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The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable 
(V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) 
during B-cell development and affinity maturation. The VDJ junction of the BCR heavy 
chain forms the highly variable complementarity determining region 3 (CDR3), which 
plays a critical role in antigen specificity and binding affinity. Tracking the selection and 
mutation of the CDR3 can be useful in characterizing humoral responses to infection 
and vaccination. Although tens to hundreds of thousands of unique BCR genes within 
an expressed B-cell repertoire can now be resolved with high-throughput sequencing, 
tracking SHMs is still challenging because existing annotation methods are often limited 
by poor annotation coverage, inconsistent SHM identification across the VDJ junction, 
or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and 
immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide 
sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, 
and SHM identification. On benchmark tests against simulated human and mouse BCR 
repertoires, BRILIA correctly annotated germline and clonally expanded sequences 
with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate 
in the CDR3 of heavily mutated sequences; these are substantial improvements over 
existing methods. We used BRILIA to process BCR sequences obtained from splenic 
germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell 
lineage trees and yielded SHM patterns that are consistent across the VDJ junction and 
agree with known biological mechanisms of SHM. By contrast, existing BCR annotation 
tools, which do not account for repertoire-wide clonal relationships, systematically 

Abbreviations: ADAR, adenosine deaminase acting on RNA; AID, activation-induced deaminase; bp, base pair; BCR, B-cell 
receptor; BRILIA, B-cell repertoire inductive lineage and immunosequence annotator; CDR, complementarity-determining 
region; HMM, hidden Markov model; IMGT, ImMunoGeneTics; nt(s), nucleotide(s); SHM, somatic hypermutation; TDT, 
terminal deoxynucleotidyl transferase.
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INtRodUCtIoN

B cells synthesize transmembrane proteins called B-cell receptors 
(BCRs) that recognize foreign antigens. The binding of BCRs 
with an antigen activates B cell clonal expansion and somatic 
hypermutation (SHM), which increases the likelihood of syn-
thesizing high-affinity BCRs that are later secreted as antibodies 
into the blood [see Ref. (1) for a review on affinity maturation]. 
Understanding how antigen-specific antibodies are produced can 
aid the development of effective vaccines, for instance, by showing 
which BCR genes become enriched in vaccinated subjects (2–6) 
or by measuring the extent of affinity maturation in response to 
vaccination. Although thousands of BCR sequences from B cell 
repertoires can be obtained with high-throughput sequencing 
(7), tracking SHM among maturing B cells remains a challenge 
(8). The standard approach for processing BCR sequences is to 
first annotate the Variable (V), Diversity (D), and Joining (J) seg-
ments of the BCR gene, then cluster clonally related sequences, 
and finally construct a lineage tree for each cluster (8–11). Each 
step is typically carried out using separate algorithms, which 
can yield results that are at odds with the biological mechanisms 
that underlie SHM or affinity maturation. Therefore, developing 
algorithms that provide VDJ annotations that agree with clonal 
expansion and SHM behaviors is critical for accurately character-
izing B-cell repertoires.

The BCR consists of a heavy chain and a light chain. During 
B-cell development, functional BCR genes for the heavy and 
light chain are formed via the recombination of V, D, and J 
gene segments within the chromosomal DNA, mediated by 
recombinase enzymes RAG1 and RAG2 (12, 13). The heavy 
chain of the BCR uses the V, D, and J segments, and the light 
chain uses a separate set of only V and J segments, giving rise to 
a baseline combinatorial diversity of BCRs. The VDJ junction 
of the heavy chain forms the highly variable complementarity 
determining region 3 (CDR3) loop structure that plays a critical 
role in antigen recognition (14). Further diversity is introduced 
in the VDJ junction at the joining regions between the gene seg-
ments through deletions of gene edges by nucleases (15), crea-
tion of palindromic sequences called palindromic nucleotides 
(P-nts), and insertions of non-templated nts (N-nts) by terminal 
deoxynucleotidyl transferase (TDT) (16–18) [see Ref. (19) for 
a review on VDJ recombination]. A  contiguous sequence of 
P- and N-nts is referred to as an N region. A final level of BCR 
diversity is introduced through SHM that is mediated by deami-
nases and error-prone DNA repair enzymes, which can obscure 
the original VDJ genes [see Ref. (20) for a review on SHM]. 

The combinatorial diversity of germline gene recombination, 
the variation that is introduced by insertions and deletions in 
the VDJ junction, and the subsequent accumulation of SHMs 
during affinity maturation pose major challenges to BCR gene 
annotation.

High-throughput sequencing focused on the heavy chain 
CDR3 is becoming a common tool for rapidly characterizing the 
entire B-cell repertoire from a single sample—an inexpensive 
alternative to more costly single-cell sequencing approaches (21). 
For a given individual, the number of unique B cells is estimated 
to be greater than 107 (22), and analysis of antigen-specific B cells 
may require sequencing of up to 104 or 105 unique B cells (23). 
The Illumina deep-sequencing technology is capable of provid-
ing sufficient sequencing depth to capture this repertoire in its 
entirety for sequence read lengths of ~150 bp (24). However, the 
relatively short reads, which capture the complete CDR3 sequence 
but exclude much of the V and J regions (including CDR1 and 
CDR2), present additional challenges to BCR gene annotation 
and SHM characterization.

Most existing annotation algorithms use a sequence align-
ment-based approach to resolve the V, D, and J gene segments 
within a given BCR sequence. The most widely used algorithms 
is ImMunoGeneTics (IMGT)’s VQUEST with JunctionAnalysis 
(VQUEST + JA) (25–28), which finds annotations for the V, J, and 
D genes (in this order) that maximize the sequence alignment 
scores with respect to a database of unmutated, or germline, 
sequences. VQUEST  +  JA also use the conserved 104Cys and 
118Trp/Phe residues surrounding the CDR3 [which are residues 
numbered according to IMGT’s unique numbering system (29)] 
to fine-tune the annotations (28). Examples of other algorithms 
that use similar alignment-based annotation methods include 
IgBlast (30), SoDA (31), JointML (32), JOINSOLVER (33), 
VDJSeq-Solver (34), MiXCR (35), IMSEQ (36), and IgSQUEAL 
(37). A different strategy, hidden Markov modeling (HMM), uses 
statistical models and probability matrices to calculate the most 
likely series of events leading to each sequence. Algorithms that 
use HMM are SoDA2 (38), iHHMune-align (39), JointHMM (32), 
and partis (40). Most BCR annotation algorithms provide high 
accuracy in annotating V and J segments, but struggle to annotate 
the N and D segments that define the critical CDR3. The D genes 
are especially difficult to annotate because they are short in length 
(e.g., 9–18 nt for mice) and can be inverted (32, 41), severely 
truncated, blended with the N regions, and highly mutated. Thus, 
an effective method for annotating the D gene is to first find the 
least mutated or most ancestral BCR sequence among the clon-
ally related BCR sequences. However, employing this strategy 

underestimated both the size of clonally related B-cell clusters and yielded inconsistent 
SHM frequencies. We demonstrate BRILIA’s utility in B-cell repertoire studies related 
to VDJ gene usage, mechanisms for adenosine mutations, and SHM hot spot motifs. 
Furthermore, we show that the complete gene usage annotation and SHM identification 
across the entire CDR3 are essential for studying the B-cell affinity maturation process 
through immunosequencing methods.

