
January 2017 | Volume 8 | Article 141

Review
published: 19 January 2017

doi: 10.3389/fimmu.2017.00014

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Joao P. B. Viola,  

Instituto Nacional de Cancer (INCA), 
Brazil

Reviewed by: 
Claudia Ida Brodskyn,  

Centro de Pesquisas Gonçalo 
Moniz (Fiocruz Bahia), Brazil  

Maria Regina D’Império Lima,  
University of São Paulo, Brazil

*Correspondence:
Simona Stäger  

simona.stager@iaf.inrs.ca

Specialty section: 
This article was submitted to 

Molecular Innate Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 27 September 2016
Accepted: 05 January 2017
Published: 19 January 2017

Citation: 
Silva-Barrios S and Stäger S (2017) 

Protozoan Parasites and Type I IFNs.  
Front. Immunol. 8:14.  

doi: 10.3389/fimmu.2017.00014

Protozoan Parasites and Type i iFNs
Sasha Silva-Barrios and Simona Stäger*

INRS-Institut Armand Frappier, Center for Host-Parasite Interactions, Laval, QC, Canada

For many years, the role of interferon (IFN)-I has been characterized primarily in the 
context of viral infections. However, regulatory functions mediated by IFN-I have also 
been described against bacterial infections and in tumor immunology. Only recently, 
the interest in understanding the immune functions mediated by IFN-I has dramatically 
increased in the field of protozoan infections. In this review, we discuss the discrete 
role of IFN-I in the immune response against major protozoan infections: Plasmodium, 
Leishmania, Trypanosoma, and Toxoplasma.
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iNTRODUCTiON

Innate and adaptive immune responses are key factors in the control of infectious and chronic dis-
eases; the balance between these two systems is mainly orchestrated by cytokines. Interferons (IFNs) 
are a large family of cytokines that were first discovered in 1957 in the context of viral infections. The 
name IFN is due to the capacity of these antiviral factors to interfere with viral replication in mam-
malian cells (1). Numerous studies have been carried out since their discovery, which allowed the 
identification of several related molecules. Based on their structural characteristics and the restricted 
affinity by the receptor molecule with which they directly interact, IFNs are classified into three main 
groups: type I (IFN-I), type II (IFN-II), and the recently identified type III (IFN-III) (2).

The IFN-I family includes two main classes of related cytokines: IFN-α, which comprises 13 
different subtypes encoded by 13/14 different genes; and IFN-β, a product encoded by a single gene 
and a group of other less studied IFNs (IFN-ϵ, IFNδ, IFNκ, IFNτ, IFNω) (2). The ability to produce 
and respond to IFN-I is distributed in a wide variety of cells. This confers several autocrine and 
paracrine effects that have been extensively characterized mainly in viral infections. IFN-I signaling 
is mediated through a common cell surface receptor, the IFN-I receptor (IFNAR) (3, 4).

The IFN-II family is represented by a single gene product, IFN-γ, and is mainly produced by  
T lymphocytes and natural killer (NK) cells. IFN-II responses are mediated by the binding of IFN-γ 
to a heterodimeric molecule, the IFN-γ receptor (IFNGR), ubiquitously expressed in a wide range 
of cells. IFNGR is involved in the modulation of different cell functions and is a key factor for host 
defence to intracellular pathogens in various infection models (5).

Finally, the IFN-III family, also known as IFN-λ, comprises four different subtypes: IFN-λ1, IFN-
λ2, IFN-λ3, and IFN-λ4. The members of this novel IFN family interact through a unique receptor, 
the IFN-λ receptor (IFN-λR). In contrast to IFNAR and IFNGR, the expression of IFN-λR is mainly 
restricted to cells of epithelial origins. The role of IFN-III has yet to be better characterized; however, 
they appear to induce similar responses to IFN-I (6).

The crosstalk between IFNs and their specific receptors elicits an intracellular signaling cascade 
that mainly enhances inflammatory responses. The well-characterized signaling cascades of IFN-I 
and IFN-II are fairly similar. In both cases, Janus kinase 1 (JAK1) and tyrosine kinase 2, associated 
with IFNAR and IFNGR, are activated. This results in activation and following formation of a heter-
odimer complex comprised by the cytoplasmic transcription factor signal transducer and activator 
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of transcription 1 and 2 (STAT1/STAT2). STAT1/STAT2 dimers 
can be translocated to the nucleus and interact with the IFN regu-
latory factor 9 to form the IFN-stimulated gene factor 3 complex, 
leading to the transcription of IFN-stimulated genes (ISGs). By 
contrast, IFN-II signaling through IFNGR activates the JAK/
STAT pathway leading to the transcription of pro-inflammatory 
targets downstream of γ-activated sequences (2, 7).

