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The hypothalamic neuroendocrine system is mainly composed of the neural 
structures regulating hormone secretion from the pituitary gland and has been 
considered as the higher regulatory center of the immune system. Recently, the 
hypothalamo-neurohypophysial system (HNS) emerged as an important component of 
neuroendocrine–immune network, wherein the oxytocin (OT)-secreting system (OSS) 
plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, 
paraventricular nucleus, their several accessory nuclei and associated structures, can 
integrate neural, endocrine, metabolic, and immune information and plays a pivotal role 
in the development and functions of the immune system. The OSS can promote the 
development of thymus and bone marrow, perform immune surveillance, strengthen 
immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit 
inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and 
suppress stress-associated immune disorders. In this process, the OSS can release 
OT to act on immune system directly by activating OT receptors or through modulating 
activities of other hypothalamic–pituitary–immune axes and autonomic nervous system 
indirectly. However, our understandings of the role of the OSS in neuroendocrine 
regulation of immune system are largely incomplete, particularly its relationship with 
other hypothalamic–pituitary–immune axes and the vasopressin-secreting system that 
coexists with the OSS in the HNS. In addition, it remains unclear about the relationship 
between the OSS and peripherally produced OT in immune regulation, particularly 
intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to 
hypophysial hormones. In this work, we provide a brief review of current knowledge of 
the features of OSS regulation of the immune system and of potential approaches that 
mediate OSS coordination of the activities of entire neuroendocrine–immune network.

Keywords: cytokine, hormone, hypothalamus, immune, oxytocin, thymus

inTRODUCTiOn

Immune activities are regulated by many factors, such as the genetic individual variations, immune 
cytokine, hormone, emotion, nutrition, metabolism, sleep, age, neural activity, and pathogens. 
Among them, neuroendocrine regulation of immune system is the fundamental machinery (1, 2). 
Recently, the hypothalamic oxytocin (OT)-secreting system (OSS) has emerged as a pivotal fac-
tor in neuroendocrine regulation of immune activities (3). However, its relationship with other 
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hypothalamic–pituitary–immune axes as well as peripherally 
produced OT remains unclear, which is further explored in this 
review.

neUROenDOCRine–iMMUne neTwORK 
AnD THe OSS

The neuroendocrine–immune network
As early as 1977, the existence of a neural–endocrine–immune 
network has been proposed (4). In this network, immune activ-
ity can influence the development (5) and functions (6) of rat 
hypothalamus, the higher control center of the neuroendocrine 
system. Conversely, changes in neuroendocrine activities can 
affect the immune response through pituitary tropic hormones 
and the autonomic nervous system (7). This bidirectional com-
munication between hypothalamic neuroendocrine system and 
the immune system forms a neuroendocrine–immune network.

The OSS–immune network
In the neuroendocrine–immune network, immune regulatory 
roles of the hypothalamo-neurohypophysial system (HNS) 
(8), particularly its OSS, have been considered critical (3). The 
OSS is mainly composed of magnocellular OT neurons in the 
supraoptic nucleus (SON), paraventricular nucleus (PVN), and 
several accessory nuclei of the hypothalamus as well as their 
axon terminals in the posterior lobe of the pituitary. In addition, 
parvocellular OT neurons in the PVN, a major source of OT in 
the brain and spinal cord, coexist with corticotropin-releasing 
hormone (CRH) and thyrotropin-releasing hormone (TRH) 
neurons in the PVN while closely interacting with magnocel-
lular OT neurons (9) and the autonomic center that can regulate 
immune activity through sympathetic nervous system (10). 
In this OSS–immune network, the magnocellular OT neurons in 
the SON play a dominant role in response to immune challenges 
as shown in rat sepsis (11).

CHARACTeRiSTiCS OF THe OSS–iMMUne 
neTwORK

The OSS is involved in the Development 
and Functions of the Central immune 
Organs
It has been reported that neurointermediate pituitary lobectomy, 
blocking the secretion of neurohypophysial hormones including 
OT, significantly changed humoral and cellular immune responses 
in rats (12, 13). OT can also promote the formation of human 
hematopoietic stem cells (14) and promote rat bone marrow 
mesenchymal stem cell migration (15). Moreover, blocking OT 
receptor (OTR) signaling can inhibit the differentiation of mouse 
thymic T-cells (16) and estrogen-evoked bone formation (17) 
while increasing the expression and secretion of inflammatory 
cytokines, such as interleukin (IL)-6 in human amnion (18). 
Thus, OT is a key regulator of the immune system and thus can 
extensively regulate immune activity (3), which is considered to 
be mediated by OTRs as summarized in Table 1.