Keywords: B-cell receptor (BCR), repertoire, annotation, lineage, VdJ, somatic hypermutation (shM)
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requires that B-cell lineages be determined concurrently with VDJ  
annotations.

B-cell lineages are typically determined separately from BCR 
annotation, despite their common biological basis. A common 
way to identify clonally related sequences is to cluster sequences 
with the same V(D)J annotation and CDR3 length and with a 
high level of BCR nt sequence similarity based on a Hamming 
distance cutoff (11, 27, 36, 42). Although annotation-free cluster-
ing has been used (43), determining lineage trees per cluster is 
difficult without the full VDJ gene annotations. After clustering, 
lineage trees are assembled per cluster by using algorithms such 
as MEGA5 (44), PHLYPIS (45), ImmuniTree (46), or IgTree (47). 
The assumptions underlying the annotation, clustering, and tree 
assembly algorithms may be mutually inconsistent, leading to 
issues such as inadvertent segmentation of long lineage trees 
owing to divergent VDJ annotations or assembly of binary trees 
that do not properly reflect B-cell clonal expansion. B-cell lineage 
trees can be highly branched because a group of identical B 
cells can give rise to multiple lineages when undergoing SHM. 
Integrated software applications, such as Change-O (10) and 
RevertToGermline + AnnotateTree (48), streamline the process 
of assembling lineage trees that are consistent with the annota-
tions, but in these methods, the lineage tree information is not 
used to improve annotations.

Evaluating the performance of BCR annotation tools is 
challenging because the true VDJ annotations are not known 
in real-life BCR sequencing data. As a result, most annotation 
tools are benchmarked against simulated BCR repertoires created 
either through in-house simulations or tools such as IgSimulator 
(49). However, when processing our own BCR data sets, exist-
ing annotation algorithms had difficulty yielding consistent nt 
substitution frequencies across all V, D, and J segments. There 
is no biological basis for this inconsistency—SHM-inducing 
enzymes that are responsible for the substitution patterns, such 
as activation-induced cytidine deaminase (commonly referred 
to as AID) (50–53), do not necessarily discriminate between V, 
D, and J segments. Therefore, we used the correlation between 
the SHM nt substitution patterns of the V segment and those of 
the DJ segments as a proxy for the overall annotation quality of 
real-life BCR repertoires.

In this study, we present B-cell repertoire inductive lineage 
and immunosequence annotator (BRILIA), a BCR annotation 
algorithm that concurrently annotates genes, clusters sequences, 
and assembles lineage trees. BRILIA refines annotations by 
exploiting mechanistic biases in SHM patterns, N region nt 
compositions, and directionality of N region synthesis by TDT 
on the coding versus non-coding DNA strand. We bench-
marked BRILIA by processing short 125-bp sequences from 
simulated human and mouse BCR repertoires and real-life 
repertoire data obtained from splenic germinal center B cells 
isolated from C57BL/6 mice. BRILIA identified more highly 
branched lineage trees and obtained more consistent SHM 
patterns across the VDJ segments when compared to currently 
available methods. We demonstrate how BRILIA annotations 
and lineage trees can be applied in research on affinity matura-
tion, VDJ gene usage frequencies, and SHM mechanisms and 
hot spot motifs.

MAteRIALs ANd Methods

obtaining the database for VdJ Germline 
Genes
Human and mouse VDJ germline genes were downloaded from 
the international IMGT database (http://www.imgt.org) (54–61). 
When annotating C57BL/6 mouse data sets, only genes obtained 
from the same mouse strain were kept to prevent strain bias of 
VDJ gene alleles (41). Pseudogenes, which are germline genes 
with stop codons or frame shift mutations, were included in the 
database since their role in producing functional VDJ is still 
debated (62, 63). However, only annotations without any stop 
codons and frame shift errors, referred to as productive VDJ 
junctions, were analyzed at the end. We included inverted D 
genes by default because they have been observed occasionally 
(32, 33, 64, 65). Users are given the option to disallow inverted 
D matching because it may not significantly improve the annota-
tion results (66). We used the IMGT gene nomenclature, but 
added an “r” before the family name (e.g., rIGHD01-1*01) for 
the inverted D genes.

simulating BCR Repertoires for 
Benchmarking Annotation Algorithms
To benchmark our annotation method, we simulated a BCR 
repertoire so that the true annotations are known. The purpose of 
this simulated repertoire is to gauge the ability of an algorithm to 
identify the actual VDJ genes and SHM events and not necessarily 
to simulate the actual usage frequencies of VDJ genes. Because 
different genes are used with lesser or higher frequencies than 
others in real-life repertoires (32, 33), replicating this feature in 
simulated repertoires would have limited the VDJ combinations 
that were tested. The simulated sequences preserved other details 
such as the frequent C  T and G  A mutations mediated by 
AID (50–53), preferential occurrence of A mutations over T 
mutations (referred to as strand-bias mutations) (67, 68), and 
biased N region nt compositions (69, 70). We refer to the N region 
between the V and D segments as NVD and that between D and J 
segments as NDJ. Only productive VDJ junctions were generated 
to ensure a fair comparison of each algorithm’s core functions. A 
total of 1,000 unmutated, or “germline,” sequences were gener-
ated. To simulate SHM, five descendant sequences were generated 
for each germline sequence by mutating 5  nt at non-repeating 
locations, five times. The combined germline and mutated 
sequences (a total of 6,000 sequences) were labeled as “clonally 
expanded” sequences. More details about the BCR simulations 
are provided in the Supplementary Material. Simulated human 
and mouse BCR sequences can be found in Datasheets S1 and S2 
in Supplementary Material, respectively.