Interferon (IFN)-I production is mainly induced in response 
to the activation of receptors on the membrane and/or cytosol, 
such as pattern recognition receptors (PRRs). PRRs can be 
activated by conserved pathogens component and endogenous 
molecules. In most of the cases, the production of IFN-I is related 
to the activation of PRRs that recognize xenogeneic or autologous 
nucleic acid, such as toll-like receptors (TLRs) (8).

Interferon (IFN)-I is historically best known for their capac-
ity to elicit antiviral responses; however, they also play a role 
in bacterial infections and autoimmune diseases (4). The role 
of IFN-I in regulating the immune response against pathogens 
is fairly complicated. IFN-I can have enhancing or suppressive 
effects depending on the disease, the stage of infection, and the 
amount produced. For instance, IFN-I enhances the antigen-
presenting capacity of DCs (9–11), favors the development of 
T cell responses (12–14), and promotes antibody responses (15, 
16) during acute viral infections. By contrast, type I IFNs play an 
immunosuppressive role during chronic viral infections (17–19), 
reduce IFN-γ responsiveness in macrophages (20, 21), block  
B cell functions at high concentrations (22, 23), and can promote 
the expression of immunosuppressive factors such as IL-10 and 
PDL-1 (24–27). This duality is also observed in the context of 
autoimmune diseases, where IFN-I plays a pathogenic role in 
systemic lupus erythematosus and Sjogren’s syndrome (28, 29), 
whereas it has therapeutic effects in multiple sclerosis (30).

While IFN-γ has been widely characterized in the modula-
tion of the immune response against protozoan infections, the 
contribution of IFN-I to host defence against parasites is less 
clear. In the past few years, a growing body of literature suggests 
an important role for IFN-I during protozoan infections, particu-
larly in the innate immune response.

In this review, we provide a brief overview of IFN-I mediated 
effects on the host response in various protozoan infection mod-
els and the possible mechanisms involved.

PROTOZOAN PARASiTeS AND iFN-i

Interferon (IFN)-I is involved in the modulation of innate immune 
responses promoting antigen presentation and NK cell functions. 
They are also known to play a role in the regulation of the adaptive 
immune system, promoting the development of antigen-specific 
T and B lymphocytes against numerous pathogens and induc-
ing immunological memory (7). In most of the cases, these key 
features are important factors that limit pathogen proliferation; 
however, IFN-I may also lead to disease exacerbation. Protozoan 
parasites such as Plasmodium, Leishmania, Trypanosoma, and 
Toxoplasma are causing diseases that are among the most lethal 
and widespread around the world, primarily affecting populations 
of developing countries. The contribution of IFN-I in the host 
immune response to these pathogens will be discussed below.

Plasmodium
Plasmodium parasites are the causative agents of malaria, one of 
the most widespread diseases in the world. The infection presents 
itself in a wide range of pathologies that can degenerate into severe 
anemia and the high-risk cerebral malaria (CM). Members of the 
Plasmodium genus have a complex life cycle between an inverte-
brate (female mosquitoes of the Anopheles genus), in which the 
sexual cycle occurs, and a mammalian host. During the mosquito 
blood meal, sporozoites are inoculated into the dermis of the 
mammalian host. In the initial phase of infection, circulating 
sporozoites can reach lymph nodes, where the priming of B and 
T cells occurs, or migrate to the liver (31, 32). Within the liver, 
sporozoites transform first into schizonts within hepatocytes and 
then into merozoites. This phase is asymptomatic and is known 
as the pre-erytocytic stage (33). Merozoites are then released into 
the blood stream. Once they reach the blood, merozoites invade 
red blood cells, where they undergo cyclic asexual replication 
initiating the typical symptomatic manifestations of blood-stage 
malaria, which are caused by the exponential growth of the para-
site and massive destruction of erythroid cells (34).

Most of the current knowledge about the immune response 
to Plasmodium parasites has been derived from a combination 
of in  vitro and in  vivo observations in human patients (e.g.,  
P. falciparum, P. vivax, P. malariae, P. knowlesi, and P. ovale) and 
murine models of infections (e.g., P. berghei, P. yoelii, P. chabaudi, 
and P. vinckei) (34).