The OSS Bidirectionally Communicates 
with the immune System through Multiple 
Approaches
Oxytocin can regulate immune functions (37) by activating 
OTRs directly (3) and through sympathetic outflow (10, 50) 
that is known to control the activity of rat thymus (51) and 
bone marrow (52). OT can also change the activity of other 
hypothalamic–pituitary–immune axes (Figure 1A). Conversely, 
the OSS is also the target of immune diseases. For example, OT 
neurophysin shares an antigen with human lung carcinoma LX-1 
cells (53); OT neurons are a major target of many autoimmune 
diseases such as multiple sclerosis (45, 54); OT in hypothalamic 
neurons decreased in HIV-infected patients (55). In response to 
immune challenges, IL-6 (50) and IL-1β (56) can activate rodent 
OT neurons in the PVN and/or SON, while microglia in the PVN 
can increase OT secretion and sympathetic activity (57). Thus, 
the OSS can regulate immune activity more accurately.

OT neurons Are “immune Cells” and 
Mainly Function through OTRs
Oxytocin neurons can produce cytokines such as IL-1β (58), 
nitric oxide (59), and prostaglandins (60, 61) in rats. These 
cytokines can not only autoregulate OT neuronal activity, such 
as nitric oxide (62) and prostaglandins (61) in rats, but also 
extensively modulate immune activity of other brain structures 
(63) (Figure 1A).

Both the OSS and the immune system can synthesize and release 
neurotransmitters, neuropeptides, and cytokines while expressing 
receptors for both neuropeptides and immune cytokines includ-
ing OT and OTRs (1, 2). OTRs are widely identified in immune 
organs, tissues, and cells, such as rat thymic epithelial cells (64) 
and bone marrow stem cells (19). Importantly, the expression of 
OTRs in immune tissues can be inducible, which has been shown 
in bovine peripheral blood mononuclear cells and T lymphocytes 
(65), rat mesenchymal stem cells (19), and gut (48). Thus, OT can 
modulate immune activity and immune-regulating cells directly 
and dynamically to meet the demands of a variety of immune 
challenges.

The OSS Behaves As an integrative 
Organ in Feedforward and Feedback 
immune Loops
Oxytocin neurons can integrate information from presynaptic 
neurons, detect the state of astrocytic plasticity and microglial 
activation, sense concentrations of blood-borne substances and 
local neurochemical including cytokines (3, 66–68), and in 
turn secrete appropriate amount of OT into the blood and 
brain. This could preset the immune system in an optimal 
working condition through regulating the activity of bone 
marrow, thymus, and T-/B-cells as well as other immune 
organs and tissues (3). In parallel, overly increased immune 
challenges can be suppressed through increasing OT release. 
For example, IL-1β released by immune cells can activate OT 
neurons or promote the release of OT into the blood in rats (69, 
70); OT subsequently reduces the production of inflammatory 
cytokines as evidenced in men (37), thereby maintaining the 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | Major immune functions of the oxytocin-secreting system (OSS).

Sources Targets effects Reference

Development of the immune system

Human, mouse Osteoblast Bone mass ↑ (17)

Rat BMSC Intracellular [Ca2+] ↑ (19)

Rat MSC Apoptosis ↓ (20)

Human, rat, and mouse Thymus Clone deletion of self-reactive T-cells ↑ (1, 16)

Mouse fetus Thymic organ cultures Survival of thymic CDS cells ↑ (21, 22)

Rat UCB-MSC Migration of BMSC to the injured area ↑ (15, 23)

Parturient women Blood Number of B-lymphocyte ↑ (24)

immune surveillance

Rat at early stage of sepsis Brain, plasma OT levels ↑, OT in the SON and neurohypophysis ↓ (25)

Rats of acute pancreatitis Brain Brain OT release ↑ (26)

Rats with advanced cancer The OSS Fos expression in OT neurons ↑ (27)

Rats with adjuvant arthritis SON, PVN OT mRNA ↑ (28)

Human lung and GI tumors Lung, liver OTR in tumor tissues ↑ (29, 30)

Breast cancer OT levels Pituitary and blood ↑; cancer tissues ↓ (31)

immune defense

Humans and animals Immune cells, blood Inflammatory cytokines, e.g., nitrite, TNF-α, and IL-1β levels ↓; oxidative stress ↓; apoptotic 
pathways ↓; immune damages, activation of free radical damaging cascades and lactate 
dehydrogenase ↓; excessive infiltration of neutrophils ↓

(25, 32–36)