extracting BCR sequences  
from C57BL/6 Mice spleens
Germinal center B cells were isolated from wild-type C57BL/6 
mice purchased from Jackson Labs. In brief, single-cell suspen-
sions from homogenized spleens were washed using FACS buffer 
(phosphate-buffered saline, 0.5% bovine serum albumin, and 
2  mM ethylenediaminetetraacetic acid; Corning, Sigma), lysed 
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with red blood cell buffer (Sigma), and then counterstained with 
the following B-cell antibodies: B220, IgM, IgD, IgG1, CD38, 
CD138, and GL-7 (BD Biosciences). All samples were Fc-blocked 
(anti-CD16/CD32) and stained to evaluate viability (live/dead 
aqua, Invitrogen) prior to antibody staining. Highly purified 
(> 90%) Spt-GC B cells (B220+GL7+CD95+CD38low) were then 
isolated using cell sorting on a BD Aria II. Subsequently, purified 
Spt-GC B cells were pelleted by centrifugation, snap frozen, and 
then shipped to Adaptive Biotechnologies for DNA extraction 
and next-generation sequencing of the murine VDJ loci. BCR 
sequence information was obtained from amplicons beginning 
within FR3 of the V gene and ending just 3′ of the complete VDJ 
junction. Each sequence was trimmed to 125 bp maintaining the 
last 3 nt of the sequence codes for the conserved 118Trp (TGG) of 
the CDR3. For each unique sequence, template counts were also 
provided, which reflect the number of B cells that had a copy of 
a particular BCR gene (71). Animal work was conducted under 
a United States Army Medical Research Institute of Infectious 
Diseases (USAMRIID) Institutional Animal Care and Use 
Committee-approved protocol in compliance with the US Animal 
Welfare Act, Public Health Service Policy, and other federal stat-
utes and regulations relating to animals and experiments involv-
ing animals. The facility in which this research was conducted 
(USAMRIID) is accredited by the Association for Assessment 
and Accreditation of Laboratory Animal Care, International and 
adheres to principles stated in the Guide for the Care and Use of 
Laboratory Animals, National Research Council, 2011. Real-life 
BCR sequences used in this work can be found in Datasheet S3 
in Supplementary Material.

stePWIse PRoCedURes

BRILIA Algorithm overview
A flowchart of our BRILIA annotation algorithm is shown in 
Figure  1, along with an example of the process and rationale 
behind each major step. The key features of our annotation 
strategy are the alignment strategy that accommodates variable 
SHM rates per  sequence, preservation of nts during alignment 
that prevent “no D” results, lineage-based clustering, unification 
of annotations within a cluster, D inverse searches, and refine-
ment steps for D and N regions. BRILIA is written in MATLAB 
(MathWorks), and all source codes and input files used in this 
study are available on request.

defining the Alignment scoring Method
The initial VDJ annotations rely on aligning sequences to the 
germline sequences and maximizing the total alignment score for 
the VDJ segments. We used a custom alignment scoring method 
defined as

 Score = −∑ ∑C Mi
i

j
j

2 2 ,  (1)

where Ci and Mj are the numbers of consecutively matched and 
mismatched nts, respectively, in a segment. For example, if the 
result of a sequence alignment is “AGtTTcC,” where lowercase 
letters represent mismatched nts, the alignment score would 
be computed as 22  −  12  +  22  −  12  +  12  =  7. To prevent SHM 

from severely affecting the alignment score, we add a mismatch 
leniency rule so that point mutations (but not consecutively 
mismatched nts) can elongate consecutively matched segments. 
By using the above example and allowing for one mismatch, the 
score would now be computed as (2 + 0 + 2)2 − 12 + 12 = 16. Note 
that despite having another point mutation near the 3′ end, we 
elongate segments near the 5′ end first because SHM occurs more 
frequently near the 5′ end (72).

For the V segment, we set the mismatch leniency to be as high 
as 15% of the V segment length, although the actually muta-
tion% is often less. For the D and J segments, we set a mismatch 
leniency rule to have the same mutation% as what was found 
for the V segment, although the D and J segments in the CDR3 
can accumulate more mutations (73). Since the first objective of 
BRILIA is to identify the least mutated sequence, setting a higher 
mutation% for the D and J segments is not necessary.

step 1: Matching VdJ Genes and 
Correcting V Gene Indel errors
For a given VDJ sequence, we matched the V gene first, but with 
the condition that the last 9 nt were preserved for matching the 
D and J genes. For instance, given 125  nt in a sequence, only 
the first 116  nt would be used to determine a V gene. This nt 
preservation step prevents ‘overmatching’ a V gene such that the 
J and D genes cannot be resolved. We also corrected for V gene 
insertions/deletions (indels) that occurred before the 104Cys, 
because indels here are likely caused by sequencing errors (39). 
We did not correct for indels in the CDR3 because indels can be 
caused by real VDJ recombination events.

Once a V gene match was found, we preserved 3  nt to the 
right of the V gene segment and then determined the J gene with 
the remaining nts. For instance, if the first 100 of 125  nt were 
matched to a V gene, then nts 101 to 103 were preserved, while 
the last 22 nt were used to match the J gene. After determining a 
J gene, all remaining nts were used to match the D gene. Any nts 
not assigned to a V, D, or J gene were treated as P-nts) and/or non-
templated (N) nts, which were then assigned to their respective 
NVD or NDJ region.

step 2: Assembling Lineage trees, 
Clustering sequences, and Unifying 
VdJ Annotations
We next clustered the sequences by using lineage trees. 
Sequences with the same CDR3 lengths and VJ gene family 
numbers were clustered before constructing lineage trees 
because the latter process is more computationally expensive. 
Sequences were considered related to each other if they were 
within a certain sequence similarity distance. We used a custom 
distance metric, referred to here as the SHM distance, which 
resembles the Hamming distance but includes the following 
adjustments:

(1) Consecutively mismatches M number of nts add M2 to 
the SHM distance instead of merely M. This increases the 
distance between clonally unrelated sequences that may have 
similar VDJ genes but slightly different N regions.
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(2) Frequently observed [C  T, G  A, A  G, A  T] muta-
tions reduce the SHM distance by 0.5 units per mutation; 
less frequently observed [T  C, A  C] mutations have 
no effect; and all other rarer mutations increase the SHM 
distance by 0.5 units. These adjustments create asymmetry 
in distances between two sequences, which helps with deter-
mining parent–child relationships.