During the pre-erythrocytic stage, sporozoite invasion of 
hepatocytes and subsequent development into merozoites can be 
blocked by sporozoite-specific antibodies generated by previous 
exposure to malaria or by immunization; however, this stage is 
not completely efficient because sporozoites remain in circula-
tion for a short period of time. When T cell priming takes place, 
infected hepatocytes can be eliminated by cytotoxic CD8 T cells. 
CD8 T cells, IFNγ, and TNF are critical components required for 
elimination of infected hepatocytes in humans and the mouse 
model (35). However, the immune response at this stage is insuf-
ficient and released merozoites can reach erythrocytes giving rise 
to blood-stage malaria (35).

In the erythrocytic stage, early interaction between merozoites 
and innate immune cells such as dendritic cells, monocytes, 
macrophages, NK cells, NKT cells, and γδT cells is important for 
the control of parasite replication and the resolution of infection 
(33). This phase is characterized by a strong pro-inflammatory 
response, mediated by the activation of NK, NKT, CD8, and 
CD4 T cells that produce large amounts of IFNγ and other pro-
inflammatory cytokines. IFNγ activates phagocytic cells, such 
as macrophages, enhancing the secretion of pro-inflammatory 
cytokines and promoting phagocytosis of circulating parasites 
and infected red blood cells, which results in the control of 
parasitemia (36). Polyreactive and specific antibodies against 
blood-stage malaria can limit parasite propagation between 
erythrocytes by opsonization and agglutination of parasites and 
infected erythrocytes; however, humoral responses during the 
infection are dependent on the presence of circulating merozo-
ites (37). Infected erythrocytes on the surface express parasitic 
protein which allows them to bind to vascular endothelial cells 
and avoid clearance. This event induces obstructions in the blood 
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TABLe 1 | Role of interferon (iFN)-i in Plasmodium infection.

Plasmodium 
berghei

Mouse serum 
containing high 
levels of IFN-I

Protection, ↓ blood parasitemia (38)

Treatment with 
rIFN-β

Prevents death to cerebral malaria 
(CM) (39)

Induction of IFN-1 Required to control hepatic infection 
(42)

Lack of IFN-I 
signaling

↑ Resistance to CM and ↓ parasite 
load (47, 48)

IFN-I ↓ Recruitment of conventional DCs to 
the spleen

Plasmodium yoelii Treatment with 
recombinant IFN-α

No changes in hepatic burden;  
↓ parasitemia and immunopathology 
(40)

IFN-I signaling ↑ Recruitment of NKT and CD8 T cells 
to the liver (43)

IFN-I ↓ Recruitment of conventional DCs to 
the spleen

Plasmodium 
chabaudi

IFN-I ↑ Recruitment of neutrophils to the 
liver (44)

IFN-I ↓ Protective Th1 responses
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flow and is associated with a strong inflammatory response and 
the development of CM (33).

Although IFN-γ is the most extensively studied IFN in 
malaria infection, part of the attention has now been diverted 
to type I IFNs. IFN-I can have a host-protective or detrimental 
effect, depending on the stage of the infection or the species of 
Plasmodium involved.

One of the first reports involving type I IFNs demonstrated 
that administration of mouse serum containing high levels of 
IFN-I protected mice from P. berghei infection by reducing blood 
parasitemia (38). Similar protective responses were observed 
after treatment with IFN-β, which prevented death related to 
CM in P. berghei-infected mice (39). By contrast, treatment with 
recombinant IFN-α during the hepatic cycle in mice infected 
P. yoelii sporozoites did not alter the hepatic parasite burden. 
However, mice showed reduced parasitemia and decreased signs 
of immunopathology (40).

Plasmodium parasites were reported to induce IFN-I 
responses. Transcriptomic analysis carried out in mice with 
blood-stage infection with P. berghei revealed that IFN regulatory 
factors were upregulated during the acute phase (41). Induction 
of a typical type I IFN signature was also observed in hepatocytes 
from mice infected with P. berghei and P. chabaudi sporozoites, 
where genes such as Mda, Irf3, Irf7, and Stat1 were upregulated 
(42–44). Similar results were observed in humans. Patients 
infected with P. vivax and P. falciparum showed a predominantly 
IFN-I transcriptional signature during the mild and the severe 
phase of infection (44, 45).

