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Anti-human immunodeficiency virus type-1 (anti-HIV-1) neutralizing monoclonal antibod-
ies are broadening the spectrum of pre- and post-exposure treatment against HIV-1. 
A better understanding of how these antibodies develop and interact with particular 
regions of the viral envelope protein is guiding a more rational structure-based immuno-
gen design. The aim of this article is to review the most recent advances in the field, from 
the development of these particular antibodies during natural HIV-1 infection, to their role 
preventing infection, boosting endogenous immune responses and clearing both free 
viral particles and persistently infected cells.
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NeUTRALiZiNG ANTiBODY ReSPONSe AGAiNST 
HUMAN iMMUNODeFiCieNCY viRUS TYPe-1 (Hiv-1)

Human immunodeficiency virus type-1 displays the most effective evasion mechanisms described 
to date, including the following: (i) the expression of a reduced number of functional virus envelope 
proteins (Env) in the surface of the virion, (ii) a remarkable diversity, (iii) a dense sugar shield, and 
(iv) an extraordinary conformational flexibility, as it can be shown by the drastic conformational 
change of gp120 upon binding to the CD4 receptor. However, during HIV-1 natural infection, two 
different types of antibodies are produced by the host against Env. Binding antibodies (BAbs) arise 
within the first month after infection (1). These antibodies bind to non-functional Env present in 
the surface of the virion, and they are not able to block infection of target cells (2). Despite this 
limitation, several studies have shown that BAbs can modulate HIV-1 and SIV infection by killing 
infected cells through antibody-dependent cell cytotoxicity and antibody-dependent cell-mediated 
viral inhibition (3–7). On the other hand, neutralizing antibodies (NAbs) bind to functional Env 
and prevent the infection of target cells (8). At the beginning of the infection, NAbs are directed 
to immunodominant and mostly variable regions of Env, as it occurs with the third variable loop 
(V3) (9). Since they are only capable of neutralizing autologous viral variants, they are also called 
strain-specific or autologous NAbs (10).

During the course of the infection, continuous viral mutation and evasion constantly expose 
the immune system to novel, but related, HIV-1 antigens. This persistent antigenic stimulation 
provokes continuous selection of memory B-cells with higher affinity to Env. At a molecular level, 
the accumulation of somatic mutations provokes a closer conformational dependence between the 
NAbs and their specific epitopes. As a result of this, NAbs bind to more complex conformational 
structures, as is the case of the CD4-binding site (CD4bs) in gp120 (11). This particular contest 
between the immune system and HIV-1 results in an evolutionary race of unparalleled magnitude, 
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which drives, in a subset of individuals, the production of NAbs 
capable of recognizing heterologous viral variants (10–15). At a 
clinical level, this provokes an increase in the NAb titers and the 
avidity of antibodies to Env (16).

FiRST GeNeRATiON OF ANTi-Hiv-1 
NeUTRALiZiNG MONOCLONAL 
ANTiBODieS (NmAbs)

At the end of the 20th century, in  vitro screening of plasma 
samples from HIV-1-infected individuals showed that a limited 
subset of plasmas neutralized a large number of heterologous 
HIV-1 variants. Despite technical limitations, some research 
groups were able to isolate anti-HIV-1 mAbs with broad neutral-
izing activity from these samples (Table 1) (17–21). Although not 
very potent, this first group of NmAbs (e.g., 447-52D, 4E10, 2F5, 
2G12, b12) exposed some of the few weaknesses associated with 
HIV-1 Env. The antigenic determinants targeted by these NmAbs 
constituted conserved regions of Env. Since these structures were 
functionally involved (e.g., gp120 CD4bs, gp41 membrane-prox-
imal external region, etc.) mutations at these points represented 
a high fitness cost to the virus (12, 22–26). Moreover, several 
research groups showed that passive transfer of these NmAbs 
blocked the infection with a chimeric simian immunodeficiency 
virus carrying HIV-1 Env (SHIV) in non-human primates 
(NHP) (27–34). These studies underscored the importance of 
the humoral component of the immune response as an effective 
prophylactic tool. Although numerous efforts were made in order 
to induce such type of response, the idea of an antibody-based 
vaccine did not succeed. One reason for that was that these first-
generation NmAbs had some unusual characteristics as follows: 
(i) b12 was produced artificially from a phage library, (ii) 2G12 
had atypical combinations of Fab segments, (iii) 2F5 and 4E10 
were self-reactive, (iv) b12, 2G12, and 2F5 displayed modest 
breadth (<50%), and (v) 4E10 had low potency despite the fact 
of displaying broad neutralizing activity (<90%). Additionally, 
the amount of antibody necessary to protect macaques from 
infection was too high to be achieved through vaccination (18, 
21, 35). Therefore, combination strategies and new, more potent 
antibodies were searched.