Example: If Seq1 = ACGCTT and Seq2 = AttgTT, then the SHM 
distance is 32 + [−0.5 + 0.5 + 0.5] = 9.5, assuming Seq1 is the 
parent. If Seq2 is assumed to be the parent, the SHM distance is 
32 + [0 + 0.5 + 0.5] = 10. In this case, we would assume Seq1 is 
the parent of Seq2.

Parent–child sequence relationships were determined 
within each cluster by using a nearest-distance method. 

The initial linkages generate cyclic dependencies (e.g., 
Seq1   Seq2   Seq1) because the root has not yet been 
assigned. For each independent tree cluster, the root sequence 
was determined as that which is involved in the cyclic 
dependency and has the smallest total SHM distance to all 
other sequences in that cluster. Any ties in the root sequence 
determination were broken by assigning the sequence with 
the highest VDJ alignment scores as the root. In an itera-
tive process, the root of each small cluster was linked to any 
sequence in another cluster, as long as it did not exceed the 
SHM distance cutoff equal to 3% of the sequence length. Note 
that this cutoff distance can be adjusted by the user.

Finally, we defined a BRILIA cluster as a group of sequences 
that shared a common root sequence. The VDJ annotations and 
N region demarcations for each cluster were unified to match 
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those of the root sequence. The lineage tree was rerooted only 
if another sequence served as a better root sequence based on a 
closer distance to the predicted germline genes. Hereafter, any 
annotation refinements to a cluster were applied to all sequences 
in the cluster.

step 3: Refining d Annotations  
within a Cluster
After unifying the VDJ annotations per cluster in the prior step, 
annotation errors can become more apparent. A common indica-
tion of annotation error is when all sequences have a mismatched 
nt in the CDR3 that does not match with the germline sequence, 
which we will refer to as a consensus mismatched nt (see Figure 1, 
bold letters in example sequences). If a consensus mismatched 
nt was present in the framework region of the V gene (Vframe), 
then we assumed that the consensus mismatched nts in the CDR3 
were a byproduct of real SHMs. Otherwise, we assumed that the 
consensus mismatched nts occurred by a suboptimal annotation 
and attempted to remove them by refining the D gene alignment. 
Since changing the D gene results also changes the N regions, we 
had to determine whether the resulting N region compositions 
agreed with the actions of TDT, which prefers to add A and G (69, 
70, 74). We computed the probability that an N region is created 
by TDT relative to purely random nt insertion, denoted as PTDT, 
using the equation below.

 P
P

P

X j
j

L

L
X j

j

LTDT =
+

=

=

∏

∏

( )

( ).
,1

1

0 25
 (2)

where L is the length of the N region and PX(j) is the prob-
ability that TDT adds nt X (A, C, G, T) at position j in the N 
region. We assumed that nts that are not associated with TDT 
activity has an occurrence probability of 0.25, whereas nts 
added by TDT have the following occurrence probabilities: 
PA = 0.25, PC = 0.08, PG = 0.60, and PT = 0.07 (see Figure S2 
in Supplementary Material). These probability values were 
obtained from the N regions of our data set from mice, after 
converting these regions to their complement sequences if 
there were more CT content than AG content, which should 
better capture the TDT-mediated DNA elongation patterns 
(69) (see Supplementary Material). We note that the PX values 
are reported for healthy mice, and we do not expect these to 
vary much across subjects unless there are abnormal conditions 
[e.g., nt pool imbalance (75)].

We next calculated a custom N region likelihood score, or 
Nscore, by using the following equation:

 Nscore TDT=  P L 2
 (3)

The Nscore was calculated for both the normal and comple-
ment sequences of each N region, and only the higher score was 
retained. A different D gene annotation was accepted only if it 
increased the sum of the VDJ alignment scores and the Nscores 
for NVD and NDJ. If a consensus mismatch persisted, then we 

evaluated whether this was caused by the incorrect demarcation 
of the N regions, as discussed next.

step 4: Refining N Regions within a 
Cluster
Improper demarcation of N regions can also cause consecu-
tively mismatched nts to exist in the CDR3 (marked as bold 
lower case letters in a sequence alignment), which can be fixed 
by redefining where the VDJ gene segments are. For any three 
consecutively mismatched nts near gene segment edges, we 
automatically reassigned the edges to the N regions because 
such events are likely caused by annotation errors. For example, 
if a V gene ended with “5′-TGaggGG,” then “agggg” was 
automatically added to the NVD region. For all other cases, we 
checked whether the gene segment edges had compositions that 
reflected TDT-mediated nt insertion. Several examples cases are 
provided below.

• If no N region is initially present and trimming would create 
one, then we checked whether PTDT of the trimmed nts was 
>0.50. For instance, if a V gene ended with “5′-TGCAgGG,” 
then PTDT for “gGG” is 0.93 and therefore, “ggg” became the 
NVD region. If a V gene ended with “5′-CAtATC,” then PTDT for 
“tATC” is 0.40, and therefore, no trimming was performed.

• If an N region is initially present, then we calculate whether 
adding the edge nts to the N region would increase PTDT. For 
instance, if the V gene ended with “5′-TGCAgGG” and the 
NDV region was “ccc,” adding “gGG” to “ccc” would have 
created an unfavorable “gggccc” in the NVD region with a 
reduction in PTDT from 0.93 to 0.31; hence, no trimming was 
performed.

ResULts

VdJ Annotation of simulated BCR 
Repertoire data
Obtaining accurate gene annotations is essential to measur-
ing gene usage frequency (76), tracking affinity maturation 
and selection pressure (77–79), and studying SHM-associated 
enzyme activities (51–53, 80–83). Because the true accuracy of 
VDJ annotation cannot be determined when using real-life BCR 
repertoires, we created a synthetic repertoire for benchmark-
ing purposes. We compared our annotations with those of two 
recently updated algorithms, VQUEST + JA (25–28) and partis 
(40). If an algorithm suggested multiple VDJ annotations, we 
retained only the first suggestion.