Recently, Liehl et al. showed that induction of IFN-I during 
liver stages of the infection is required for host defence against  
P. berghei. Recognition of P. berghei nucleic acids by Mda5 
induced IFN-I and consequently, the recruitment of leukocytes 
necessary for parasite elimination in the liver (42). In P. yoelii-
infected mice, recruitment and expansion of CD49b+CD3+NKT 
and CD8+T cells to the liver were mediated by IFN-I signaling 
(43). Migration of neutrophils to the liver is also modulated by 
IFN-I in mice infected with P. chabaudi (44). These studies sug-
gest that functionality of the innate immune response in the liver 
relies on both IFN-I and IFN-II.

In contrast to the protective effects discussed above, a 
pathogenic role for IFN-I in Plasmodium infections has also 
been described. For instance, impaired IFN-I signaling has been 
linked to a protective effect in human patients. Polymorphism 
in the human gene encoding for IFNAR1 are strongly associated 
with protection against CM (46). This observation is in agree-
ment with results obtained in a murine model, where the lack 
of IFN-I signaling led to strong resistance to CM and reduced 
parasite load during P. berghei infection (47, 48). Moreover, in  
P. chabaudi-infected mice, IFN-I appear to suppress Th1 
responses that are crucial in the control of hyperparasitemia, by 
modulating dendritic cell functions (49). In addition, IFN-I and 
Myd88 signaling are responsible for a decreased recruitment of 
conventional DCs to the spleen during experimental P. berghei or 
P. yoelii infection (50).

Perhaps a better approach for truly understanding the role and 
function of IFN-I during malaria consists in the identification 
of modulator molecules that could act in the IFN-I signaling 

cascade. Recently, regulators of IFN-I response have been identi-
fied through genome-wide analysis (Trans-species expression 
quantitative trait locus, ts-eQLT) during P. yoelii infection. Eight 
genes (Ak3, Fcγr1, Fosl1, Havcr2, Sipr5, Parp14, Selenbp2, and 
Helb) had an effect on IFN-I activation. For example, Fcγr1−/− 
mice infected with P. yoelii showed significantly higher mRNA 
and protein levels of IFN-β than wild-type mice, suggesting a 
negative regulation in the IFN-β response (51).

Future experiments are granted to clarify the spatio-temporal 
role of IFN-I during malaria.

The role of IFN-I during Plasmodium infections is summa-
rized in Table 1.

Toxoplasma
Toxoplasma gondii is an obligate intracellular protozoan parasite 
that can infect a wide range of vertebrates and cause a zoonotic 
disease called toxoplasmosis. T. gondii could be considered one 
of the most successful parasites worldwide; at least 50% of the 
human population is infected with Toxoplasma. The parasite suc-
cess is mainly due to its ability to invade any nucleated cell and 
to survive outside the mammalian host (52). T. gondii strains are 
classified in three main lineages, based on the virulence of the 
strain in the mouse model. This virulence profile does not neces-
sarily correlate to the degree of human infection. Type I strains of 
T. gondii are the most virulent: less than 10 parasites are able to 
kill a mouse at the onset of infection. By contrast, type II and III 
strains are less virulent and lead to the establishment of chronic 
infection (53). T. gondii can undergo both asexual (schizogony) 
and sexual (gametogony) replication. Gametogony and oocyst 
formation is restricted to feline species that act as a definitive 
hosts; sexual reproduction of sporozoites occurs within intestinal 
epithelial cells. Asexual stages of T. gondii are not host-specific. 
Many mammals and birds can act as intermediate hosts. After 
ingestion of T. gondii oocysts by an intermediate host, the parasite 
transforms into tachyzoites that rapidly undergo multiplication 
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TABLe 2 | Role of interferon (iFN)-i in Toxoplasma infection.

Toxoplasma 
gondii

IFN-I treatment (in vitro 
infection; mouse fibroblasts; 
and human macrophages)

↑ Resistance to infection (64–67)

HuIFN-β treatment (in vitro) ↑ Resistance to infection (66)
Ifnar−/− mice ↑ Parasite load, ↓ survival (68)
IFN-I treatment, human 
fibroblasts

No effects on parasite replication 
(69)
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within the parasitophorous vacuole inside various cell types. If 
the infection is controlled, parasites are retained in tissue cysts; if 
not, they can cause a systemic lethal disease (54, 55).

Humans are considered as an accidental intermediate host for 
Toxoplasma. In immune-competent individuals, the infection 
with T. gondii is mostly clinically silent, but cause severe diseases 
in immune-suppressed patients in particular with an impaired 
T cell and IFNγ response (55). Protective immunity is typically 
achieved by inducing an IL-12-driven Th1 immune response 
(56, 57).