Human Plasma ACTH, cortisol, procalcitonin, IL-1, IL-4, IL-6, macrophage inflammatory protein-lα and 
1β, monocyte chemoattractant protein-1, interferon-inducible protein 10, and vascular 
endothelial growth factor ↓

(37)

Human Skin Antibacterial effect of antibiotics ↑ (38)

Human Skin Wound healing ↑ (39)

Rat Stomach Antisecretory and antiulcer effects ↑ (40, 41)

Rat Peripheral neuron Harmful effects of hyperglycemia ↓ (32)

Mice CD157 signaling Mental disorders associated with immune disorders ↓ (42)

immune homeostasis

Rat DM-MSC Angiogenic capacity (43)

Rabbit Myocardial cell Antifibrotic and angiogenic effect (44)

Rat and swine Brain Autoantibodies in multiple sclerosis are reactive with OT neurons (45)

Diabetic rats Muscle, pancreas Regenerative capacity of skeletal muscle and pancreatic islet cells ↑ (46, 47)

Caco2BB gut cells Enterocyte Inflammation-evoked apoptosis ↓ (48)

HIV-infected patients Blood CD4+ cell counts ↑ (49)

ACTH, adrenocorticotropic hormone; BMSC, bone marrow stromal cells; DM-MSC, diabetic bone MSC; MSC, bone marrow mesenchymal stem cell; IL, interleukin; OT, oxytocin; 
OTR, OT receptor; PVN, paraventricular nucleus; SON, supraoptic nucleus; TNF-α, tumor necrosis factor-alpha; UCB-MSC, umbilical cord blood-derived mesenchymal stem cell.
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homeostasis of immune functions and inhibiting immune 
damages.

iMMUne FUnCTiOnS OF THe OSS

The OSS is involved in many physiological and pathological 
immune processes (Table  1), which falls into the following 
categories.

immune Surveillance
The OSS can detect immune states and serves as biomarker of 
immune challenges. For instance, it has been identified in rats 
that there is significant increase in plasma OT levels at the early 
stage of sepsis (25), brain OT release following pancreatic injury 
(26), OT mRNA in adjuvant arthritis (28), and Fos expression 
in the OSS in advanced cancer (27). Thus, increased OT levels 
manifest immune disturbance.
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FiGURe 1 | Diagram of immune functions of the oxytocin-secreting system (OSS) through a variety of approaches. (A) Overview of the approaches. The 
circled numbers 1–9 represent the effects of OT on the immune system through activating peripheral OTRs on central immune organs (1) and peripheral immune 
organs, tissues, and cells (2); and secretion of IL-1β (3) as well as via centrally acting on VP neurons (4); the hypothalamic–pituitary–adrenal (HPA) axis, 
hypothalamic–pituitary–thyroid (HPT) axis, and the hypothalamic–pituitary–gonadal (HPG) axis (5); autonomic nervous system (6); growth hormone (GH) and prolactin 
(PRL) (7); and social brain and the limbic system (8). In addition, peripherally produced OT also exerts some autoregulatory effects (9). (B) Interactions between the 
OSS and HPA axis. Note that plus sign in red circle and minus sign in black circle represent facilitation and inhibition, respectively; the dashed line in green indicates 
multiple approaches. (C) Interactions between the OSS and HPG axis. (D) Interactions between the OSS and HPT axis. (e) Interactions of the OSS with GH and 
PRL. (F) Synergic effects of the OSS and peripherally produced OT on the immune system. Abbreviations: ACTH, adrenocorticotropic hormone; An, androgens; 
differ., differentiation; inflam., inflammation; E, estrogens; FSH, follicle-stimulating hormone; GC, glucocorticoids; IL, interleukin; LH, luteinizing hormone; P, 
progesterone; T3/4, triiodothyronine and thyroxine; TNF-α, tumor necrosis factor-α; TSH, thyroid-stimulating hormone; VP, vasopressin.
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Strengthening immune Defense
Body’s immune defense is carried out through multiple levels 
of immune machineries. OT can strengthen the physical 
and chemical barriers through suppressing proinflammatory 
cytokines (34) and promoting wound healing (39) in human 
skin, enforce human non-specific cellular and humoral immunity 
via strengthening the antibacterial effect of antibiotics (38) and 
accelerating migration of rat bone marrow mesenchymal stem 
cells to the injured area (15), and increase acquired immunity 
by promoting the differentiation of mouse thymic cells (16). OT 
was also found to alleviate harmful effects of hyperglycemia on 
rat peripheral neurons by suppressing inflammation, oxidative 
stress, and apoptotic pathways (32). As a result, activated OSS 
can adjust inflammatory reactions at appropriate levels to prevent 
body from immune damages.