We compared how well the algorithms could obtain an exact 
match to the actual gene (up to the gene allele number) and also 
a degenerate match to any gene name that contains ≥98% of the 
same nts (Tables 1 and 2). An example of a degenerate match is 
when “ATTAACTA” of IGHD1-1*01 was used generate a BCR 
sequence and the annotation suggested IGHD1-1*02, which 
has the same nts. Tables  1 and 2 compare the gene matching 
performances of the three algorithms on human and mouse 
sequences, respectively, for both germline and clonally expanded 
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V degen match 5,159 86% 4,570 76% 5,272 88%
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VDJ degen match 4,059 68% 2,670 45% 3,827 64%
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sequences. However, we did not annotate the mouse repertoire 
with partis because it was intended for annotating human BCR 
genes only (40).

The annotation accuracy of the germline sequences reflects 
how well each algorithm works in the best-case scenario where 
SHM does not obscure VDJ genes. This accuracy is important 
because if a germline sequence exists within a cluster of clon-
ally related sequences, then the corresponding annotation will 
be applied to all members in the cluster. BRILIA provided the 
highest accuracy of matching, followed closely by partis and 
VQUEST + JA (Tables 1 and 2, “Germline Sequence” rows).

The annotation accuracy of clonally expanded sequences 
reflects how well each algorithm can annotate sequences that 
have undergone extensive SHM. For the simulated human BCR 
sequences, BRILIA achieved 83% D gene degenerate matching 
accuracy, compared to 65% by VQUEST  +  JA and 76% by 
partis (Table 1, “Clonally Expanded” rows). For the simulated 
mouse BCR sequences, BRILIA achieved 82% degenerate D 
gene matching accuracy, compared to 65% by VQUEST +  JA 
(Table  2, “Clonally Expanded” rows). The degenerate V and 
J gene annotation accuracies are comparable across all algo-
rithms, as might be expected given the relatively long lengths 
of the V gene segments and the limited number of J germline 
genes. It is important to note that the overall V and J annota-
tion accuracies presented here are lower than those obtained 
in previously published other benchmark tests (37, 40); this 
is because previous benchmarks used the full VDJ segments 
(~400  bp), while we used much shorter sequences (125  bp) 
typical of CDR3-focused next-generation sequencing (71).

shM Identification Accuracy of simulated 
BCR Repertoire data
In addition to correctly annotating the VDJ genes, it is impor-
tant to accurately identify SHMs within the CDR3. For each 
algorithm, and for sequences grouped by the same number of 
simulated SHMs, we first computed the accuracy of determin-
ing mutated and unmutated nts in the CDR3 (Table 3). For all 
algorithms, accuracy decreased as sequences accumulated more 
SHMs, as expected, but BRILIA retained the highest accuracy, 
followed by partis and closely by VQUEST + JA. We also com-
puted the positive prediction rate of mutations, which reflects 
how many of the predicted SHMs were true. BRILIA retained 
the highest positive prediction rates, followed by VQUEST + JA 
and closely by partis.

We next measured how well each BCR annotation method 
can identify the frequency in which one nt (X0) mutates to 
another nt (X1), which we will refer as the SHM propensity. 
The SHM propensities are not uniform, and certain X0   X1 
mutations occur more frequently than others. For instance, the 
C  T mutations (and the complement G  A mutations) occur 
frequently because they are triggered by activation-induced 
cytidine deaminase (AID), which initiates the C   U   T 
substitutions (50–53). Although deaminases are known to act on 
specific nt sequence motifs, called hot spots, there is no evidence 
that they can discriminate between the V, D, and J segments of 
the BCR. Therefore, we expect high-quality SHM identification 
to show SHM propensities that are (1) consistent across the 
entire VDJ junction and (2) agree with deaminase-mediated 
nt substitution patterns.

Figure  2 shows the correlation between SHM propensities 
for the V and DJ segments, as predicted by each method for the 
simulated human and mouse BCRs. All methods yielded SHM 
rates that are highly correlated across the V and DJ segments, as 
shown by the Pearson correlation coefficient (Rcorr) being close 
to 1. However, VQUEST + JA and partis tended to underpredict 
well-known SHM propensities (i.e., C  T, G  A, and A  G) 
in the DJ segments, as shown by the reduced linear regression 
line slope (Slope).
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Assessing annotation quality for real-life BCR repertoires is 
difficult because the true gene annotations are unknown. The 
correlation of SHM propensities across the V and DJ segments 
provides an alternate measure of SHM identification accuracy 
that does not rely on knowing the true VDJ gene assignments. 
One could assess the quality of VDJ gene annotations indirectly 
by testing if SHM propensities are consistent across the VDJ 
junction. Given the common biological basis for SHM across the 
VDJ junction, high-quality annotations should yield measures of 
Rcorr and Slope that approach the value of 1. However, the proper 
generation of these correlation metrics in real BCR repertoire 
data requires the determination of B-cell lineages because SHM 
propensities should be identified with respect to a parent–child 
relationship between a pair of sequences, not against a predicted 
germline sequence, where inherited mutations from a previous 
generation would be treated as new independent mutation events. 
For our simulated sequences, determining lineages was not as 
critical because mutations did not occur more than once in the 
same place; in other words, the SHM propensities computed from 
germline–child sequences would be similar to those from par-
ent–child sequences. In real-life BCR sequences where multiple 

mutations can occur in the same position, the SHM propensities 
computed from parent–child versus germline–child sequence 
pairs will differ.

shM Identification Accuracy of  
Real-Life Mice BCR Repertoire data
To test how well BRILIA performs on real-life data sets, we 
sequenced and analyzed 12,300 unique BCR gene sequences 
collected from the spleen germinal centers of C57BL/6 mice. 
It is important to note that these mice were not immunized, and 
thus, the B cells isolated from the spleen likely developed within 
spontaneously-formed germinal centers (Spt-GCs). Although the 
exact cause of Spt-GC formation is unclear, it is thought to arise 
for a range of reasons, from autoimmunity (84, 85) to bacterial 
infection or escape (86). Previous studies have suggested that 
Spt-GCs resemble immunization-induced GCs and spontaneous 
GC B cells undergo some degree of affinity maturation, including 
accumulation of SHMs and class switching (84).

We compared BRILIA with a method of processing BCR 
sequence data that entails grouping sequences with the same 
VDJ annotations and CDR3 lengths returned by VQUEST + JA, 
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FIGURe 3 | Comparison of somatic hypermutation (shM) identification in real-life C57BL/6 B-cell receptor repertoires between the standard method 
and BRILIA. (A) Frequency distribution of SHMs per sequence predicted for all sequences in relation to their corresponding cluster’s germline sequence. (B) SHM 
propensity correlation returned by the standard method. Note that SHMs were determined for parent–child sequence pairs and not germline–child sequence pairs. 
(C) SHM propensity correlation returned by BRILIA.

