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Adverse life circumstances evoke a common “conserved transcriptional response to 
adversity” (CTRA) in mammalian leukocytes. To investigate whether this pattern is pre-
served in lower vertebrates, maraena whitefish (Coregonus maraena) were exposed for 
9 days to different stocking densities: ~10 kg/m3 (low density), ~33 kg/m3 (moderate), 
~60  kg/m3 (elevated), and ~100 kg/m3 (high). Transcriptome profiling in the liver and 
kidney of individuals from each group suggested that crowding conditions activate 
stress-related signaling and effector pathways. Remarkably, about one-quarter of the 
genes differentially expressed under crowding conditions were involved in the activation 
of immune pathways such as acute-phase response and interleukin/TNF signaling 
attended by the simultaneous reduction of antiviral potency. Network analysis confirmed 
the complex interdigitation of immune- and stress-relevant pathways with interleukin-1 
playing a central role. Antibody-based techniques revealed remarkable changes in the 
blood composition of whitefish and demonstrated the correlation between increasing 
stocking densities and elevated number of myeloid cells together with the increased 
phagocytic activity of peripheral blood leukocytes. In line with current studies in mammals, 
we conclude that crowding stress triggers in whitefish hallmarks of a CTRA, indicating 
that the stress-induced molecular mechanisms regulating the immune responses not 
only are conserved within mammals but were established earlier in evolution.

Keywords: interleukins, leukocytes, lower vertebrates, salmonid fish, stocking density, transcriptome, welfare

Abbreviations: CTRA, conserved transcriptional response to adversity; DE, differentially expressed; ED, elevated density; 
EDTA, ethylenediaminetetraacetic acid; EIF4E, eukaryotic translation initiation factor 4E; FDPS, farnesyl diphosphate syn-
thase; FITC, fluorescein isothiocyanate; HD, high density; HSP, heat-shock protein; IPA, Ingenuity Pathway Analysis; LD, 
low density; MD, moderate density; MAb, monoclonal antibodies; PBL, peripheral blood leukocyte; PBS, phosphate-buffered 
saline; qPCR, quantitative real-time polymerase chain reaction; SD, stocking density; SSI, spleno-somatic index.
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inTrODUcTiOn

Fish farming preserves natural resources. However, adverse hous-
ing conditions including practice activities, such as selection, 
handling, transport, (mal-)nutrition, and/or inadequate stocking 
densities, threaten fish well-being (1–8). In favor of profitability, 
farmed fish are often kept at densities a 1,000-fold higher than 
under natural conditions (9, 10). Inadequate stocking densities 
not only are detrimental to production-related traits such as 
growth rate (11) but also decrease food uptake (12), increase the 
level of stress hormones, and thus lead to higher susceptibility 
to infectious diseases (13–18). Besides influencing the level of 
the stress hormone cortisol (19–21), stress is known to modu-
late the hemolytic and agglutinating activity of the serum (22). 
Furthermore, it affects the phagocytic and complement activities 
(23), influences the expression of immune-related genes (24), 
and reduces the humoral response following vaccination (25). 
However, little is known about the molecular mechanism under-
lying these physiological changes.

In mammals, adverse life circumstances have been shown 
to induce a “conserved transcriptional response to adversity” 
(CTRA), which typically leads to an increased expression of pro-
inflammatory genes and a decreased expression of genes involved 
in innate antiviral responses (26, 27). These effects stem in part 
from the increased hematopoietic production of myeloid lineage 
immune cells (28, 29). Stress has been proven to cause a substan-
tial number of the aforementioned physiological changes in fish, 
and it is quite conceivable that the mechanisms of a CTRA were 
established earlier in the evolution, although this has not been 
investigated in teleost model species yet. Drawing on the example 
of two killifish populations, it has been demonstrated that sensi-
tivity to stressors—including high stocking densities—may differ 
between populations depending on their evolutionary history 
(30). Because of generations of domestication and adaptation, the 
stress responsiveness of rainbow trout, a salmonid fish, is known 
to be low (31, 32). By contrast, adaptation to stress conditions may 
be low in newly established aquaculture species, such as maraena 
whitefish (Coregonus maraena L.), making this salmonid fish an 
excellent model for the investigation of sensitivity to crowding 
stress and its impact on whitefish physiology.

The key objective of the present study was thus to identify 
surrogate markers for well-being, and—particularly—to assess 
the health status of maraena whitefish. Using a combination 
of transcriptomic and immunological techniques, we aimed at 
characterizing the impact of crowding stress on the hallmarks of 
a CTRA in the liver and kidney as the predominant teleost tissues 
involved in the stress response (33). Furthermore, based on these 
findings, we evaluated the immune competence of stressed fish 
in an in vitro experiment with inactivated and viable Aeromonas 
salmonicida, a major threat in whitefish farming (34, 35).

MaTerials anD MeThODs

Fish and stocking Density experiment
The stocking density (SD) experiments were performed in 
water recirculation tanks at the Institute for Fisheries in Born, 

Germany. Maraena whitefish were aged 205 days post-hatch at 
the start of the experiments. These were performed in duplicate 
at four different stocking densities: low density (LD, ~10 kg/m3, 
33 and 34 individuals), moderate density (MD, ~33 kg/m3, 101 
and 103 individuals), elevated density (ED, ~60 kg/m3, 181 and 
185 individuals), and high density (HD, ~100 kg/m3, 305 and 309 
individuals). Fish were randomly assigned to identical 300-l glass 
tanks (0.74 m length × 0.58 m width × 0.72 m height) at a 12 h 
day/night light period. Tanks received brackish water from the 
Darss-Zingst Bodden Chain (2.5–6 practical salinity units) to the 
recirculating aquaculture system with an exchange rate of about 
0.5 times/h. Water was pretreated with gravel-packed filters and 
moving bed biofilm reactors in complement with UV radiation. 
To ensure that water parameters were consistently in optimal 
ranges, water quality (including NH3, NH4

+ , NO2
− , NO3

− ) was 
monitored throughout the experiment, that is, temperature, 
18.8–20.5°C; dissolved oxygen, 9.8–12.9 mg/l; and pH, 7.2–7.4. 
Whitefish were fed commercial dry pellets by automatic feeders 
distributing the food 12 h/day. We recorded no technical prob-
lems throughout the experiment.