SeCOND GeNeRATiON OF ANTi-Hiv-1 
NmAbs

The fast development of new technologies made possible the 
isolation of new generation anti-HIV-1 NmAbs. First of all, high-
throughput neutralization assays permitted the screening of a 
large number of plasma samples from HIV-1-infected patients. 
For this purpose, standardized panels of Env-pseudoviruses 
representing all major genetic subtypes of HIV-1 were included in 
the TZM-bl neutralization assay. The different viral strains were 
classified in Tier 1 (sensitive neutralization phenotype), Tier 2 
(moderate), and Tier 3 (neutralization-resistant phenotype) 
based on their neutralization phenotype (36). Increased neutrali-
zation resistance observed in Tier 2, compared to Tier 1 viruses, 
was explained by the lower exposition of highly immunogenic 

epitopes in variable loops and co-receptor-binding domain of 
gp120. By using these single-cycle infection assay and stand-
ardized viral strain panels, breadth was defined by the percent 
of HIV-1 isolates that an antibody could neutralize at a fixed 
concentration. Additionally, potency was defined by the amount 
of antibody that inhibited 50 or 80% of a fixed virus inoculum 
(37). Starting in 2004, several groups began to report that 10–25% 
of HIV-1 patients could make antibodies that cross-neutralize 
many of the viral strain tested (11, 37, 38). A more recent study 
showed that 50% of sera from HIV-1 chronically infected subjects 
(n = 205) were able to neutralize more than 50% of viruses from 
a panel of 219 Env-pseudoviruses (39). However, only a small 
proportion (1%) of individuals were able to neutralize more than 
80% of HIV-1 variants (11, 37, 40–48). These individuals are 
known as “elite neutralizers.”

Another technical advance consisted in the use of engineered 
protein probes such as the resurfaced stabilized core 3 to identify 
and sort epitope-specific memory B-cells from the plasmas of 
elite neutralizers (47). Alternatively, high-throughput microcul-
ture methods were used for B-cell direct neutralization screen-
ing (46). Either from single (43, 49–53) or cultured B-cells (45, 
46, 54, 55), anti-Env mAbs were produced by highly sensitive 
genetic recovery of antibody heavy- and light-chain sequences. 
Altogether, these methodological advances allowed the discovery 
of a whole new generation of NmAbs, which displayed higher 
potency (~three orders of magnitude) and in most cases an 
expanded neutralization breadth (Table  1). These novel broad 
NmAbs (bNmAbs) shared most of Env specificities with the pre-
vious ones, as is the case of the CD4bs site (44, 47, 54), the glycan 
shield (45, 46, 56), and MPER (55). In addition, novel antigenic 
determinants were found such as the interphase between gp120 
and gp41 trimeric structure, including one structure linked to the 
fusion peptide (57).

New GeNeRATiON bNmAbs BLOCK Hiv-1 
AND SHiv iNFeCTiON

Similar to previous isolated bNmAbs, several studies showed 
that the passive transfer of this new generation bNmAbs blocked 
HIV-1 and SHIV infection both in humanized mice (hu-mice) 
and macaques, respectively (58–62). Moreover, a recent study 
revealed that a single 20 mg/kg dose of either VRC01-LS (63), 
3BNC117, or 10-1074 prevented virus acquisition for up to 
23  weeks, following weekly low-dose SHIV challenge regime 
(median = 14.5, 13, and 12.5 weeks, respectively) (64). Altogether, 
these studies highlight the effectiveness of these new bNmAbs as 
a potential pre-exposure prophylactic tool.