FIGURe 2 | somatic hypermutation (shM) propensity correlations between the V and dJ segments for simulated (A) human and (B) mouse B-cell 
receptor sequences. The combination of color and shape of a data point represents a SHM propensity or the mutation frequency of nucleotide (nt) X0 to nt X1. The 
x- and y axes show the normalized mutation frequencies (e.g., PAT + PAC + PAG = 1) for the V and DJ segments, respectively. Rcorr is the Pearson correlation 
coefficient, while Slope is the slope of the linear regression line.
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followed by an additional clustering step based on a sequence 
similarity cutoff distance (hereafter the “Standard” method). For 
the standard method, we used the same lineage-tree based clus-
tering step as that used by BRILIA; the main differences between 
the standard and BRILIA methods lie in the alignment algorithms 
and annotation-based clustering step that occurs prior to the 
lineage-based clustering step.

We first describe the traditional approach of showing the SHM 
level of repertoires, i.e., to count the number of mutated nts in 

a sequence with respect to the germline sequence (Figure 3A). 
Both the standard method and BRILIA appear to return similar 
SHM frequencies. However, the correlation of SHM propensities 
between the V and DJ segments differ significantly between the 
two methods (Figures  3B,C). The standard method tended to 
underpredict SHMs in the DJ segments, and the T  X mutation 
frequencies of the V segment show no correlation with those 
of the DJ segments (Figure 3B). In contrast, the same correla-
tion plot based on BRILIA annotations show a high correlation 
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FIGURe 4 | V, d, and J gene usage frequencies. Frequency distributions of individual VDJ gene families, and VD and DJ pairs as determined by (A) the standard 
method and (B) BRILIA.
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between the V and DJ segments (Figure  3C). These results 
suggest that while BRILIA and the standard method estimate a 
similar number of SHMs, BRILIA is more accurate in identifying 
the SHM positions themselves.

VdJ Gene Usages for Real-Life Mice BCR 
Repertoire data
Tracking VDJ gene usage is relevant for combinatory gene usage 
frequency studies (33, 76, 87). Figure 4 shows the VDJ gene usage 
frequencies in terms of both overall gene family usage frequency 
(top and right bar charts) and frequency of VD and DJ pairs (scat-
ter plots). Although the standard and BRILIA methods predicted 
similar usage frequencies for V and J gene families (Figures 4A,B, 
top bar charts), their predictions for the D gene families differed 
substantially. BRILIA results show that IGHD4 is used twice as 
much as IGHD3 and that IGHD2 is used 20% more than IGHD1. 
In contrast, the standard method results show that IGHD1 and 
IGHD2 occur at similar frequencies, whereas the same applies 
to IGHD3 and IGHD4. Differences in D gene usages appear to 
arise from differences in clustering (see next section). BRILIA 
also returned a small number of inverted D gene annotations, 
although these occur less frequently than normal D gene annota-
tions. Manual inspection of genes with inverted D annotations 
revealed that most were inherently ambiguous sequences, and 
disallowing inverted D annotations did not improve the align-
ment scores or correlation metrics (data not shown).

Clustering Results for Real-Life Mice BCR 
Repertoire data
B-cell lineage clustering can be used to describe the breadth and 
extent of affinity maturation and identify promising B-cell clonal 
lines for further study. Here, a cluster is a set of clonally related 
BCR sequences, as defined by the standard or BRILIA annotation 
method. We compared the cluster sizes and counts returned by 

the standard and BRILIA methods. In Figures  5A,B, we com-
pared how many clusters of one method were associated with the 
cluster of the other method, where an associated cluster shares at 
least one BCR sequence. We found that typically, a single BRILIA 
cluster is associated with a given standard cluster (Figure 5A), but 
that the converse is not true—multiple standard clusters are often 
associated with a given BRILIA cluster. These findings suggest 
that many standard clusters are a subset of BRILIA clusters.

In Figures 5C,D, we compare the differences in cluster sizes 
from one method’s cluster in relation to the other method’s largest 
associated cluster. We found that BRILIA clusters are larger than 
their associated standard clusters (Figure  5C), while standard 
clusters are generally smaller than their associated BRILIA 
clusters (Figure 5D). In summary, BRILIA clusters are system-
atically larger than their standard cluster counterparts, and thus, 
we expect to see more complex lineage trees based on BRILIA 
annotations.

BRILIA Preserves diverse Lineage trees 
with high CdR3 Mutations
Different clustering results can ultimately translate to different 
lineage trees and interpretations of how affinity maturation has 
progressed within a clonal group. As an example, we compared 
lineage trees from the case where a large BRILIA cluster was rep-
resented by 15 separate standard clusters (red circles in Figure 5). 
Trees were drawn so that each unique BCR sequence was a circle, 
whose size reflected the sequence template count and whose 
color corresponded to a unique CDR3 sequence (Figure 6). We 
would expect trees in which clones with high template counts 
coincide with branch points because highly proliferating B cells 
are more likely to undergo SHM, generating diverse lineages. The 
largest tree given by the standard method shows general features 
of such a tree (Figure  6A), although the second standard tree 
(of size = 16) displays an unlikely scenario in which sequences 
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FIGURe 5 | Comparison of cluster counts and sizes between annotations made using the standard method and BRILIA. (A) Number of BRILIA clusters 
that are associated (Assoc.) with each standard cluster, where associated clusters share at least one B-cell receptor sequence. The red dots represent clusters whose 
corresponding lineage trees are shown in Figure 6. (B) Number of standard clusters that are associated with each BRILIA cluster. (C) Largest BRILIA cluster size 
associated with each standard cluster. The dotted diagonal line (y = x) highlights differences in the associated cluster sizes between the two methods. (d) Largest 
standard cluster size associated with each BRILIA cluster.
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are interlinked without an expanded B-cell clone and with a high 
CDR3 variability within the small cluster.

The corresponding BRILIA tree had leaves ending with low 
template–count clones that usually stemmed from larger clones 
(Figure 6B), and the tree was deeper and wider than the trees 
returned by the standard method. For the all BCR sequences in 
this example, BRILIA predicted a higher number of accumulated 
mutations in the CDR3 than when using the standard method 
(Figure  6C). This representative example illustrates how com-
bining lineage tree assembly and gene annotation can result in 
substantially larger, richer B-cell lineage trees that are biologically 
plausible. It also shows how standard annotation methods can 
systematically underestimate the extent of SHM. While such 
clonal families make up a small percentage of the overall B cell 
repertoire, they may play a disproportionately important role in 
antibody responses to infection because they represent the most 
affinity-matured members of the repertoire.