For the comparison of Ab-staining patterns among salmonid 
fishes, we used rainbow trout [Oncorhynchus mykiss (Walbaum)] 
of the commercially available Troutlodge strain (http://www.
troutlodge.com/; Tacoma, WA, USA). Trout were kept in 1,000-l 
tanks at 15°C in partially recirculating water systems and fed with 
commercial dry pellets.

sampling and leukocyte Preparation
Fish averaging 21.6  ±  1.4  cm in length (mean  ±  STD) and 
92.0 ± 24.7 g in weight were sampled at day 9 after the start of 
the experiments. Anesthesia and sampling corresponded to the 
standards of the German Animal Welfare Act [§ 4(3) TierSchG]. 
The entire liver, spleen and head and trunk kidney were isolated 
from seven animals from each group, sliced, and immediately 
frozen at −80°C until RNA isolation. Blood was collected from 
the caudal vein of four individuals per group using a heparinized 
syringe and immediately diluted in cold medium mixed with 
Iscove’s DMEM/Ham’s F12 (Gibco/Thermo Fisher Scientific, 
Darmstadt, Germany) at a ratio of 1:1. Head kidneys were 
homogenized to prepare single-cell suspensions. The cell suspen-
sions were layered onto an isotonic Percoll gradient (Biochrom 
AG, Berlin, Germany) (r  =  1.075  g/ml) and centrifuged at 
1,800  rpm for 40  min. Cells at the Percoll/medium interphase 
were collected, washed with PBS–EDTA, resuspended in the 
corresponding volume of the medium or phosphate-buffered 
saline/ethylenediaminetetraacetic acid (PBS–EDTA) to the final 
concentration of 5 × 106 cells/ml, and kept on ice until further 
preparation.

The spleno-somatic index (SSI) was calculated by the formula 
SSI = spleen weight (grams)/body weight (grams) × 100.

Plasma glucose analysis
Blood samples were centrifuged (4°C, 1,700 rcf), and the super-
natant was kept on ice until analysis of blood plasma parameters 
was performed. Plasma glucose concentrations were quantified 
using a colorimetric assay (Glucose Assay Kit II, BioVision, 
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Milpitas, CA, USA) at the Beckman Coulter DTX 800/880 Series 
Multimode Detector (Beckman Coulter, Brea, CA, USA).

Flow cytometry and immunomagnetic 
leukocyte sorting
For the analysis of the blood composition, 2 × 105 cells/ml leu-
kocytes were stained with a set of monoclonal antibodies (MAb) 
with known specificity for distinct subpopulations of rainbow 
trout leukocytes. The population of thrombocytes was stained 
by MAb 42 (36) and myeloid cells by MAb 30, and B cells were 
identified by MAb N2 (37) in complement with MAb 1.14 (38). 
Following the washing step, the cells were stained by secondary 
conjugates. Control aliquot was treated only with secondary 
conjugates. The samples were measured on BD FACSCanto II and 
analyzed using the DIVA software (BD Biosciences, Heidelberg, 
Germany).

Peripheral blood leukocytes obtained from five individuals 
were isolated as described above and subjected to immuno-
magnetic cell sorting according to the manufacturer’s protocol. 
Briefly, leukocytes were incubated in the presence of the mono-
clonal antibodies recognizing thrombocytes, myeloid cells, or B 
lymphocytes, followed by incubation with anti-IgG MicroBeads 
(Miltenyi Biotec, Bergisch Gladbach, Germany). Then, the cell 
suspension was applied to the MACS column, and the population 
of labeled cells was collected. The purity of enriched populations 
was estimated using BD FACSCanto II, and those exceeding 95% 
of labeled cells were used for the RNA isolation by the RNeasy 
Mini Kit (Qiagen GmbH, Hilden, Germany).

Phagocytosis of the latex Beads
To evaluate the phagocytic potential of the blood leukocytes, 
100  µl blood was mixed with 5  µl latex beads (Sigma-Aldrich, 
Taufkirchen, Germany) labeled with fluorescein isothiocyanate 
(FITC). Blood cells were incubated for 2 h at 15°C in 2.5% CO2. 
Following the incubation, the cells were washed twice with PBS/
EDTA. After the final washing, the cells were measured on BD 
FACSCanto II (BD Biosciences) and gated by forward and size 
scatter. Only FITC-positive cells were considered phagocytic 
cells, and their proportion was calculated relative to the total 
number of acquired leukocytes.

stimulation experiments with  
A. salmonicida
The Aeromonas salmonicida ssp. salmonicida wild-type strain 
JF 2267 was used for stimulation trials. Bacteria were prepared 
according to the protocol described previously (39). A. salmoni-
cida were either kept viable or inactivated in 1.5% paraformalde-
hyde (PFA) for 1 h. Prior to usage, the bacteria were diluted to a 
final concentration of 5 × 107 cells/ml in sterile PBS.

Head kidney leukocytes from each individual were stimulated 
with 1 ×  106 viable or PFA-inactivated A. salmonicida ssp. sal-
monicida. An amount of 100  µl PBS was added to the control 
sample. After inoculation, the samples were incubated in a CO2 
incubator at 15°C. The stimulated samples were collected after 
12 h and stored in a 700 µl RLT buffer until RNA preparation.

rna extraction
For RNA isolation, tissue samples were homogenized individu-
ally in 1 ml TRIzol Reagent (Invitrogen/Thermo Fisher Scientific) 
and purified using the RNeasy Mini Kit (Qiagen GmbH, Hilden, 
Germany) with 30 min on-column DNase treatment. The con-
centration and quality of RNA were proven using NanoDrop 
ND-1000 (NanoDrop Technologies/Thermo Fisher Scientific) 
and the Agilent 2100 Bioanalyzer (Agilent Technologies): only 
RNA samples with RIN values >9 were used for subsequent 
analyses. RNA was stored at −80°C.

Microarray experiments
Microarray experiments were conducted in duplicate; two 
biological replicates were performed for each tissue (liver or 
kidney) and stocking density (LD, MD, ED, or HD). To this end, 
seven individual RNA samples from the same tissue and SD were 
pooled. These RNA pools were individually used as template to 
produce Cy3-labeled cRNA according to the Low Input Quick 
Amp Labeling Kit (Agilent Technologies). Yields of the cRNA and 
the dye-incorporation rate were measured using the ND-1000 
Spectrophotometer. The hybridization procedure was performed 
according to the One-Color Microarray-Based Gene Expression 
Analysis protocol (version 6.6, part number G4140-90040) 
using the Agilent Gene Expression Hybridization Kit (Agilent 
Technologies). In brief, 600  ng Cy3-labeled fragmented cRNA 
in a hybridization buffer was hybridized overnight (17 h, 65°C) 
to 8 × 60K Agilent-049158 Salmon Oligo Microarrays (Agilent 
Technologies; GEO platform: GPL21057) using Agilent’s recom-
mended hybridization chamber and oven. After hybridization, the 
microarrays were washed once with the Agilent Gene Expression 
Wash Buffer 1 (room temperature, 1 min), followed by a second 
wash with the preheated Agilent Gene Expression Wash Buffer 2 
(37°C, 1 min).