New GeNeRATiON bNmAbs CONTROL 
Hiv-1 AND SHiv CHRONiC iNFeCTiON

Although first-generation bNmAbs had shown only a modest 
to non-effect in the control of chronic HIV-1 infection, both in 
mice and humans (65–68), the discovery of second-generation 
bNmAbs prompted to re-test this approach. It was first dem-
onstrated, by using a hu-mouse model, that a single dose of 
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TABLe 1 | First and second generations of anti-Hiv-1 neutralizing monoclonal antibodies (NmAbs).

env subunit epitope region NmAb name Potency (in vitro)a Breadth (in vitro)b Protection efficacy (in vivo)c

Gp120 CD4-binding site (conformational 
epitope)

b12d (18)
VRC01 (01–03) (47)
VRC07 (61)
3BNC117 (55, 60, 117) (44)
NIH45-46 (44)
G54W
12A12 (44)
VRCPG04 (48, 142)
VRC-CH31 (30–34) (48)
HJ16 (54)
N6

1.8 (47); 2.82 (45)
0.33 (45, 47); 0.22 (61); 0.3 (55); 0.9 (44)
0.11 (61); 0.16 (103)
0.134 (103); 0.11 (55)
0.2 (55); 0.41 (44)
0.04 (141)
NC
0.196 (48); 0.2 (45)
0.098 (48)
ND
0.038 (102)

17 (47); 10 (45, 46)
72 (47); 74 (45); 77 (61); 75 (55)
83 (61, 103)
79 (103); 77 (55)
76 (55)
NC
NC
64 (48); 65 (45)
70 (48)
ND
96 (102)

25 mg/kg (4/4); 5 mg/kg (2/4) (28, 29, 34)
5 mg/kg (6/6); 0.3 mg/kg (5/12) (60)
0.2 mg/kg (3/4); 0.05 (0/4) (61)
5 mg/kg (3/4); 1 mg/kg (1/4) (62)
20 mg/kg (0/4) (62)
ND
ND
ND
ND
ND
ND

V3 loop (lineal epitope) 447-52Dd (19)
HGN194 (54)

NC
NC

NC
NC

ND
ND

V1/V2-glycan site (quaternary epitope 
linked to Asn160)

PG9 (46)
PG16 (46)
CH01-04 (143)
PGT145 (141–145) (45)

0.23 (45, 46); 0.142 (103); 0.2 (55)
0.15 (46); 0.15 (55)
NC
0.2 (45)

57 (46); 54 (45); 73 (103); 65 (55)
51 (46); 59 (55)
40 (143)
52 (45)

20 mg/kg (5/6); 5 mg/kg (3/6) (60)
ND
ND
ND

V3-glycan supersite (conformational 
epitope linked to Asn 332)

2G12d (21, 144)
PGT121 (121–123) (45, 120, 145)
PGT128 (125–128) (45, 125)
10-1074 (45, 56)
PGT130-131 (45)
PGT133-134 (45)
PGT135 (135–137) (45, 121)

2.38 (45, 46)
0.03 (45)
0.02 (45); 0.096 (103)
0.4 (103)
0.16–0.52 (45)
ND
0.17 (45)

11 (45)
57 (45)
60 (45); 56 (103)
54 (103)
ND
ND
23 (45)

40 mg/kg (3/5) (27, 30, 33)
1 mg/kg (5/5): 0.2 mg/kg (3/5) (59)
10 mg/kg (5/5); 2 mg/kg (2/5) (146)
5 mg/kg (4/4) 1 mg/kg (1/4) (62)
ND
ND
ND

Gp41 Gp41 MPER (lineal epitope) 4E10d (17)
2F5d (20)
Z13 (26)
10E8 (55)
HK20 (54)

3.41 (45, 46); 1.93 (55)
2.30 (46); 14.6 (55)
ND
0.389 (103); 0.35 (55)
ND

13 (45); 37 (55)
19 (46); 16 (55)
ND
74 (103); 72 (55)
ND

50 mg/kg (6/6) (31)
50 mg/kg (6/6) (27, 31, 33)
ND
5 mg/kg (6/6); 0.3 mg/kg (3/6) (60)
ND

Gp41-gp120 
interfase

N-linked glycans adjacent to CD4bs 
and gp41
Quaternary structure of pre-fused gp41
Quaternary structure of pre-fused and 
cleaved gp41
Fusion peptide (gp41) and glycan at 
Asn88 (gp120)
Quaternary structure of pre-fused gp41 
and a glycan at Asn88 (gp120)