Insights into shM Mechanisms
Proper mutation annotations can help to validate proposed 
mechanisms of SHM. Currently, the C  T and G  A mutation 
rates can be explained by AID-mediated deamination of C that 
creates C  U mutations, which triggers MSH2/6, polymerase 
η, and uracil DNA glycosylase to fix U:G mismatches [recently 
reviewed by Casellas et  al. (88)]. AID recognizes certain 3- or 
4-nt long sequences called hot spots (51, 53, 81, 82); hence, one 
could identify SHMs caused by AID if the mutations occur at 
the signature hot spots. However, the A and T mutations occur 
at different 2-nt long hot spots (80), suggesting an alternate 
mechanism of mutation. There are two hotly debated theories of 
the mechanism underlying A and T mutations (89). One theory 
proposes that adenosine deaminase that acts on RNA (ADAR) 
converts adenosine to inosine, which occurs at a different hot spot 
and introduces A mutations mostly on the coding DNA strand 
(50, 67, 89). The other theory assumes that the AID-induced U:G 
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mismatch triggers multiple DNA repair enzymes to eventually 
introduce A:T mutations nearby (51, 90, 91). Past studies identi-
fied SHM by comparing the V segment to the predicted germline 

V gene (92, 93); in contrast, here, we show SHM across the entire 
VDJ junction and based on inferred parent–child sequence 
relationships that better reflect the true nucleotide substitution 

FIGURe 6 | differences in lineage trees and somatic hypermutation (shM) frequencies between the associated standard and BRILIA clusters from 
the example in Figure 5. (A) Lineage trees are assembled from standard clusters that are subsets of a larger associated BRILIA cluster. The x-axis shows the 
absolute SHM distance, where the difference in SHM values between parent and child sequence is the SHM distance between the two sequences. Each dot color 
corresponds to a unique CDR3 sequence, and the dot size is scaled proportional to the sequence template count relative to the total template count within each 
lineage tree. The SHM distance is calculated based on the comparison of two 125-nucleotide sequences. Note that six single-member clusters are not drawn. 
(B) Lineage tree of a large BRILIA cluster that encompasses standard clusters. (C) Mutation frequencies of the V gene framework and CDR3 predicted by the two 
methods.
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frequencies. We present three findings on the mechanisms under-
lying SHM based on our analysis of the mice BCR sequencing 
data.

Molecular Mechanisms for A Mutations
The mutation frequencies (Figure  7A) confirm the frequent 
C  T and G  A mutations generated by AID (50–53, 83), and 
also the higher A mutations over T mutations that reflect what 
is known as strand-biased mutations (67, 68, 94). The mutation 
frequencies of A follow the trend of G > T > C. To our best knowl-
edge, this A mutation trend has not been previously discussed, 
and only the A  G mutation was proposed to result from an 
inosine (I) intermediate during ADAR-mediated mutations [i.e., 
A  I  G (80)]. Interestingly, the A mutation trend coincides 
with that of I:X base-pairing free energy measurements (95). The 
Gibbs free energies of I:C, I:A, and I:G base pairs within a short 
dsDNA segment are −8.8, −7.5, and −6.3 kcal/mol, respectively 
(95); that is, inosine most closely resembles G, then T, and finally 
C. The explanation for frequent A mutations over T mutations is 
still being sought; the transcription of the BCR gene may provide 
an opportunity for A mutations in one DNA strand (67, 80, 94, 
96, 97). There is a competing hypothesis that A:T mutations are 
the result of an AID-triggered patchwork repair process around 
C  U mutation sites (51, 90, 91). In this case, given that C:G 
mutations would induce A:T mutations, we would expect a corre-
lation between C:G mutations (CGmut) and A:T mutations (ATmut); 
this does not appear to be the case (Figure 7B).

Hot Spot Motifs
AID has been shown to mutate Cs near a WRCY (82), WGCW 
(51), WRCH (81), or WRC (53) hot spot motif, where W = A/T, 
R = A/G, Y = C/T, or H = A/C/T. We evaluated the composition 

of nts around mutated Cs in our data set and found that it initially 
agreed with a WGCW hot spot for AID (Figure 8A); however, 
we found that for any C, regardless of mutation, the + 1 position 
consistently contained Ws (Figure 8B). Hence, the WGCW (and 
potentially WRCY and WRCH) hot spots predicted by others 
may be simply arise from the fact that the +1 nt is biased toward 
a certain nt depending on the host species (53). Overall, we found 
that C mutations prefer the WGC motif, which is a subset of the 
WRC hot spot predicted by in vitro studies of AID mechanisms 
(53). The hot spot for G mutations is the complement sequence, 
GCW. Meanwhile, mutations of A have been previously shown to 
occur at WA hot spots (80). In support of this, our predicted hot 
spots for A and T mutations are TA and TA, respectively.

V Gene Mutations as a Proxy for CDR3 Mutations
Past studies often used the V gene mutation rates as a proxy 
for the CDR3 mutation rates (4, 5, 98) because resolving the 
germline D genes was difficult, especially when repertoire-wide 
sequencing data were unavailable. We investigated the correlation 
between mutations in the V gene framework (Vframe) and CDR3. 
Although SHMs are likely unfavorable in the Vframe region since 
it encodes conserved structural areas of the BCR (99), we still 
expected some level of silent mutations to correlate with SHMs 
in the CDR3. Results from BRILIA and the standard annotation 
methods show that there is a lack of correlation between SHM 
rates in the Vframe and CDR3 (Figure 9), suggesting that Vframe 
SHMs are a poor proxy for CDR3 SHMs. Given that the CDR3 
region has the highest sequence diversity and typically accom-
modates the most SHM (14, 99), these findings demonstrate that 
it is critical to measure SHM frequency across the entire CDR3 to 
accurately assess the overall degree of SHM and affinity matura-
tion in B cells.