The fluorescence signals of the hybridized Agilent microar-
rays were detected using Agilent’s Microarray Scanner System 
G2505C (Agilent Technologies). The Agilent Feature Extraction 
software (version 10.7.3.1) quantified the intensity of the fluores-
cent images and normalized the results by subtracting the local 
background fluorescence based on a two-sided Student’s t-test. 
Data were then imported into a Rosetta Resolver gene expression 
data analysis system (Rosetta Biosoftware, Kirkland, WA, USA) 
for quality control and analysis.

The limma package of the R version 3.1.1/Bioconductor 
suite (40) was used to compare transcript abundances under 
MD and HD conditions. To control the false discovery rate, 
p-values were adjusted according to Benjamini and Hochberg 
(41). Genes were classified as differentially expressed if a cor-
rected p-value threshold (p < 0.05) and an absolute fold change 
(FC > 1.5) met the criteria. Comparisons of gene expressions 
across different stocking densities were performed using Venn 
diagrams (42). Sets of differentially expressed genes were 
reannotated using the Basic Local Alignment Search Tool 
(BLAST). Only transcripts with unique BLAST results (cover-
age and sequence identity of >80% and E-value  <  1  ×  10–4) 
were included, and redundant probes representing identical 
transcripts were joined.
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TaBle 1 | gene-specific quantitative real-time Pcr primers used in this study.

gene symbol genBank accession # Forward (5′–3′) reverse (5′–3′) amplicon length (bp)

Validation of the array-predicted differential expression
CKM2 LN612738 CGTCTGCAGAAGCGTGGCAC TGCTGTCGATGGCCTCTCCC 181
FDPS Unpublished TAGTTTGGACTGTGAGTGATCCT GATGACATGATATTCCCAGTTTGA 156
GAMTb LN612737 CTGAAGCCCAGTGGCGTTCT GGTTGTGGTGCTAATCATCTCC 156
IGF1 LN812808 TATTGTGGACGAGTGCTGCTTC CTCTGTCGACGCTTTGCACTG 163
SAA5 LN624222 TTCCCTGGTGAAGCTGCTCGA TGACTCCTGCTGCCCACCTG 157
STEAP4 LK054751 GGCTTCCTTCCTGCAGCTCTA TCAGTGACCCAGAACATCAGATA 177
TLR8a1 LN610596 ACCGGCTTTGAAAGTACTGA CGTCCCTCTCTTTCCATAATGTG 134

Validation of the identity of leukocyte populations
IRGA2B Unpublished GACAAGCAAGCATAAACAACTATC TGCAGTTATAGGGAGTAAAACAAG 157
CSF3R Unpublished ACAGCCACTCCTGGAGGACG GCCAAAGCCCTAAGCAAGGGA 177
IGM Unpublished AATTCCAATTCATTGAGCCAACTC TCCCTCACGTTCGTCATATTCTT 158
TCR Unpublished GTAAAAGATGACATTGCAGGTGAA CAACGATCACAACAGAACTGAAG 151

cytokine profiling in stimulated head kidney leukocytes
IL1B LN624221 AAGGACAAGGACCTGCTCAACT ACCCAGCTCTTGTTCTCAGAGT 160
CXCL8 LN624218 CTGAGGGGATGAGTCTGAGAG ATCTCCTGACCGCTCTTGCTC 168
TNF Unpublished GATACCCACCATACATTGAAGCA ATTTGGTTCCCCTGTAGCTCGA 162

reference gene
RPL9 HE984307 ACCACATCAACCTGGAACTCA CGCATCTTGTAACGGAAACC 162
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Gene lists were assigned to functional pathways using the 
Ingenuity program (Ingenuity Pathway Analyses, Ingenuity 
Systems/Qiagen), well minding that this program extracts global 
functional networks and canonical pathways of the differentially 
expressed genes according to investigations into mammalian, not 
teleostean, in vivo and in vitro systems. Enriched pathways were 
hence carefully reviewed and are indicated in the following by 
italic face; pathways of mammalian diseases were excluded from 
the analysis. The significance values were calculated using Fisher’s 
exact test right-tailed. Standard scores (z-scores) were used as a 
basis to assess whether certain pathways were activated (z > 1) or 
inhibited (z < 1); for pathways with z-scores around 0, no predic-
tion could be made.

Quantitative real-time Pcr
The concentration of total RNA was accurately determined 
in repeated measurements using the NanoDrop ND-1000 
Spectrophotometer (NanoDrop Technologies) and the Agilent 
2100 Bioanalyzer (Agilent Technologies). Subsequently, cDNA 
was synthesized from total RNA using the SuperScript II Reverse 
Transcriptase Kit (Invitrogen/Thermo Fisher Scientific) accord-
ing to the supplier’s instructions.

Quantitative real-time PCR was performed using the 
LightCycler 480 Real-Time PCR System (Roche Diagnostics 
GmbH, Grenzach-Wyhlen, Germany) and SensiFAST SYBR 
No-ROX One-Step Kit (Bioline GmbH, Luckenwalde, Germany). 
The reaction mix contained 6 µl of 2 × SensiFAST SYBR No-ROX 
Mix (Bioline GmbH), 10 µM of each primer (see Table 1) and 
a cDNA equivalent of 75 ng total RNA (for the measurement of 
CKM2, FDPS, GAMTb, IGF1, SAA5, STEAP4, TLR8a1), 20 ng 
total RNA (IL1B), 10 ng total RNA (CXCL8, TNF), or 8 ng total 
RNA (IRGA2B, CSF3R, IGM, TCR). The temperature profile was 
as follows: initial denaturation step at 95°C for 10 min followed 
by 40 cycles with 15 s denaturation at 95°C, 10 s annealing at 

60°C, and 20  s extension time at 72°C. The relative transcript 
amounts of the target genes were calculated and normalized 
against the reference gene RPL9 (43) with the GeNorm stability 
value M = 0.43 and the coefficient of variation, CV = 0.15. The 
specificity of the primers was tested in a separate PCR experi-
ment; the respective PCR products were sequenced, and the 
identity was verified using the BLAST algorithm. Quantitative 
PCR data were calculated using the qbase + software (Biogazelle, 
Ghent University, Belgium). The statistical significance was 
assessed using one-way analysis of variance (ANOVA) and is 
represented with “+” for p  ≤  0.05 and with “*” for p  ≤  0.01. 
The heat map displaying qRT data of SAA5, IL1B, CXCL8, and 
TNF was generated using the heatmap.2 function of the gplots 
R package.

resUlTs

crowding stress induces immune 
Pathways in the liver and Kidney of 
Whitefish
The microarray technology was used to record the global expres-
sion changes induced by different SDs in the liver and kidney of 
maraena whitefish. Only annotated genes (between 85 and 100% 
of all regulated features) with an absolute FC > 1.5 and corrected 
p-values < 0.05 were considered.