In the mouse model, IFN-I can already be detected in the 
serum of T. gondii-infected animals during the acute phase 
(58–60); IFN-I levels gradually increase with the progression of 
the infection (60). IFN-I was also detected in the brain and spleen 
of infected mice (61). These results demonstrate that T. gondii not 
only induces IFN-γ, but also IFN-I.

Recently, inflammatory monocytes were identified as the major 
source of IFN-β in mesenteric lymph nodes. IFN-β production 
by inflammatory monocytes required three fundamental events: 
parasite internalization, TLR activation (mainly TLR4 and 2), 
and efficient MyD88 signaling. Interestingly, heat killed parasites 
induced higher levels of IFN-β in inflammatory monocytes (62), 
suggesting that Toxoplasma might limit IFN-I responses (62), 
possibly by blocking STAT1 (63).

As for many other infection models, the first studies carried out 
during the 1960s on the role of IFN-I in toxoplasmosis evaluated 
the impact of a treatment with IFN-I on infected cells in vitro. 
Pre-treatment of mouse fibroblast with IFNs conferred protection 
to T. gondii infection (64). In agreement with this observation, 
human neonatal and adult macrophages treated with IFN-I were 
able to control parasite multiplication, even if less effectively than 
IFN-γ treated cells (65). Moreover, human monocyte-derived 
macrophages treated with human IFN-β in combination with 
Escherichia coli lipopolysaccharides (LPS), but not with murine 
IFN-β (MuIFN-β) or rHuIFN-β alone (66), were more resistant 
to T. gondii infection (67).

In the mouse model of toxoplasmosis, treatment with 
HuIFN-β showed a protective effect, which was enhanced by the 
combination of rHuIFN-β and LPS and was IFN-γ dependent 
(66). In agreement with these results, it was shown that Ifnar−/− 
mice orally infected with T. gondii have an increased parasite load 
compared to wild-type mice; higher parasite burdens correlated 
with a decrease in survival (68).

These results suggest that IFN-β may be produced at the onset 
of infection to enhance the IFN-γ responses.

A study using human fibroblasts as host cells revealed that 
treatment of T. gondii-infected cells with IFN-I had no effect 
on parasite replication (69), suggesting that the protective effect 
of IFN-I depends on cell type and/or timing of exposure to the 
cytokine (prior to or after infection).

During T. gondii infection regulation of tryptophan metabo-
lism is a key component for parasite survival. Indeed, tryptophan 
degradation inhibits parasite replication. In T. gondii-infected 
mice, indoleamine 2,3-dioxygenase (IDO), a tryptophan catalyzer 
(70, 71), is enhanced by IFN-II (72). However, it has also been 
reported that IFN-I can regulate IDO in human retinal pigment 
epithelial cells, inhibiting therefore T. gondii replication (73). 

Together, these results demonstrate that IFN-I also contribute to 
the regulation of protective immunity against T. gondii (Table 2).

Leishmania
Leishmania is a complex genus of obligate intracellular pro-
tozoan parasites that cause a widespread disease collectively 
known as Leishmaniasis. The life cycle of these parasites takes 
place between a mammalian host and a sandfly vector (genus 
Lutzomyia and Phlebotomus). Once in the hosts, the promastig-
ote form of the parasite preferentially infects macrophages, but 
can also be found in other cell types, such as dendritic cells, neu-
trophils, and fibroblasts. Promastigotes then transform into the 
non-flagellated form called amastigotes within the host’s cell. The 
Leishmania spp. involved and the mammalian host immune sta-
tus determine the clinical manifestation of the disease. Parasites 
can either reside in the skin and/or mucosal surfaces, which 
results in cutaneous (i.e., Leishmania major) or mucocutaneous 
(i.e., Leishmania braziliensis) Leishmaniasis; or disseminate to 
internal organs such as liver, spleen, and bone marrow, causing 
visceral Leishmaniasis (VL), the most severe form of the disease 
(i.e., Leishmania donovani) (74).

Leishmania immunity is mostly mediated by T lymphocytes. 
In experimental models, control of infection is mediated by a 
polarized Th1 response, induced by an initial production of IL-12 
by DCs (75). IFN-γ secreting CD4 and CD8 T cells contribute to 
parasite control by enhancing the ability of phagocytic cells to kill 
intracellular Leishmania (74, 76).