8ANC195 (44, 127)

35O22 (119)
PGT151 (151–158) (116, 118)

N123-VRC34.01 (57)

3BC176, 3BC315 (49, 147)

ND

ND
ND

ND

1.69–10 (49, 147)

ND

ND
ND

ND

ND

ND

ND
ND

ND

ND

aMedian 50% inhibitory concentration (IC50) (μg/ml). Results were obtained from TZM-bl neutralization assay. Panels of 100–200 pseudoviruses, representative of all HIV-1 clades, were used to measure potency.
bPercentage of virus neutralized with an IC50 < 1 μg/ml. Results were obtained from TZM-bl neutralization assay. Panels of 100–200 pseudoviruses, representative of all HIV-1 clades, were used to measure breadth.
cPassive studies performed in non-human primates (NHP): indicated is the proportion of protected animals at each Ab dose.
dFirst-generation NmAbs.
ND, no data are available; NC, data available cannot be compared.
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a triple combination of new generation bNmAbs (3BC176, 
PG16, and 45-46-G54W) suppressed HIV-1 viremia for 
60 days after the cessation of treatment (69). Virus suppression 
was positively correlated with the antibody half-life, and the 
combination of bNmAbs avoided the appearance of resistant 
viral variants (69, 70).

When compared to hu-mouse, NHP models have overcome 
the impossibility of a direct challenge with HIV-1 viruses by 
using chimeric SHIVs that infect NHPs and can cause patho-
genesis. The NHP/SHIV model allow to study infection in an 
intact immune system, and disease progression in this model 
resembles HIV-1 in several aspects: (i) high viral burden and 
diversity, (ii) presence of MHC-1 alleles involved in viral control, 
(iii) establishment of chronic infection, (iv) CD4+ T-cell loss, 
and (v) establishment of an immunodeficiency syndrome, etc. 
(71, 72). Using the NHP/SHIV model, two separate studies 
showed that a single administration of new generation bNmAbs 
to chronically infected macaques reduced viremia and cell-
associated viral loads—in peripheral blood, gut mucosa, and 
lymph nodes—to undetectable levels for a period of 3–8 weeks 
(73, 74). In these studies, effective virus control was positively 
correlated with bNmAbs potency and half-life. Although in 
some cases monotherapy was associated with the appearance 
of viral escape mutants, the combination of bNmAbs with 
different specificities [i.e., PGT121 + 3BNC117 + b12 (73), or 
3BNC117 + 10-1074 (74)] avoided this problem and increased 
treatment effectiveness. In addition, NmAb treatment in one of 
these studies improved the functionality of T-cell responses (73).

The positive outcomes observed in NHP and hu-mouse mod-
els prompted the testing of new generation bNmAbs in HIV-1 
chronically infected patients. In this regard, two separate studies 
showed that the administration of a single dose of 3BNC117 or 
VRC01 reduced HIV-1 viremia (from 1 to 2.5 log10) for as long 
as 1 month, in patients who were not under combination antiret-
roviral treatment (cART) (75, 76). Additionally, two different 
studies have recently demonstrated that either 3BNC117 or 
VRC01 suppressed HIV-1 rebound following cART interruption 
in chronically infected patients (77, 78). However, the selection 
for preexisting and emerging resistant viral variants was reported 
in most of these studies, and consequently, single bNmAb 
therapy was not effective maintaining virus suppression in the 
long term (78). All in all, these studies highlight the benefits of 
new generation bNmAbs as a novel and efficient post-exposure 
treatment approach. Considering that virus suppression failed 
in patients with resistant viral variants, these results suggest 
that immunotherapy will require the combination of multiple 
bNmAbs that target different sites on HIV-1 Env for clinical use.

New GeNeRATiON bNmAbs BOOST 
eNDOGeNOUS iMMUNe ReSPONSe AND 
iNTeRFeRe wiTH THe viRAL ReSeRvOiR

Combination antiretroviral therapy is effective in controlling 
HIV-1 viremia and preventing disease progression toward 
AIDS. However, lifelong treatment is required for the majority of 
patients. In addition to rapid virus dissemination and reservoir 

seeding, other immunological events that occur during HIV-1 
acute infection affect the disease progression in the long term. 
This is the case of acute loss of CD4 memory T-cell located in 
the GUT-associated lymphoid tissue (79–83) and peripheral 
B-cell dysregulation (84–87). Although early cART can suppress 
viremia, reduce reservoir size, and restore immune function (88, 
89), it fails to clear SIV infection even if started as early as 3 days 
post infection (90).