In the liver, 357 genes were affected by HD conditions (168 up- 
and 189 downregulated genes relative to MD), while only 6 and 3 
genes were differentially expressed under ED and LD conditions, 
respectively (Figure 1A). As opposed to that, the number of dif-
ferentially expressed genes in the kidney was clearly higher under 
HD (396 up- and 507 downregulated genes), ED (102 up- and 207 
downregulated genes), and LD (11 up- and 192 downregulated 
genes) conditions compared with MD (Figure 1B). The liver and 
kidney shared 53 differentially expressed genes in the HD group, 
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FigUre 1 | Venn diagrams show the overlap in differentially 
expressed genes at different stocking densities (sDs) in the (a) liver 
and (B) kidney of maraena whitefish kept at low density (green), 
elevated density (eD) (red), and high density (hD) (blue) each 
compared with moderate density (MD) conditions. The intersections 
indicate the number of genes affected by more than one SD. Criteria for 
significance were a total fold change (FC) > 1.5 and a corrected p < 0.05 of 
annotated, non-redundant features. (c) In a subsequent analysis, the sets of 
differentially expressed genes of HD vs. MD treatment were compared 
between liver and kidney. (D) The concordance of array (ordinate) and 
quantitative real-time PCR (abscissa) FC values for selected genes  
(as listed on the right) were plotted for ED vs. MD (open symbols) and HD vs. 
MD (filled) comparisons in the liver (circular) or kidney (squared). Pearson’s 
correlation is indicated.

TaBle 2 | Potential stocking density (sD)-induced ingenuity pathways 
(p < 5.0e−2) regulated in whitefish held at eD or hD compared with MD 
conditions.

canonical pathway p-Value z-score sDa involved  
De genesb

Overexpressed in liver
ERK/MAPK signaling 1.5E−4 0.91 HD 11 (187)
p53 signaling 4.0E−3 0 HD 6 (98)
JAK/Stat signaling 2.5E−2 0 HD 4 (72)
p38 MAP kinase signaling 3.4E−2 0.45 HD 5 (117)

Overexpressed in kidney
Glycolysis 2.2E−4 0 ED 11 (25)
Glycolysis 3.8E−10 0 HD 4 (25)
Glucocorticoid receptor signaling 5.5E−4 0 ED 11 (275)
Glucocorticoid receptor signaling 3.1E−6 0 HD 28 (275)
Gluconeogenesis 3.3E−3 0 ED 3 (25)
Gluconeogenesis 7.6E−9 0 HD 10 (25)
Glycogen degradation 1.4E−5 0 HD 5 (12)
JAK/Stat signaling 2.7E−4 1.27 HD 10 (72)
Stress-activated protein kinase /
JNK signaling

6.1E−4 1.27 HD 11 (94)

p38 MAP kinase signaling 3.6E−3 1.00 HD 10 (117)
Glutamate degradation 3.9E−3 0 HD 2 (3)
HIF1-alpha signaling 4.0E−3 0 HD 10 (102)
Ascorbate recycling 4.8E−2 0 ED 1 (4)

aTreatment ED (elevated density) or HD (high density) compared with MD  
(moderate density).
b1.5 > FC < −1.5; corrected p < 0.05; the total number of pathway-involved genes is 
given in brackets.
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while sets of differentially expressed genes neither from LD nor 
from ED groups showed overlaps across the two selected tissues 
(Figure 1C).

The full complement of microarray data is available in the 
Gene Expression Omnibus database (GEO accession: GSE76543). 
Quantitative RT-PCR was used to validate the array-predicted 
expression differences of a select panel of whitefish genes publicly 
available at GenBank, that is, CKM, variant 2; FDPS; GAMT, 
variant b; IGF1; SAA5; STEAP4; and TLR8, variant a1 (Table 1; 
Figure  1D). Student’s t-test validated a significantly different 
expression (p  <  0.05) for all selected genes, except for IGF1 
(p = 0.07). Accordingly, profiles across all target genes revealed 
a high concordance (Pearson product-moment correlation coef-
ficient, r = 0.93; coefficient of determination, r2 = 0.87).

Assigning differentially expressed genes to functional groups 
revealed that numerous stress-related signaling pathways were 
activated in the liver and kidney under ED and HD conditions 
(Table  2), such as ERK/MAPK, mTOR, glucocorticoid receptor, 
SAPK/JNK, and JAK/Stat signaling, as well as p38 and p53 signal-
ing. Moreover, several stress-relevant effector pathways were 
found to be overexpressed, including glycolysis, gluconeogenesis, 
glycogen degradation, and ascorbate recycling. The induction of a 
glycolytic pathway is, however, not supported by the measured 
plasma glucose levels, showing no significant differences in the 
four sets of fish exposed to the different SD conditions (data not 
shown).

A high number of 43 out of 168 upregulated genes in the liver 
(~26%) and 80 out of 396 upregulated genes in the kidney (~20%) 
from fish kept at HD (compared with MD fish) were related to 
immunological processes. Particularly worth mentioning here 
is the strong upregulation of a chemotaxin-encoding gene 
(LECT2) in the liver (23.6-fold), an acute-phase gene encoding 
serum amyloid protein A-5 (SAA5) in the in liver (8.8-fold) 
and kidney (13.3-fold), a lysozyme-encoding gene (LYZ) the 
liver (3.5-fold) and kidney (8.6-fold), the complement factor-
encoding genes C7 (7.6-fold) and C1Q-like (4.0-fold) in the liver, 
a cytokine-encoding gene (CCL19) in the liver (4.9-fold), and 
a transcription factor-encoding gene (CEBPB) in the liver (2.4-
fold) and kidney (3.9-fold). On the other hand, genes encoding 
antiviral effectors such as the myxovirus resistance factor (MX1) 
and the influenza virus-binding protein IVNS1ABP were about 
two-fold downregulated in the kidney. The IPA program was 
again used to infer which pathways may have been influenced by 
the regulation of the immune genes regulated in the expression 
(setting a cutoff p-value  <  1  ×  10−4). Eight immune pathways 
were identified as activated at HD in the liver; 4 and 13 immune 
pathways were activated at ED and HD in the kidney, respec-
tively (Table 3). Correlating with the comparatively low number 
of downregulated immune genes, only a few immune pathways 
were inhibited, such as CD40 signaling in the liver of fish kept at 
HD (Table 4).