Maintenance of immune Homeostasis
A healthy individual may fall into diseases due to excessive 
or insufficient immune activity. Theoretically, the regulatory 
effects of OT on immune responses should allow OT to influ-
ence the progress of autoimmune diseases, which is supported 
by the finding that in women living with HIV, high levels of OT 
were positively associated with CD4+ cell counts (49). Moreover, 

OT was found to increase the production of hematopoietic stem 
cells and the survival of thymic CD8 cells (22) while reducing 
the infiltration of neutrophils in rats (33, 36) and the production 
of human inflammatory cytokines (34). Thus, OT is critical in 
maintaining immune homeostasis.

Other immune Functions
The OSS can also influence other immune processes. For example, 
OT can improve autism, depression, and other mental disorders 
associated with immune disorders (71) and increase resistance 
of enterocyte apoptosis (48) while reducing the apoptosis of rat 
mesenchymal stem cells (20), and promoting regenerative capac-
ity of skeletal muscle (46) and pancreatic islet cells of diabetic 
rats (47).

Adverse effect
It is worth noting that OT can worsen immune injury at par-
turient women with latex allergy and bronchial asthma (72), 
chorioamnionitis (73), and premature birth (74). This is likely 
associated with the muscle contraction following OTR activation 
in these tissues (18, 75) and requires special attention to the 
application of OT in parturient women with related disease 
histories.
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ReLATiOnSHiP BeTween THe OSS 
AnD OTHeR neUROenDOCRine 
ReGULATORY SYSTeMS

The neuroendocrine regulation of immune activities has been 
considered as a function of several hypothalamic neuroendo-
crine axes, particularly the hypothalamic–pituitary–adrenal 
(HPA) axis, hypothalamic–pituitary–thyroid (HPT) axis, and 
the hypothalamic–pituitary–gonadal (HPG) axis. Changes in 
their activity can change the secretion of glucocorticoids (GC), 
thyroid hormone, sex steroid hormone, growth hormone (GH) 
prolactin (PRL), and vasopressin (VP) and thus profoundly 
affect lymphocyte homeostasis, self-tolerance, and immune 
pathological processes (76, 77). Importantly, there are close 
associations between activities of the OSS and these axes in the 
neuroendocrine regulation of the immune system. Additionally, 
the contribution of peripherally produced OT, particularly 
intrathymic OT, to the OT-associated immune activity should 
also influence the immune functions of the OSS.

The OSS and Hypothalamic–
Adenohypophysial–immune Axes in 
immune Regulation
The immune regulatory roles of the adenohypophysial hormones 
(2, 63) are different from the neurohypophysial hormones as 
indicated by the effects of different types of pituitary lobectomy 
in rodents on antibody-mediated antimicrobial effects (78) and 
on antibody- and cell-mediated antiparasite effects (13, 79). 
Moreover, the OSS has close interactions with the HPA, HPT, and 
HPG axes (Figure 1A).

The OSS and HPA Axis
The immune function of HPA axis is mainly at suppression of 
immune reactions by offsetting the inflammatory reaction while 
activating anti-inflammatory processes (80–82). Experiments in 
rats further revealed that GC can rapidly inhibit the hypothalamic 
neuroendocrine activities including the secretion of CRH and 
OT (83). By contrast, OT can inhibit the activation of HPA axis 
induced by some stress stimuli (84) and their associated maternal 
depression (85) in rats. This is consistent with the finding that 
maternal separation decreased rat OSS activity (85, 86) while 
increasing the activity of HPA axis in calves (87). However, 
the OSS and HPA axis could work synergistically through sup-
pression of inflammatory reactions by corticosteroids and OT, 
respectively (Figure 1B).

The OSS and HPT Axis
Thyrotropin-releasing hormone can directly regulate the immune 
activity as seen in mouse allergic encephalomyelitis (88) and in 
patients with Hashimoto’s thyroiditis and primary hypothyroid-
ism (89). It is also reported that triiodothyronine plays a critical 
role in controlling the maturation and antitumor functions 
of mouse dendritic cells and stimulation of cytotoxic T-cell 
responses (90). There is also evidence showing a close interaction 
between the OSS and the HPT axis. For example, high dose of 
triiodothyronine can increase OT mRNA levels in rat PVN (91) 

and OT release from rat pituitary (92). On the contrary, OT can 
reduce the response of pituitary thyroid-stimulating hormone 
cells to TRH and then reduce the release of thyroid hormone in 
rats (31) (Figure 1C).