Antiretroviral drugs and bNmAbs limit HIV-1 infection by 
interfering with the viral life cycle. Additionally, bNmAbs can 
enhance host immune response by inducing the formation of 
immune complexes with the virus (91). Moreover, bNmAbs have 
the ability to promote the killing of HIV-1-infected cells through 
Fc-mediated cell cytotoxicity and phagocytosis (92). A recent 
study has shown that 3BNC117 enhanced host humoral immu-
nity against HIV-1 (93). This result is in agreement with previous 
observations performed by Dr. N. Haigwood and colleagues (72, 
94). Using a highly pathogenesis model in newborn macaques, 
Dr. Haigwood found that non-sterilizing levels of anti-SHIV-
neutralizing IgG (SHIVIG) administered previous to oral chal-
lenge with SHIVSF162P3, reduced both plasma and peripheral blood 
mononuclear cell-associated viremia. Interestingly, SHIVIG also 
augmented and fastened the development of endogenous NAb 
response, which in turn correlated with lower set-point viremia 
and 100% survival of infected animals (72). Another recent study 
has revealed that passive administration of 3BNC117 accelerated 
the clearance of HIV-infected cells (95) by a mechanism that 
involved Fc gamma receptor (FcγR) engagement in a hu-mouse 
model. This observation is in correspondence with previous 
studies that had shown the importance of the Fc fraction of the 
antibody in the control of viremia, both in a hu-mouse (96) and 
an NHP model (28).

The benefits of antibodies compared to antiretroviral drugs 
prompted the testing of the therapeutic effect of the new genera-
tion of bNmAbs during acute infection. A first research group 
demonstrated that passive transfer of a cocktail of new gen-
eration bNmAbs (PGT121 and VRC07), administered prior to 
peak viremia (10 days post infection), suppressed SHIV viremia 
and limited the amount of cell-associated viral DNA in adult 
macaques (97). Moreover, NmAb therapeutic effect was similar 
to the one observed with cART initiated at the same time point 
(97). Although early NmAb treatment and cART were effective 
reducing the virus reservoir, none of these treatments removed 
it completely (97). In a second study performed by Hessell and 
colleagues, 1-month-old rhesus macaques were inoculated 
orally with SHIVSF162P3 (98). On days 1, 4, 7, and 10 after virus 
exposure, animals were injected subcutaneously (SC) with the 
same cocktail of bNmAbs (PGT121 and VRC07) used in the 
previous study. Replicating virus was found in multiple tissues 
by day 1 in animals with and without treatment. Remarkably, all 
NmAb-treated macaques were free of virus in blood and tissues 
at 6  months after exposure (98). Additionally, no anti-SHIV 
T-cell responses in blood or tissues at necropsy were detected 
and no virus emerged following CD8+ T cell depletion. Dr. 
Hessell’s observation concerning early viral clearance is in agree-
ment with a latter study by Liu and colleagues, which showed 
that pre-exposure bNmAb-mediated protection against SHIV 
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mucosal challenge might involve clearance of early viral foci in 
distal tissues (99). Altogether, these results suggest that early pas-
sive immunotherapy can eliminate early viral foci and thereby 
prevent the establishment of viral reservoirs.