Four of the activated pathways, acute-phase response signal-
ing, B cell receptor signaling, CD28 signaling in T helper cells, 
and interleukin-6 signaling, were shared by the liver and kidney. 
Accordingly, 10 immune genes were commonly expressed in both 
tissues of fish exposed to HD (Figure 2A). A network analysis 
suggested that the expression of these shared immune genes is 
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TaBle 4 | silenced immune-relevant ingenuity pathways  
(with p < 5.0e−2) repressed in whitefish held at eD or hD compared  
with MD conditions.

canonical pathway p-Value z-score stocking 
densitya

involved  
De 

genesb

Underexpressed in liver
CD40 signaling 5.2E−8 −1.41 HD 10 (65)
NF-κB signaling 3.5E−4 −1.67 HD 10 (173)
Activation of IRF by cytosolic 
pattern recognition receptors

2.8E−3 −0.45 HD 5 (63)

Tec kinase signaling 3.0E−3 −0.38 HD 8 (157)
Interleukin-17A signaling 3.0E−3 −0.45 HD 5 (64)
OX40 signaling pathway 1.2E−2 −0.45 HD 5 (89)

Underexpressed in kidney
Integrin signaling 1.8E−4 −0.63 ED 10 (201)
Acute-phase response signaling 1.7E−2 −1.00 ED 6 (169)
Dendritic cell maturation 2.6E−4 −0.50 HD 17 (177)
Interleukin-22 signaling 1.5E−3 −1.34 HD 5 (24)

aTreatment ED (elevated density) or HD (high density) compared with MD  
(moderate density).
b1.5 > FC < −1.5; corrected p < 0.05; the total number of pathway-involved genes is 
given in brackets.

TaBle 3 | activated immune-relevant ingenuity pathways (with p < 1.0e−4) induced in whitefish held at eD or hD compared with MD conditions.

canonical pathway p-Value z-score stocking densitya involved De genesb

Overexpressed in liver

Acute-phase response signaling 1.3E−10 2.67 HD 18 (169)

Protein kinase C-θ signaling in T lymphocytes 4.0E−6 0.30 HD 11 (118)

Interleukin-6 signaling 1.2E−5 1.27 HD 10 (116)

Complement system 1.9E−5 1.34 HD 7 (37)

Phosphoinositide 3-kinase signaling in B lymphocytes 2.8E−5 1.00 HD 10 (128)

iCOS-iCOSL signaling in T helper cells 4.2E−5 0.82 HD 9 (108)

B cell receptor signaling 8.0E−5 0.30 HD 11 (174)

CD28 signaling in T helper cells 8.6E−5 0.82 HD 9 (118)

Overexpressed in kidney

Production of nitric oxide and reactive oxygen species in macrophages 1.3E−5 0.91 ED 11 (180)

Production of nitric oxide and reactive oxygen species in macrophages 9.3E−9 1.63 HD 25 (180)

Phagocytosis in macrophages and monocytes 1.7E−5 0.71 ED 8 (93)

Phagocytosis in macrophages and monocytes 5.7E−9 1.41 HD 18 (93)

N-formyl–methionyl–leucyl–phenylalanine (fMLP) signaling in neutrophils 5.1E−5 1.41 ED 8 (108)

fMLP signaling in neutrophils 1.9E−9 2.98 HD 20 (108)

Interleukin-8 signaling 8.5E−5 1.27 ED 10 (184)

Interleukin-8 signaling 1.5E−8 1.88 HD 25 (184)

CD28 signaling in T helper cells 5.1E−8 1.89 HD 19 (118)

Leukocyte extravasation signaling 6.4E−8 1.46 HD 25 (198)

Tec kinase signaling 2.7E−7 1.41 HD 21 (157)

High-mobility group protein B1 signaling 7.3E−6 1.81 HD 15 (120)

B cell receptor signaling 2.0E−5 0.94 HD 19 (174)

Acute-phase response signaling 4.6E−5 0.50 HD 17 (169)

Chemokine signaling 4.8E−5 0.91 HD 11 (71)

Role of pattern recognition receptors in recognition of bacteria and viruses 5.5E−5 1.94 HD 14 (126)

Interleukin-6 signaling 8.3E−5 1.60 HD 13 (116)

aTreatment ED (elevated density) or HD (high density) compared with MD (moderate density).
b1.5 > FC < −1.5; corrected p < 0.05; the total number of pathway-involved genes is given in brackets.
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closely interrelated with the activation of stress-related kinases, 
above all p38 (Figure 2B). A central role has been assigned to 
interleukin-1 (IL1) as an extensively networked factor.

immune cell composition is  
altered in stressed Whitefish
The composition of blood leukocytes is considered a reliable 
marker for assessing the immune status during pathophysiologi-
cal conditions in numerous species across the animal kingdom 
(44–46). Based on the high number of overexpressed immune 
pathways as a consequence of increased SD, we hypothesized 
that adverse husbandry conditions will affect the composition 
of leukocyte subsets. To prove this hypothesis, we first validated 
the suitability of the available immunological tools: an estab-
lished panel of monoclonal antibodies recognizing leukocyte 
subpopulations in rainbow trout was tested for cross-reactivity 
with the leukocytes of maraena whitefish. These MAbs included 
the thrombocyte-specific MAb 42, myeloid cell-specific MAb 30, 
and MAb 1.14 and MAb N2 recognizing a heavy and a light chain 
of immunoglobulin IgM, respectively. These antibodies stained 
leukocyte subpopulations of whitefish similar to those of trout, 
except for MAb 1.14 (Figure 3). Moreover, the proportion of the 
cells recognized by each antibody was comparable between the 
two species: MAb 42 stained approximately 30% of the blood 
leukocytes (presumably thrombocytes); MAb 30 stained 11–14% 
of the leukocytes (myeloid cells); MAb N2 stained around 35% in 
trout and 20% in whitefish (B cells).