As for many other protozoan models, IFN-II is the main 
mediators of the cellular immune response. However, IFN-I and 
IFN-I inducible genes are gradually gaining importance in the 
Leishmania field. One of the pioneer work on the role of IFN-I 
in Leishmaniasis described the prophylactic treatment with 
synthetic double-stranded RNA (Poly I:C) prior to L. donovani 
infection. Injection of Poly I:C triggered a burst of IFN-I and 
led to the control of the hepatic parasite burden (77). The role 
of endogenous IFN-I was studied for the first time using strains 
causing cutaneous Leishmaniasis. The induction of IFN-I 
was observed in macrophages infected in  vitro with L. major 
promastigotes (78, 79) and in skin macrophages from infected 
animals (79), showing that promastigotes could enhance IFN-I 
expression in the host cell. The combination of exogenous IFN-I 
with L. major promastigotes was shown to activate macrophages, 
inducing type 2 nitric oxide synthase (NOS2). NOS2 is required 
for parasite elimination; mice deficient in this enzyme are more 
susceptible to L. major infection (80). As for T. gondii, the tim-
ing of the host cell’s exposure to IFN-I determines the effect on 
parasite control. Indeed, pre-treatment of macrophages with 
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TABLe 3 | Role of interferon (iFN)-i in Leishmania infection.

Leishmania 
donovani

Treatment with Poly I:C ↓ Hepatic parasite burden (77)
B cell-derived IFN-I ↑ IL-10, ↑ 

hypergammaglobulinemia (84)

Leishmania major IFN-I treatment of 
macrophages in vitro 
(78–81)
 (1) At the time of infection
 (2) Before infection
 (3) High dose
 (4) Low dose

↑ NOS2
No effect on NOS2
No effect
↑ Leishmanicidal activity

In vivo IFN-I blockade ↓ NOS2, ↓ natural killer functions 
(79)

Leishmania 
braziliensis

IFN-β treatment of 
macrophages in vitro

↑ Parasite burden (82)

Leishmania 
amazonensis

Ifnar−/− mice ↓ Lesions, ↓ parasite burden, ↑ 
neutrophils (83)
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exogenous IFN-I failed to induce NOS2. Similar results were 
obtained with high doses of exogenous IFN-I, while a low IFN-I 
dose in combination with L. major enhanced leishmanicidal 
activity (78, 81). These results suggest that the design of in vitro 
experiments greatly influences the outcome of IFN-I treatment in 
infected macrophages and that the role of IFN-I should be better 
studied in in vivo models.

The protective role of endogenous IFN-I during infection was 
confirmed by neutralizing IFN-I in mice experimentally infected 
with L. major. In fact, IFN-I neutralization rendered L. major-
infected mice more susceptible to infection and enhanced para-
site multiplication. IFN-I blockade led to abolishment of NOS2 
function and reduced cytotoxic activity and IFNγ production by 
NK cells at early stages of infection (79).

Opposite results were obtained in human macrophages infected 
in  vitro with New World Leishmania spp. IFN-β treatment of  
L. braziliensis and Leishmania amazonensis-infected mac-
rophages enhanced the parasite burden through a superoxide-
dependent, NO-independent mechanism (82). In this model, 
it was shown that IFN-β can regulate the superoxide dismutase 
SOD1 activity. SOD1 is responsible for catalyzing the dispropor-
tionation of superoxide to hydrogen peroxide and dioxygen and 
is an important constituent in apoptotic signaling and oxida-
tive stress. It has been observed that biopsies from cutaneous 
Leishmaniasis patients express high levels of SOD1 (82).

The importance of endogenous IFN-I during chronic infection 
has been investigated using IFNAR-deficient mice in the context 
of L. amazonensis infection. L. amazonensis infected Ifnar−/− 
mice developed attenuated cutaneous lesions and displayed a 
decreased parasite load. This effect appeared to be STAT1 inde-
pendent, a key protein in the IFN signaling (83). Furthermore, 
L. amazonensis-infected Ifnar−/− mice exhibited high levels of 
neutrophils and lower inflammatory monocytes recruitment at 
early times post infection. This unique profile was also observed 
in L. major and L. braziliensis infections (83). In vitro coculture 
of infected WT macrophages with Ifnar−/− neutrophils revealed 
that IFNAR-deficient neutrophils promote parasite killing (83). 
This evidence supports the pathogenic role of IFN-I signaling 
in cutaneous Leishmaniasis caused by New World Leishmania 
species.