CURReNT AND FUTURe PeRSPeCTiveS 
OF Hiv-1 iMMUNOPROPHYLAXiS

In the absence of an effective vaccine, passive administration 
of new generation anti-Env bNmAbs alone or in combination 
with cART has shown to be effective controlling and preventing 
HIV-1 infection. Moreover, latest research on the treatment of 
HIV-infected individuals has been heavily focused on developing 
strategies aimed to achieve sustained virologic remission without 
cART. In this regard, a series of phase I clinical trials have been 
designed to investigate the efficacy of new generation bNmAbs, 
such as VRC01. Although several bNmAbs have shown better 
performance compared with VRC01, the latter is considered the 
prototypic antibody from the new generation. In addition, the 
use of VRC01 in clinical trials is supported by substantial pre-
liminary data showing the prophylactic and therapeutic efficacy 
of this antibody (47, 60, 61). The first large-scale clinical trial 
was performed in healthy adults in the United States. This trial 
showed that VRC01 was well tolerated by oral and SC routes. 
Furthermore, VRC01 had a terminal half-life of 15  days and 
pharmacokinetics comparable to other IgG (clearance 0.016 l/h) 
(100). After infusion, this antibody retained neutralizing activ-
ity and anti-VRC01 response was not detected following two 
mAb administrations. The results from a second clinical trial, 
performed in chronic infected patients who were undergoing 
treatment interruption, showed that VRC01 slightly suppressed 
plasma virus rebound, but it did not maintain virus control in 
the long term (78). Moreover, a rapid selection of preexisting 
and emerging resistant viral variants was reported in the same 
study. At this moment, VRC01 is in phase IIb efficacy trial as an 
intravenous infusion for HIV-1 prophylaxis. Future clinical trials 
planned for VRC01 include the following: (i) testing if VRC01 
can control HIV-1 viremia in infected children and (ii) testing 
the efficacy of VRC01 to prevent mother-to-child transmission of 
HIV-1 (101). In addition to VRC01, novel VRC01-like antibod-
ies with greater potency and breadth (>95%) have recently been 
isolated. By reducing the chance of selection for neutralization-
resistant viral variants, novel antibodies such as N6 (102) might 
increase the efficacy of immunotherapy. Despite the promising 
features of the new isolated anti-Env bNmAbs, the extreme plas-
ticity of HIV-1 demands permanent improvements in the field 
in order to guarantee complete success. In this regard, electron 
microscopy (EM), cryo-EM, and X-ray crystallographic studies 
have contributed to better understand the interaction between 
each NmAb and its epitope, prompting the rational design of 
more effective NmAb variants as is the case of VRC07 (VRC01 
derived) and G54S (NIH45-46 derived) (Table 1). Bioengineered 
modifications of these antibodies have also increased their half-
life and FcR function, augmenting their therapeutic window [e.g., 
VRC07 (61) and VRC01-LS (63)].

It has been demonstrated that co-administration of differ-
ent bNmAbs that target distinct Env epitopes is important to 

achieve effective virus control without the emergence and/or 
selection of viral escape mutants. Different approximations based 
on in  vitro neutralization data allowed to determine the best 
combination of bNmAbs (up to four) considering their breadth, 
potency, complete neutralization, and instantaneous inhibitory 
potential and countering escape variant production (103, 104). 
Alternatively, engineered bivalent anti-Env antibodies showed 
an exquisite HIV-1 neutralization activity while preserving 
normal architecture of IgG (105, 106). Ravetch and colleagues 
combined Fabs from two different bNmAbs, one to the CD4bs 
(3BNC117) and another to V3-glycan epitope (PGT135) using 
a special hinge domain that increases flexibility and favors intra-
trimeric, heterobivalent crosslinking of the two Fab arms (107). 
This bispecific antibody performed far better than the combined 
activity of the individual parent antibodies [mean 50% inhibitory 
concentration (IC50) = 0.036 μg/ml and breadth = 93%]. This 
synergistic activity was equivalent to combined activity of up 
to five antibodies. A second engineered bispecific antibody, the 
10E8V2.0/iMab showed an IC50 of 0.002 μg/ml and neutralized 
99% of viral variants from a panel of 200 pseudoviruses (108). 
In this opportunity, the Fab from either anti-CD4 or anti-CCR5 
mAb was linked to the Fab from the gp41-specific bNmAb 
10E8. This construct increased 10E8 potency by anchoring the 
antibody on the CD4 T-cell membrane. Besides their remarkable 
in  vitro performance, both bispecific antibodies reduced virus 
load substantially in HIV-1-infected humanized mice and also 
provided complete protection when administered prior to virus 
challenge (107, 108). A third construct was developed to link 
the Fab region of VRC07 bNmAb and an anti-CD3 mAb (109) 
in the same molecule. By engaging CD3, this molecule favored 
the expression of proviral genes in latently infected T-cells. At 
the same time, it mediated the killing of infected T-cells through 
the recognition of newly expressed Env. Overall, bispecific anti-
HIV-1 Env antibodies showed improved breadth and potency and 
enhanced in vivo activity. These engineered antibodies represent 
an ideal therapeutic approach that would combine the breadth, 
the antigenic specificity, and the neutralization potency of two 
bNAbs into a single molecule, facilitating preclinical evaluation 
and development.