The identity of the magnetically sorted leukocyte populations 
was assessed via transcription profiling of marker genes encoding 
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FigUre 2 | (a) Among the 53 high density (HD)-induced genes shared by 
the liver and kidney (cf. Figure 1c), 10 genes were involved in innate 
immunity, as assessed using the Ingenuity Pathway Analysis program.  
(B) Based on these 53 shared genes, an IPA network was constructed, 
including all 10 immune genes. Red and blue symbols indicate up- and 
downregulated genes, respectively, in HD vs. moderate density whitefish. Full 
and broken lines indicate direct and indirect relationships, respectively. Open 
and filled arrows represent an influence on translocation and activation as 
well as protein–protein or protein–DNA interactions, respectively.

FigUre 3 | (a) Comparison of the staining patterns of the cross-reactive monoclonal antibodies detecting peripheral blood leukocytes of rainbow trout (upper 
panel) and maraena whitefish (lower panel). PBLs were stained with monoclonal antibodies MAb 42 (thrombocytes), MAb 30 (myeloid cells), MAb 1.14 (B cells; 
heavy chain of immunoglobulin), and MAb N2 (B cells; light chain). The proportion of each cell population is expressed as the percentage of the number of stained 
PBLs. (B) The copy number of the leukocyte marker genes IRGA2B/CD41 (black bars), CSG3R/GCSFR (gray), IGM (hatched), and TCR (dotted) in immune cell 
populations magnetically sorted with MAb 42, MAb 30, and MAb N2 as indicated. Graphs depict the mean values + SEM (error bars). Transcript numbers 
significantly different from the other markers are indicated with asterisks, as evaluated by one-way analysis of variance (*p = 0.03; **p = 0.01; ***p = 0.0001).
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IGM in B cells, CSF3R (alias GCSFR) in myeloid cells, and IRGA2B 
(alias CD41) in thrombocytes. As expected, the highest level of 
transcripts encoding IRGA2B was detected in the population 

of MAb 42+ cells (thrombocytes), the large granular MAb 30+ 
leukocytes (myeloid cells) expressed the highest levels of CSF3R-
encoding mRNA, and the highest transcript level of IGM was 
found in the population of MAb N2+ cells (B cells) (Figure 3B). 
Notably, low levels of IGM were detected in the population of 
large granulated leukocytes.

Given that functional set of cross-reactive antibodies, we 
evaluated the impact of crowding on the composition of the 
peripheral blood. To this end, blood was sampled from five 
fish per HD or MD group and analyzed using flow cytometry. 
The acquired cells were plotted in the forward and the side 
scatter to estimate the proportion between small cells with low 
granularity, presumably lymphocytes, and larger granulated 
cells of myeloid origin. This approach revealed that the PBLs 
of MD individuals comprise more than 91% lymphocytes, 
while myeloid cells represent approximately 9% of all gated 
leukocytes (Figure 4A). This ratio shifted considerably in HD 
individuals: myeloid cells represented with 52% a majority 
of all gated PBLs, while the lymphocytes represented 48%. 
Subsequently, we analyzed the blood composition in greater 
detail using the MAb repertoire described above. The highest 
difference between MD and HD groups was detected by the 
myeloid cell-specific MAb 30 (Figure  4B). Fish kept at HD 
showed a higher proportion of myeloid cells (50% of all gated 
cells) compared with fish kept at MD (13%). The proportion of 
thrombocytes was higher in MD fish (22%) compared with that 
in HD fish (5%) (Figure 4C), and the proportion of B cells was 
slightly higher in the MD group (12%) compared with that in 
the HD group (9%) (Figure 4D).

crowding stress elevates the Phagocytic 
activity of Whitefish leukocytes
Among the IPA-predicted pathways in the kidney of maraena 
whitefish exposed to increased SD was the phagocytic activity 
in macrophages and monocytes (z  =  1.41; Table  3), as well as 
actin nucleation by ARP-WASP complex (z = 0.83), regulation of 
actin-based motility by Rho (z = 0.78), and phagosome formation 
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FigUre 4 | comparison of several immunological parameters between whitefish kept at moderate density (MD) (gray bars) and that kept at high 
density (hD) (black bars). (a) The ratio between lymphocytes (green filling) and myeloid cells (orange filling) was determined based on size and granularity using 
flow cytometry. Specific MAbs allowed the quantification of the proportion of (B) myeloid cells, (c) thrombocytes, and (D) light-chain-positive B cells. (e) The 
phagocytic activity of blood leukocytes was assessed using latex bead-based assays. (F) SSI was determined for MD and HD individuals. Graphs represent the 
mean values + stocking density (error bars). Significant changes calculated using one-way analysis of variance are marked with (*) for p ≤ 0.05 and (**) for p ≤ 0.01.
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(z  =  0), indicating enhanced cell locomotion combined with 
the internalization of foreign material. Isolated PBLs were thus 
subjected to a phagocytic assay with fluorescent-labeled latex 
beads mimicking host–pathogen interaction during infectious 
diseases to study the leukocytes’ potential to internalize infec-
tious agents and trigger proinflammatory processes (Figure 4E). 
The percentage of cells taking up the particular antigen was 
lowest in the MD group (11%), while it significantly increased 
in the HD group (18%).

spleens of stressed Whitefish  
are not significantly enlarged
The induced expression of angiotensinogen (AGT, 4.5-fold) in 
the kidney and the overall dramatic changes in the expression 
of surface molecules involved in cell adhesion and migration 
(CD9, CD81, CD63, CD166) together with the elevated level of 
myeloid cells in HD individuals may indicate accompanying 
cell migration into the SP as a main secondary lymphoid organ 
of salmonid fish. We investigated, thus, whether fish from MD 
and HD groups exhibited a difference in SP size. Although 
we found a slightly increased spleno-somatic index (SSI) in 
the HD group, the difference was not statistically significant 
(Figure 4F).

head Kidney leukocytes show Distinct 
expression Profile of Proinflammatory 
cytokines reflecting Post-stress 
conditions
The above evidence suggests a “priming” of the innate immune 
system in whitefish on crowding stress. An in vitro approach was 
used to evaluate whether leukocytes from presumably stressed 
whitefish develop a stronger inflammatory response than 
leukocytes from unstressed animals. To this end, head kidney 
leukocytes were isolated from whitefish previously kept either at 
MD or at HD. These cells were subsequently challenged with live 
or inactivated A. salmonicida. The induction of inflammation was 
validated, measuring the expression of genes encoding the pro-
inflammatory cytokines IL1 beta (IL1B), interleukin-8 (CXCL8), 
and tumor necrosis factor alpha (TNF). These cytokines have 
been predicted to control the expression of 12 genes, which have 
been identified as differentially regulated under MD compared 
with HD conditions (Figure 5A). Moreover, we found that the 
mRNA levels of these proinflammatory cytokines tended to 
be upregulated in HD compared with MD fish, though non-
significantly (Figure 5B).

