflexa to complement killing may 
be attributed to the acquisition of C3b and FH by these bacteria 
(30). Further studies extended this observation by demonstrating 
that expression of both ligA and ligB genes enhances L. biflexa’s 
resistance to serum killing, as demonstrated by a reduced MAC 
deposition on lig-transformed L. biflexa compared to the wild 
type strain (31).

Pathogenic Leptospira species also bind host’s negative com-
plement regulators through a 20-kDa surface-exposed lipopro-
tein named LcpA. First described as a C4BP-interacting protein 
(26), LcpA was later shown to bind FH and Vn as well as the 
terminal pathway component C9 (20). Usually, microorganisms 
bind FH via a common site located inside CCP20 (32). LcpA is 
no exception to this rule, since a monoclonal antibody directed 
against CCP20 inhibited binding of FH to LcpA (20). CCP7 and 
CCP8 domains mediate the interaction of C4BP with LcpA (29). 
Both FH and C4BP have been shown to remain functional once 
bound to LcpA, thus being able to act as cofactors for FI (20, 26). 
LcpA also interferes with the terminal pathway of complement 
by binding to C9, a molecule that has a key role in MAC forma-
tion on bacterial cells. In the presence of LcpA, Zn2+-induced 
C9 polymerization is inhibited in vitro and MAC formation on 
sheep erythrocytes is partially impaired, preventing cell lysis (20). 
Competitive binding assays indicate that LcpA interacts with 
C4BP, FH, and Vn through distinct sites (20).

Based on binding affinities, other Leptospira proteins have 
been shown to acquire complement regulators (Table 1). Lsa30 
binds C4BP whereas Lsa23 binds both C4BP and FH (33, 34). 
Interestingly, the moonlighting protein EF-Tu, shown to be 
surface-exposed in Leptospira, also acquires the complement 
regulator FH (35).

Acquisition of Host Proteases That Cleave 
Complement Proteins on the Leptospira 
Surface
Proteolytic activity is a fundamental tool employed by diverse 
pathogens to both overcome tissue barriers and evade the 
immune system (37). Degradation of ECM components favors 
pathogen spreading and dissemination, while cleavage and 
inactivation of immune effector molecules dampen the host 
defense system, allowing an effective establishment of the  
infection (38, 39).

Pathogenic leptospires circumvent complement attack by the 
cleavage and inactivation of key complement molecules from 
the three activation pathways. The degradation of complement 
proteins may occur indirectly, using host-acquired proteases 
such as PLG, or directly, by the activity of endogenous proteases 
produced by pathogenic Leptospira strains, as discussed in the 
next section.

It is well-known that leptospires are able to bind human PLG 
(40, 41). PLG is a single-chain glycoprotein (92  kDa) that is a 
key component of the host fibrinolytic system. This proenzyme 
is found in plasma and extracellular fluids at concentrations of 
180–200 µg/mL (42).

Although both saprophytic and pathogenic leptospires bind 
purified PLG, only pathogenic strains are able to acquire PLG 
from human plasma (40, 41). The interaction of PLG with 
Leptospira is mediated by bacterial membrane proteins (Table 1), 
and involves lysine residues, which are probably positioned at 
the PLG kringle domains. Another interesting finding is that 
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Leptospira cell integrity is preserved, since cellular growth is not 
impaired by PLG binding (40). Once bound to the Leptospira sur-
face and in the presence of urokinase-type plasminogen activator 
(uPA), PLG is converted to enzymatically active plasmin (40, 
41). Plasmin is a serine protease that cleaves diverse important 
biological substrates, including ECM proteins, like fibrinogen, 
and complement molecules, such as C3b and C5 (43). In this 
way, pathogenic leptospires coated with plasmin showed reduced 
deposition of C3b and IgG on their surface, which was probably 
related to proteolytic degradation of these molecules, potentially 
reducing opsonization (44). Furthermore, L. interrogans serovar 
Pomona also displayed enhanced survival in human serum when 
bound to plasmin (44), which reinforces its role in complement 
resistance.

Several Leptospira membrane proteins have been described as 
PLG ligands (33, 41, 45–56). However, only a few of them were 
indeed shown to directly interfere with complement activation: 
the elongation factor Tu [EF-Tu (35)]; LigA and LigB (36) and 
Leptospira 23 kDa surface adhesion [Lsa23 (34)], whose interac-
tions with PLG resulted in the cleavage of C3b, C4b, and/or C5 
(Table 1).

Secretion of Leptospiral Proteases  
That Directly inactivate Complement
The Leptospira evasion strategies described until know focused 
on host molecules hijacked by the pathogen to inactivate comple-
ment on its surface. Recently, we demonstrated that pathogenic 
Leptospira can produce molecules that are able to directly inter-
fere with the complement system, in a manner independent of the 
host machinery. It was observed that the culture supernatants of 
pathogenic, but not of saprophytic Leptospira strains, were able 
to specifically inhibit all the three activation pathways of comple-
ment. The inhibitory effect observed could be directly correlated 
to the proteolytic activity present in these culture supernatants. 
Indeed, the leptospiral proteases were able to target a wide range 
of substrates including C3, a key factor in the amplification of the 
complement cascade, FB from AP, C2, and C4, from CP and LP. 
These cleavages were observed both with purified complement 
proteins or normal human serum, which indicates that the lepto-
spiral proteases exert their function in a physiological context and 
may contribute to bacterial virulence (57).

The proteolytic activity found exclusively in pathogenic 
Leptospira supernatants was almost completely abolished by 
1.10-phenanthroline, indicating a major role of metalloproteases 
in the degradation of complement proteins. A recombinant 
metalloprotease from the thermolysin family, present only in 

Leptospira pathogenic species, seems to contribute to these cleav-
ages, since it was able to degrade the central complement protein 
C3 (57).

The degradation and functional inactivation of complement 
is a key strategy for attenuating diverse immune responses that 
are dependent on the proper activation of this system (58). The 
secretion of proteases that directly cleave complement proteins 
may contribute to Leptospira immune evasion, as demonstrated 
for a wide range of other pathogens (59).

COnCLUDinG ReMARKS

Complement is a precisely regulated system composed of 
numerous specific factors that are activated in a cascade-like 
manner. This multifactorial cascade nature provides diverse 
targets for possible interferences by pathogen-derived evasion 
molecules (58). Most successful human pathogens have devel-
oped multiple parallel mechanisms of evading the complement 
system (60). Leptospira, which is a highly invasive spirochete, is 
a good example of a pathogen that employs diverse strategies to 
circumvent complement activation (Figure 1). The combination 
of host-derived and endogenous factors enables these spirochetes 
to successfully establish the infection and colonize target organs 
of the host. Therefore, Leptospira ligands of host regulators and 
secreted proteases constitute potential sites for immune interfer-
ence, either as vaccine candidates or as targets for therapeutic 
agents in the development of new treatments and prophylactic 
approaches in leptospirosis.
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