Alternatively to active and passive immunization, vector-
mediated gene transfer could be used to secrete effective bNmAbs 
into circulation. This novel technique known as vectored immu-
noprophylaxis (VIP) is based on a specialized adeno-associated 
virus (AAV) vector optimized for the production of full-length 
antibody from muscle tissue. A couple of studies demonstrated 
that VIP was capable of protecting hu-mice from intravenous 
as well as vaginal challenge with diverse HIV strains (110, 111). 
Another study showed that VIP could maintain reduction of 
previously suppressed viral replication (70). Although this novel 
approach might overcome the limitations associated with passive 
transfer and active immunization (e.g., maintenance of the anti-
body concentration above protective level, immunogen design, 
sophisticated immunization regimens to induce extensive affinity 
maturation, etc.), there are some constraints associated with VIP 
that should be considered as follows: (i) preexisting immunity 
against the vector capsid might limit the efficiency of vector 
transduction, (ii) the route of administration might also affect the 
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availability of antibody, (iii) the packaging limitation associated 
to AAV might influence the efficient delivery of both heavy and 
light chains of antibody, and (iv) there are safety uncertainties to 
be tested. Despite these limitations, VIP represents an interest-
ing alternative for directly translating the existing repertoire of 
bNmAbs in vivo. Two different clinical trials are ongoing to test 
the safety and efficacy of VIP in humans (112). One of these trials, 
sponsored by the International Aids Vaccine Initiative is recruit-
ing healthy males to receive AAV1 expressing PG9 bNmAb. A 
second trial carried out by the Vaccine Research Center (VRC) 
is testing AAV8 expressing VRC07. By either enhancing potency 
and breadth, or overcoming limitations of passive transfer of 
antibodies and vaccine design, these novel approaches might 
facilitate the use of bNmAbs into the clinic, for the prevention, 
control, and cure of HIV-1 infection.

LeSSONS FROM bNmAbs TOwARD AN 
eFFeCTive vACCiNe DeSiGN

Thirty years after the discovery of HIV-1, the goal of developing 
a vaccine capable of eliciting a strong durable immune response 
to protect humans against the global diversity of HIV-1 isolates, 
remains elusive. However, in the last decade, important progress 
was made in this field with the moderate success achieved in 
a phase III clinical trial in Thailand (RV144 trial) leading the 
way. This approach consisted of four priming injections using a 
canarypox-vectored vaccine expressing HIV-1 Gag, Pol, and gp120 
Env proteins (ALVAC-HIV), plus two boosts with soluble gp120 
(AIDSVAX B/E) (113). This immunization regimen reduced the 
risk of acquiring infection in a 31.2% of individuals, and this was 
correlated with the presence of anti-V1 and -V2 antibodies (114). 
The vaccine also induced low level of neutralizing activity against 
Tier 1 viruses, meditated in large part by NAbs directed to V3 
loop (115). In contrast, neutralization of Tier 2 viruses was not 
detected (115). Since Tier 2 viruses represent most circulating 
viral strains, the efficacy of RV144 might be improved by eliciting 
stronger NAb responses, particularly against Tier 2 viruses.

In addition to the partial success of the RV144 trial, other key 
findings underscored the importance of the humoral immune 
response against HIV-1. As described in previous sections, 
passively transferred bNmAbs have been shown to be effective 
blocking infection (58, 63, 64) and suppressing chronic SHIV and 
HIV-1 viremia (73–76). In addition, bNmAbs were able to poten-
tiate endogenous antibody response (72, 93, 94) and mediate the 
clearance of SHIV and HIV-1 infection (95, 98, 99). These pro-
phylactic and therapeutic properties of potent bNmAbs, together 
with the fact that they develop in 1% of infected individuals, 
support the rationale for developing an immunogen capable of 
inducing such type of response through vaccination.