We also observed a negative role for IFN-I in an experimental 
model of VL. L. donovani amastigotes were shown to induce 
IFN-I expression in B cells in an endosomal TLR-dependent 
manner. This cytokine was involved in a positive regulatory loop 
that led to the upregulation of endosomal TLRs and to IL-10 
production in B cells (84). B cell-derived IL-10 was shown to 
suppress protective T cells responses and increase disease suscep-
tibility (85). B cells are known to play a detrimental role during 
VL (86), not only by secreting IL-10 but also for their excessive 
antibody production (87). Indeed, hypergammaglobulinemia 
is a hallmark of VL. Interestingly, IFN-I seems to be regulating 
antibody production during VL. Specific ablation of endosomal 
TLRs or IFN-I signaling in B cells was shown to severely reduce 
the Ig titer in the serum of L. donovani-infected mice, suggesting 
that parasite activation of B cells via endosomal TLRs and IFN-I 
are involved in the induction if hypergammaglobulinemia (84). 
Furthermore, mice with a B cell-specific deficiency in endosomal 

TLR or IFNAR were more resistant to L. donovani infection than 
their wild-type counterpart.

Very little is known about the function of IFN-I in VL patients. 
It was reported that human mononuclear phagocytes can be acti-
vated by IFN-β, but less efficiently than IFN-γ (88). Exogenous 
treatments with IFN-I and IFN-II but not IL-2, failed to restore 
the cytotoxic activity of NK isolated from VL patients (89). Also, 
treatment of the cutaneous lesion in patients with IFN-I did not 
improve healing, compared with IFN-γ treatment (72, 90).

Because dendritic cells can also be infected by Leishmania, it is 
important to consider the induction of IFN-I by the parasite and 
its possible effect in these cells as well. Transcriptomic analysis of 
human DCs infected in vitro with L. major or L. donovani showed 
a differential expression pattern for IL-12 associated genes, the 
NF-KB pathway, and IFN regulatory factors (91). IFN-β produced 
by L. major-infected DCs seems to be required for IL-12 secretion 
by the infected DC, suggesting that protective Th1 responses, 
which are IL-12 depended, may also depend on IFN-I (92).

A summary on the role of IFN-I during Leishmaniasis can be 
found in Table 3.

Trypanosomes
Trypanosomes are digenetic protozoan parasites that infect 
domestic and wild animals, as well humans. Although many 
species of trypanosomes cause important veterinary disease, 
mainly two species cause significant human morbidity: 
Trypanosoma brucei and Trypanosoma cruzi. These two spe-
cies are responsible for causing the sleeping sickness (African 
trypanosomiasis) and the Chagas disease (American trypano-
somiasis), respectively.

The life cycle of these parasites takes place between the 
invertebrate vector and the vertebrate host. T. brucei and other 
African’s trypanosomes are transmitted to the mammalian host 
by a tsetse fly bite. In the blood stream, metacyclic trypomastig-
otes differentiate into bloodstream trypomastigotes. In humans, 
trypanosomes proliferate in the blood and lymphatic system 
at early stages of the infection. This stage is associated with an 
anti-inflammatory response. At chronic stages, parasites can pass 
through the blood–brain barrier and enter the central nervous 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 4 | Role of interferon (iFN)-i in Trypanosoma infection.

Trypanosoma cruzi IFN-I treatment in vivo ↑ Resistance to infection
↑ T and natural killer cell activity 
(100, 101)

Ifnar−/− mice Disease exacerbation (102, 103)
Ifnar−/−, lethal dose ↑ Survival (104)

Trypanosoma brucei 
rhodesiense

Ifnar−/−, acute phase ↑ Control
Ifnar−/−, later stages ↓ Resistance, IFN-γ ↓ (108)

Trypanosoma brucei 
brucei

Ifnar−/− No effect on parasite control (109)
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system. This stage is associated with inflammatory changes in the 
brain and is characterized by a neurological disturbance (93, 94).

In T. cruzi (American trypanosomiasis), metacyclic trypomas-
tigotes are released in the feces/urine of the triatomine vector 
after a blood meal. Trypomastigotes can successfully infect the 
mammalian host if they are able to reach the mucosa or injured 
skin areas. In contrast to African trypanosomes, T. cruzi is an 
intracellular parasite that has the capacity to invade, differentiate 
into amastigotes, and replicate within a wide range of nucleated 
cells. This characteristic is one of the most important features of 
T. cruzi within the host. Amastigotes differentiate into infective 
bloodstream trypomastigotes, before being released upon cell 
lysis. The released parasites can then infect neighboring cells or 
enter the bloodstream (95).