The mRNA levels of the genes investigated were not different 
in head kidney leukocytes from both MD and HD groups prior 
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FigUre 5 | (a) IPA upstream regulator analysis predicted IL1B, CXCL8, and TNF to control the overexpression of 12 genes in both liver and kidney in high density 
(HD) conditions compared with those in moderate density (MD) conditions. Orange lines indicate an activating impact on gene expression, while yellow and black 
lines indicate inconsistent or non-predicted effects. The network was manually edited; please note that ingenuity analysis is based on literature about mammalian 
molecules. (B) The heat map displays expression ratios [given as fold change (FC)] of SAA5, IL1B, CXCL8, and TNF (normalized to RPL9) in the liver and head 
kidney of maraena whitefish (n = 8). The bar above the heat map indicates the density categories analyzed. Scaled color intensity within each row verifies high 
FC > 2.0 (shades of red). Significance levels were determined using analysis of variance (ANOVA) analysis and Bonferroni posttest. The transcription levels of (c) 
IL1B, (D) CXCL8, and (e) TNF were evaluated in head kidney leukocytes 12 h after cocultivation with inactivated (i.As) and viable A. salmonicida (As). Leukocytes 
had been isolated from fish kept at MD (light gray bars) or HD (black). Graphs depict the mean values + SD (error bars). Significant changes (p ≤ 0.05) compared 
with controls are marked with “*” as evaluated using one-way ANOVA.
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to stimulation. Twelve hours poststimulation, the transcript levels 
of IL1B, CXCL8, and TNF were increased in leukocytes from both 
groups. Here, it became clear that the infection with inactivated 
A. salmonicida induced generally lower transcription levels than 
stimulation with viable bacteria (Figures 5C–E). Following the 
challenge with viable bacteria, TNF and CXCL8 were upregulated 
with fold-change values above 40, while IL1B was only (but still) 
10.5-fold induced. Remarkably, TNF transcripts reached after 
stimulation (with viable and inactivated bacteria, respectively) a 
higher level in the MD group, which was approximately twice as 
high as measured in the HD group (Figure 5E). A similar effect 
was not reflected by the IL1B and CXCL8 expression profiles 
(Figures 5C,D).

DiscUssiOn

Higher stocking densities in intensive aqua farming promise 
higher yields, but there are several reports citing complications 
of the production process involving immune suppression in 
farmed fish, which in turn trigger the outbreak of diseases 
(47, 48). However, sensitivity to stress differs among species and 
between populations depending on their evolutionary history 

(30). Maraena whitefish C. maraena represents a relatively young 
aquaculture species. We elucidated the physiological effect of a 
9-day exposure to SDs between 10 and 100 kg whitefish per cubic 
meter with the primary goal to identify a comprehensive set of 
indicators characterizing the health status of farmed maraena 
whitefish with respect to adverse husbandry conditions. This 
study thus provides novel insights addressing the overarching 
question of whether the crowding stress-related regulation of 
the immune response is conserved throughout the evolution of 
vertebrates.

Global transcriptome profiling revealed that the number of 
differentially expressed genes affected by crowding was higher 
in the kidney of whitefish than in the liver; moreover, the 
proportion of downregulated genes was slightly higher in the 
liver (113%) and kidney (128%) compared with the number of 
upregulated genes. Although stress conditions had a negative 
impact on a number of pathways, crowding activated several 
signal transduction pathways, including signaling through the 
stress-activated protein kinase or the “stress kinase” p38, which 
are all well-known to be switched on by cellular stress [reviewed 
in Ref. (49–53)]. Concomitantly, we detected a significant 
impact on the immune system. In both the liver and the kidney 
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tissue of whitefish exposed to HD, a strikingly high number of 
differentially expressed genes were related to immunity, mainly 
acute-phase response, TNF and interleukin signaling, and comple-
ment pathways. Regarding the latter, it may be noteworthy that 
the involved regulated features belong to the classical (C1Q, C4B) 
and the alternative complement pathway (CFB, CFD), which are 
both also present in salmonid fish (54). In this regard, it should 
be stressed that only 53 genes were commonly regulated in both 
organs analyzed, suggesting that the responses to increased SD 
are tissue-specifically organized.

Previous holistic studies on the transcriptomic responses in 
teleost liver and kidney revealed clear stress-immune interac-
tions [reviewed in Ref. (15)]. Acute-phase and interleukin 
signaling as well as complement pathways are among the most 
frequently observed immune pathways overrepresented upon 
stress exposure in salmonid fish (55–57). The interdigitation 
of stress- and immune-related pathways is a well-documented 
phenomenon across different animal models and microarray 
platforms, indicating a generally conserved response of the 
immune system to overcome stressful conditions. In this 
respect, a key role is attributed to the sympathetic nervous 
system, which delivers stress-responsive neurotransmitters 
to hematopoietic and lymphoid tissues, thereby, in essence, 
stimulating the expression of proinflammatory genes but sup-
pressing antiviral responses (26). Recent studies in mammals 
demonstrated that the proliferation of myeloid cells (mainly 
monocytes and granulocytes) is upregulated in the bone 
marrow through β-adrenergic signaling and thus structures a 
characteristic stress response pattern (26–29, 58, 59). The pre-
sent study points to a similar response pattern of stress-induced 
myelopoiesis in maraena whitefish, proving a comparably strong 
increment in myeloid cell number in individuals exposed to 
high densities. As a prominent feature, we suggest, in addition, 
the increased phagocytic activity of those leukocytes from 
stressed whitefish. In this respect, reference should be made 
to LECT2, the most strongly upregulated gene in the liver of 
whitefish kept under HD conditions. The increased expression 
of LECT2 in the liver of stressed trout has been documented 
earlier (60), and it has been demonstrated in mouse in  vitro 
models that LECT2 treatment enhanced the phagocytosis and 
bacterial killing of macrophages (61). Increased phagocytic 
function could be analogous to the change in myeloid cell 
differentiation and effector function previously observed in 
socially stressed mice (28, 62).

Stress-related alterations of the PBL composition are an evo-
lutionarily conserved feature. The mobilization of myeloid cells 
and their release into the bloodstream has also previously been 
observed in gilthead seabream (Sparus aurata) after exposure to 
short-term stress (23). In stressed rats, it has been demonstrated 
that the proportion of myeloid cells is influenced by decreasing 
the number of lymphocytes and monocytes together with the 
increasing number of neutrophils (63). These effects are enhanced 
by stress hormones also altering hematopoiesis and leading to 
the apoptosis of T and B lymphocytes as well as the expansion 
of myeloid cell number (64). Since no reliable markers for the 
distinction between monocytes, macrophages, neutrophils, and 
their precursors are available yet for fish, the production of the 

respective Abs should be addressed in the future to gain deeper 
insights into cellular upheavals during all kinds of imbalanced 
physical conditions.