FIGURe 7 | somatic hypermutation (shM) frequencies returned by BRILIA, for the purpose of evaluating shM mechanistic models. (A) Cumulative 
frequency of SHM propensities for VDJ segments, excluding N regions. X0 is the parent nt and X1 is the child nucleotide. (B) The [A  G + T  C] mutation 
frequency (ATmut) normalized by the total A + T content (ATtot), plotted against the [C  T + G  A] mutation frequency (CGmut) normalized by the total C + G 
content in the VDJ segments (CGtot). The dotted red line, which depicts a circle with its center at the origin and a radius of 0.06, marks the mutation rate that 
captures 90% of the mutated sequences.
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FIGURe 9 | somatic hypermutations (shM) in CdR3 and V framework regions. Comparison of the mutations accumulated in the CDR3 versus V framework 
(Vframe) regions, as determined by (A) the standard method and (B) BRILIA.

FIGURe 8 | somatic hypermutation (shM) hot spot analysis using BRILIA annotations. (A) Evaluation of nucleotide (nt) compositions near only mutated nts, 
which are at the 0 positions. The negative and positive positions are nts toward the 5′ and 3′ sides, respectively, of the 0 position nt. The nt color codes are A = red, 
C = green, G = blue, and T = gray. (B) Evaluation of nt compositions of all nts, regardless of whether they mutated.
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dIsCUssIoN

We presented a novel approach to annotating and analyzing 
BCR sequencing data that leveraged repertoire-wide B-cell 
lineage information. By using simulated BCR sequencing data, 
BRILIA performed substantially better than existing method in 
annotating the D gene and identifying SHMs. We also showed 
that the identified SHMs from existing algorithms often pro-
vided biologically implausible results, such as inconsistent nt 
substitution frequencies between the V and the DJ segments. 
Finally, we applied BRILIA to real-life BCR sequencing data 
from splenic germinal center B cells of C57BL/6 mice. BRILIA 
yielded larger, more complex B-cell lineage trees compared to 
other methods.

Unlike common methods of determining SHM by compar-
ing germline-child sequence pairs, BRILIA calculates SHM 
frequencies based on inferred parent–child relationships across 
the entire repertoire. The resulting SHM identification provided 
a more accurate description of SHM patterns, which was used 
to evaluate hypotheses related to SHM mechanisms, SHM hot 
spots, and extent of affinity maturation. Our results showed that 
there was a distinct order to A mutations (G > T > C), which 
supports the theory of an ADAR-based mutation mechanism 
via an inosine intermediate (80). Furthermore, we found that 
the hot spot motif associated with C mutations could most 
simply be described as WGC, which agrees with in  vitro 
experiments on AID (53) and suggests that other more complex 
hot spots might be the result of intrinsic nucleotide position 
biases irrespective of mutations. Finally, we showed that SHM 
frequency in the V gene, a common proxy for overall SHM 
frequency in many B cell repertoire studies, was a poor predictor 
of SHM frequency in the highly variable CDR3. These findings 
highlight the importance of using repertoire-based, full VDJ 
annotations to evaluate the extent of affinity maturation of 
B-cell repertoires.

BRILIA helps separate Real BCR Genes 
from those Created by sequencing error
A persistent issue with analyzing high-throughput sequencing 
data is separating real sequences from those created by sequenc-
ing error. The ImmuniTree (46) and IMSEQ (36) algorithms 
address this issue, but completely removing sequencing errors is 
not always feasible. We expect that BCR sequences generated by 
error will most likely have low template counts and be assigned 
as “leaves” in the lineage tree. If the goal is to identify real BCR 
genes, and especially those from clonally expanded B cells, then 
this can be achieved by looking for sequences with higher-than-
background template counts and are designated as lineage tree 
“nodes.” BRILIA helps identify lineage tree nodes and clonally 
expanded B cells by outputting the number of descendants associ-
ated with each sequence.

Limitations of BRILIA
The consolidation of lineage trees, clustering, and annotation 
into a single algorithm makes BRILIA a powerful tool for 
immunosequencing research. However, limitations also stem 

from this strength, in that the cluster-based annotation scheme 
can underperform if the sequences are clustered incorrectly or 
if the root sequence is not correctly identified. For instance, 
BRILIA is not fully immune to accidentally grouping clonally 
unrelated sequences into the same cluster if a path is available 
or if the cutoff distance is set too large. We are investigating 
strategies to automatically determine the cutoff point and 
allow for variable cutoffs among different clusters. In addition, 
there are certain VDJ recombination events that BRILIA does 
not account for, including double D insertions [which creates 
VDDJ junctions (65)] and lack of D usage (which creates VJ 
junctions).

If, after the annotation process, multiple VDJ annotations are 
suggested, then BRILIA removes only pseudogene suggestions. 
Additional calculations to remove or prioritize the remaining 
degenerate annotations are not performed as this may bias the 
repertoire-wide VDJ gene usage frequencies. Processing longer 
sequences can help to reduce the occurrence of degenerate 
solutions.

BRILIA Processing speed
BRILIA can process large volumes of BCR sequences within a 
reasonable amount of time, even while determining lineage rela-
tionships among B cells. By using a 3.4 GHz quad-core processor 
with 16 GB of memory, BRILIA required 400  s to process our 
repertoire data with 12,300 sequences (or 31 ms per each 125-bp 
sequence). The overall computation time can be further reduced 
by splitting annotation jobs across more processors.

BRILIA Input and output Files
Although we focused on short 125-bp sequences in this study, 
BRILIA can process longer sequences that extend the full length 
of the V and J segments, including the CDR1, CDR2, FR1, FR2, 
and constant regions. If sequences contain the constant region 
attached to the J segment, BRILIA will trim the constant region. 
The input files for BRILIA are currently fasta, fastq, csv, xls, and 
xlsx files containing the sample name and sequence data. To sup-
ply the template count data for plotting lineage trees (as shown in 
Figure 6), tabulated data formats are preferred. Datasheets S1–S3 
Supplementary Material show both example input and output 
files. BRILIA assumes that the input files contain contiguous 
sequences and not raw pair-end sequence reads. We recommend 
performing basic sequence formatting before running BRILIA 
to ensure most sequences are in the positive sense direction and 
span the VDJ junction.

Concluding Remarks
In conclusion, we have demonstrated the ability of BRILIA 
to predict consistent SHM rates across the VDJ segments 
and its ability to identify clonally related sequences. These 
capabilities have wide utility for research related to tracking 
B-cell affinity maturation in a range of areas of research from 
infection and vaccination to autoimmune disorders and cancer. 
BRILIA is a powerful resource for processing and analyzing 
BCR sequences, and we are currently developing a publicly 
accessible web-based server for it. The BRILIA source code 
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