In this regard, structural characterization has exposed how 
bNmAbs recognize Env, and the study of B-cell ontogenies are 
revealing pathways within the B-cell repertoire that lead to the 
eventual development of effective neutralizers (48, 116–132). 
Most bNmAbs targeting HIV-1 Env develop unusual features, 
including the frequent use of insertion and deletions and 
restricted germline use (133). They display extraordinary affinity 
maturation, reaching nucleotide somatic hypermutation (SHM) 

frequencies of 32 and 20% in heavy- and light-chain V genes, 
nearly double that of the normal SHM rates of other antibodies in 
the human repertoire (134) and can carry over 80 VH mutations 
(48, 54, 135). Another unusual feature of anti-Env bNmAbs is 
the presence of unusually long or short heavy-chain complemen-
tarity-determining region 3 (CDR3) loops. The PGT family of 
bNmAbs (Table 1) uses a long CDRH3 that makes it possible to 
trespass the dense glycan shield allowing interactions with gp120 
peptides underneath. These particular features, necessary for the 
recognition of conserved conformational epitopes, are the result 
of long-term affinity maturation. This extraordinary maturation, 
which results from chronic stimulation of B-cells by mutating 
Env, provokes B-cell diversification from the germline toward Ag 
focusing (48).

Although these features are necessary to develop naïve B-cells 
into effective neutralizers, they might represent roadblocks to the 
development of bNmAbs during natural infection or vaccination. 
One example of this is that predicted germline precursors of 
VRC01- and PGT121-class antibodies lack detectable affinity for 
wild-type HIV-1 gp120, making it poor immunogen to induce 
a bNmAb response (136, 137). However, some research groups 
are devising strategies, using structure-based design of germline-
targeting immunogens, to activate relatively rare VRC01-class 
precursors both in a transgenic mouse model expressing ger-
mline VRC01 heavy chain (138) and naïve B-cell from uninfected 
humans (139). Furthermore, boosting primed mice with specifi-
cally designed immunogens induced weak neutralization of fully 
native HIV-1 (140). Functional and structural analysis revealed 
that antibodies elicited were consistent with partially mature 
VRC01-like antibody. Following a similar rationale, Steichen 
and colleagues designed a stabilized Env trimer with affinity for 
germline-reverted precursors of PGT121-class bNmAbs to prime 
PGT121-like responses in PGT121 inferred-germline knockin 
mice (137).

Induction of effective bNmAbs will likely require a multi-step 
immunization strategy in which successive distinct boosting 
immunogens guide the genetic and functional maturation of 
bNmAbs. Whether or not the most effective strategies will follow 
a germline-targeting prime to drive antibody maturation toward 
a bNmAb phenotype is yet to be determined. Nonetheless, the 
continued pursuit of comprehensive studies of bNmAb structures 
and their interaction with HIV-Env and further investigations 
into the mechanisms involved in B-cell development and matu-
rity that lead to the expansion of bNmAbs, constitute the basis 
for the rational design of novel immunogens to be included in an 
effective HIV-1 vaccine.

CONCLUSiON

New generation anti-HIV-1 bNmAbs are an important tool for 
the prevention, control, and eradication of HIV-1. A single pre-
exposure dose of bNmAb is able to prevent SHIV infection for up 
to 6 months. When applied during chronic infection, a single dose 
of bNmAbs cocktail can control SHIV viremia and peripheral 
proviral loads to undetectable levels for up to 1 month, without 
the emergence of resistant variants. In addition, passively trans-
ferred bNmAbs are able to increase endogenous NAb response, 
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modulating disease progression in the long term. Remarkably, if 
administered within the first 24 h of infection, bNmAbs cocktail 
can eliminate SHIV virus from the organism. The contribution of 
bNmAbs to killing HIV-1 persistently infected cells has also been 
demonstrated in a hu-mouse model, supporting the potential of 
bNmAbs to clear HIV-1 viral reservoir. It is an important fact 
that neither toxic nor anti-mAb responses have been reported in 
any of these studies. These results obtained in NHPs or hu-mice 
are currently being validated in human patients, and large-scale 
clinical trials have already been started to evaluate safety and 
efficacy of these antibodies. Furthermore, bNmAbs have directed 
the attention to functional structures of HIV-1 Env, exposing 
some weaknesses of this virus. The comprehensive analysis of the 
interaction between bNmAbs and these antigenic structures, in 
addition to the study of how B-cells develop to produce such type 

of antibodies, will contribute to the design of novel immunogens 
and immunization approaches.
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