Our data indicate not only an increased number of myeloid 
cells in whitefish exposed to crowding stress but also expression 
profiles equating to the CTRA (26, 27), including (i) enhanced 
proinflammatory activities (activated pathways interleukin-8 
signaling, acute-phase response signaling, chemokine signaling), 
(ii) increased T-lymphocyte activation (activated Tec kinase 
and CD28 signaling), and (iii) an increased activity of NF-κB 
transcription factors (upregulated genes coding for NF-κB p50 
and −p65), concomitant with (vi) a reduced antiviral response 
(downregulated genes encoding myxovirus resistance factor 
MX1 and influenza virus–binding protein IVNS1ABP) as 
evaluated for the hematopoietic, immune-, and stress-relevant 
kidney of whitefish exposed to crowding. These observations 
are essentially in accordance with the abovementioned reports 
about stress in mammals (cf. Table  5), suggesting that the 
mechanisms by which stress regulates immune responses may 
have been established earlier in the evolution (27, 28, 58). It is 
also worth noting that we have seen enhanced antimicrobial 
activities in the kidney of density-stressed whitefish (activated 
pathways’ complement system and production of NO and ROS 
in macrophages), which is broadly consistent with both the 
increased proinflammatory signaling noted above and previ-
ous measures of antimicrobial response in socially stressed 
mice (62). However, in contrast to results from mammalian 
systems (28, 65), we did not find any indications of a reduced 
glucocorticoid-mediated signaling, which has been observed 
in stressed mammals (28, 65). In fact, IPA analyses indicated 
increased glucocorticoid-related signaling in the kidney for 
crowded fish. Nonetheless, the activation of the stress-induced 
proinflammatory pathways is related to substantial energetic 
costs presumably covered by those energy-mobilizing actions 
(glycolysis, gluconeogenesis, glycogen degradation) recorded in 
stressed whitefish in the present study and generally character-
izing fish under stress conditions (20, 66–68).

Moreover, our data set confirmed that IL1B may play a 
prominent role in the regulation of stress-induced immune 
responses fitting well with previous observations recorded for 
mammals (26) and fish (70). On the basis of those data, we 
hypothesize that the cytokines IL1B, CXCL8, and TNF may 
plausibly be responsible for the expression of several further 
genes in whitefish under HD compared with MD conditions. As 
in salmonid fish, IL1B (71, 72), CXCL8 (73, 74), and TNF (75) 
serve as key proinflammatory mediators after pathogen inva-
sion (76–79) and stress (17, 80, 81). We chose this as a starting 
point for the in vitro stimulation of head kidney leukocytes with  
A. salmonicida to study the influence of crowding on the induc-
tion of cytokine expression. Unexpectedly, SD manipulations 
had different effects on these genes. No differences were observed 
in the expression of CXCL8 between cells from whitefish kept 
at MD or HD. In contrast, the expression of IL1B and TNF was 
obviously biased by SD conditions, though not unidirectionally: 
while the mRNA level of TNF was lower in stimulated cells from 
HD fish, the IL1B mRNA level was higher in challenged cells 
from HD fish compared with cells from MD fish. A similar effect 
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TaBle 5 | comparison of conserved transcriptional response to adversity (cTra) characteristics in stressed whitefish and stressed mammals 
(compared with unstressed controls).

cTra patterns Whitefish (present study) Mammals reference

Transcriptional changes • Liver and kidney: 1.1- to 1.3-fold more 
downregulated than upregulated features

• Murine spleen monocytes: 1.5-fold more 
downregulated than upregulated features

Powell et al. (28)

Activity of transcription factors 
mediating inflammatory functions

• Increased • Increased in mice
• Increased in rhesus macaque

Powell et al. (28),  
Cole et al. (58)

Expression of proinflammatory genes • Increased • Increased in mice Powell et al. (28)

Expression of antiviral genes • Decreased • Decreased in mice
• Decreased in rhesus macaques

Powell et al. (28),  
Cole et al. (58, 59)

Proportion of myeloid cells in 
circulation

• Increased • Increased in humans
• Increased in rats
• Increased in mice

Heidt et al. (29), Engler et al. (65), 
Powell et al. (28)

Rate of phagocytosis • Increased • Increased in rats
• Decreased in mice

Stefanski and Grüner (69),  
Bailey et al. (62)

Reaction after bacterial challenge • Higher expression of IL1B,
• Lower expression of TNF,
• Similar expression of CXCL8

• Increased expression of proinflammatory 
cytokines

Irwin and Cole (26)
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on the expression of IL1B has been observed after long-term 
stress in salmon (81), emphasizing once more the presumably 
important role of IL1 during stress responses. It should be con-
sidered that anti-inflammatory immunosuppressive effects, such 
as those mediated through the stress hormone cortisol (18), may 
have also biased the recorded levels of cytokine-encoding tran-
scripts in head kidney leukocytes. This argues for future studies 
into the complex regulation of teleost immunity under stress 
conditions addressing the questions of (i) how the immune status 
of whitefish develops after prolonged exposure to (crowding) 
stress, (ii) whether an additional stressor such as temperature 
further enlarges the observed expression differences, (iii) how 
the transcriptome of myeloid cells circulating in stressed fish dif-
fers from that in fish under normal conditions, and (iv) whether 
the observed transcriptional responses eventually contribute to 
immunopathologic damages or to the immunosuppression of 
whitefish in case of infection, particularly viral infections, with 
relevance to whitefish health [cf (82)].

In conclusion, the present study describes the physiological 
features of maraena whitefish exposed to increased stocking 
densities, revealing similar observations as in mammalian 
models: first, the increased mobilization of myeloid cells in the 
bloodstream, and second, CTRA-like profiles of several immune 
pathways significantly overexpressed in the liver and kidney of 
density-stressed whitefish (Table  5). These findings allow the 
conclusion that cost-intensive proinflammatory immune mecha-
nisms are acutely activated in maraena whitefish as a consequence 
of crowding stress. At the same time, such adverse husbandry 
conditions potentially reduce antiviral defense capacities and 
activate several energy-supplying metabolic pathways. Thus, our 

data also point to the careful reconsideration of species-specific 
welfare conditions in aquaculture.
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