The OSS and HPG Axis
The HPG axis is mainly involved in immune responses during 
sexual activity, menstrual cycle, and pregnancy (93). Estrogen 
can activate the immune response and even cause autoimmune 
diseases, such as lupus erythematosus, while androgen plays a 
role in human immune suppression (94). On the one hand, OT 
can stimulate the secretion of gonadotropin-releasing hormone 
directly by activating rat gonadotropin-releasing hormone 
neurons (95). On the other hand, the OSS is modulated by sex 
steroid hormones. For example, allopregnanolone suppresses 
(56) and estrogen increases (96) the activity of magnocellular OT 
neurons and/or OT secretion (Figure 1D). Noteworthy is that the 
interactions between the OSS and HPG axis could vary in females 
at reproductive age due to the variations of hormonal interactions 
at different stages of reproduction (70, 97).

Comparison of immune Regulatory effects 
of vP versus OT
The VP-secreting system (VSS) and OSS coexist in the HNS (68), 
and thus, the VSS could also be involved in the immune effects 
of rat neurointermediate lobectomy (12, 13). In fact, the VSS 
does have certain immune functions that are often opposite to 
the OSS (68). For example, in rat tissue culture, VP inhibits and 
OT facilitates the growth of thymus gland (98). Moreover, the 
immune functions of the VSS are narrower than that of the OSS. 
For example, the distribution of OTRs in the immune system is 
more extensive than that of VP receptors as seen in rats (99) and 
in mice (21). In contrast to the extensive immune functions of the 
OSS (Table 1), blocking VP signaling can only block the produc-
tion of interferon-γ by mouse spleen lymphocytes specifically and 
reversibly (100) along with a few of other functions (68).

Noteworthy are the following exceptions. (1) The VSS can also 
inhibit immune reaction at brain levels (101) and that is likely due 
to VP-evoked activation of the HPA axis (82). (2) The OSS and 
VSS may promote the maturation of immune system sequentially. 
That is, OT promotes T-cell differentiation in the thymus (16), 
and VP further facilitates their maturation in the spleen (100). 
Finally, OT can increase the activity of VP neurons (60), and thus, 
the functions of VSS can be considered as a supplement to the 
OSS in immune regulation.

Relationship between the OSS and Other 
neuroendocrine Activities
In addition to the three major hypothalamic neuroendocrine 
axes and the VSS, other hypophysial hormones, such as GH and 
PRL, are also involved in neuroendocrine regulation of immune 
responses (Figure 1E). GH and PRL can improve the prolifera-
tion and transplantation of the thymic cells and exert immune 
promoting effects (102). These two hormones also have close 
interaction with the OSS. It has been reported that application of 
OT in rat cerebral ventricles promotes the secretion of GH (103); 
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OT can act on rat adenohypophysis to increase the secretion of 
PRL that reversely promotes the production of OT (103). This 
immune regulatory effect of OT via GH and PRL is consistent 
with the suppressive effect of neurointermediate lobectomy on rat 
thymus development (12, 13) and supports that OT is an essen-
tial hormone in the development and functions of the immune 
system.

intrathymic OT versus the OSS in immune 
Regulation
Both OT and OTR are expressed in mouse bone marrow (17) 
and in the thymus (104, 105) as well as many other components 
of the immune system (106, 107). Thus, peripheral OT has also 
some important immune functions (Figure 1F). For example, the 
intrathymic OT can dually regulate T cell-negative and -positive 
selections (108). Thymic epithelium can present OT and elicit 
clone deletion of self-reactive T-cells (1), thereby eliciting central 
immune self-tolerance of T-cells to OT and other hypophysial 
hormones (108). This function, as well as OT effects on rat bone 
marrow development (19), indicates that locally produced OT has 
important role in the maturation of immune system. However, as 
the thymus involutes over time, the immune functions of local 
OT mainly serve as a supplemental factor to OSS regulation of 
the immune system at local levels (77) through hidden secretion 
(108) or autocrine/paracrine effects (17).

COnCLUSiOn

The OSS plays a key role in the neuroendocrine–immune net-
work. It not only has direct regulatory effects on the development 
and functions of the immune system but also exerts functions 
of immune defense and homeostasis through coordinating the 
activity of the whole neuroendocrine–immune network as well 
as peripherally produced OT (Figure  1). The main question 
remaining to be answered is still the details of its relationship 
with other components in the neuroendocrine–immune network 
and peripherally produced OT under different types and extents 
of immune challenges. Answering these questions has great theo-
retical significance and broad potential for medical translation.
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