During the acute phase, the innate immune response against 
T. cruzi is characterized by the induction of a cell-mediated 
response that involves the production of IFN-γ and TNF (by NK 
and T cells), required for enhancing iNOS activity by phagocytic 
cells and for priming the adaptive immune response. iNOS activa-
tion is critical for controlling parasite growth during the infection 
(95). T. cruzi elicits a prominent IFN-I response at early times 
of infection (96–99). As mentioned before for Plasmodium, the 
role of IFN-I in T. cruzi infection is controversial. Some studies 
ascribe a protective role to IFN-I; others demonstrate that IFN-I 
induces pathology. The effect of IFN-I mainly depends on the 
dose, amount of parasites, and the inoculation route used to set 
up the infection.

The first studies on the role of IFN-I investigated the outcome 
of exogenous IFN-I treatment in T. cruzi-infected mice. The 
results showed that administration of IFN-I increased resistance 
to infection by stimulating T and NK cell activities, which are 
essential for protection (100, 101).

In an intradermal model of infection, transcriptomic analysis 
of excised skin from the inoculation site revealed that T. cruzi 
upregulated the expression of ISGs as early as 24 h after infection. 
Induction of ISGs was dependent on IFN-I signaling, suggest-
ing that IFN-I is an important component of the innate immune 
response to T. cruzi (99). In agreement with the above mentioned 
literature, studies carried out in Ifnar−/− mice infected with  
T. cruzi revealed that efficient IFN-I signaling was required for 
controlling parasites growth during the acute phase of infection 
(102, 103). IFN-I was necessary for enhancing NO production 
in phagocytic cells (102). NO is considered the major effec-
tor molecule for intracellular amastigotes elimination within 
infected cells, being important for the control of parasite 
multiplication (95).

By contrast, another group reported a potential pathogenic 
role for IFN-I. In this work, a lethal dose of parasites inoculated 
intradermally was used to set up the infection in WT and Ifnar−/− 
mice. Surprisingly, T. cruzi-infected Ifnar−/− mice survived the 
challenge and were able to control parasite replication (104). 
Besides the fact that splenocytes from Ifnar−/− mice produced 
higher levels of IFN-II, plasma cytokine profile in T. cruzi-
infected Ifnar−/− mice were not different to control mice (104). 
Additionally, T cells populations were not inherently different 
compared with control mice (104), and IFN-γ production by 
CD8+T cells was not affected by impaired IFN-I signaling (105), 

suggesting that, in this model, endogenous IFN-I is not the only 
relevant signal in host defense against T. cruzi.

Taken together, the role of IFN-I in T. cruzii infection differs 
from one experimental model to the other, depending on the dose 
and the route of infection (106). This could explain the contro-
versy about the observations on the role of IFN-I in the T. cruzi 
model of infection (Table 4).

The immune response to African trypanosomes is quite 
different than that to T. cruzi. First, parasites never enter the 
host cell at any stage of their development. The success of these 
parasites is mainly due to their ability to change the composition 
of the variant surface glycoprotein (VSG) by switching genes. 
This confers them the capacity to evade B- and T-cell-mediated 
immune responses and results in fluctuating waves of parasitemia 
that characterize African trypanosomiasis (94). VSG is a strong 
antigen that induces Th1 responses and promotes autoantibody 
and cytokines production, in particular TNF. Other trypano-
some proteins and soluble factors, such as a trypanosome-
released triggering factor, also trigger IFN-γ production by T 
and NK cells and are involved in macrophage activation toward 
an M1 phenotype, which is required for the control of parasite 
multiplication during the acute phase of infection. However, 
sustained activation of M1 macrophages is associated with 
disease exacerbation. The progression of the infection toward 
the development of an acute fatal disease or a prolonged chronic 
infection is determined by the balance between a type I and 
type II immune responses and the switch from the early type 
I immune response (dominated by M1 macrophage activation) 
from a type II (M2 macrophages) regulatory response that 
controls the inflammation (107).

The literature on the role of IFN-I in African trypanosomiasis 
is scarce. A study involving Trypanosoma brucei rhodesiense 
reported a beneficial effect of IFN-I during the acute phase of 
infection. Indeed, Ifnar−/− mice displayed delayed control of 
parasite burden during the first week of infection and died earlier 
than wild-type controls. Moreover, mice hyperresponsive for 
IFN-I (Ubp43−/−) exhibited a significant defect in Th1 responses 
and IFN-γ production, suggesting that IFN-I plays a role in the 
early stages of disease. Nevertheless, IFN-I contributes to the 
downregulation of IFN-γ production and loss of host resistance 
during chronic infection (108).

No effects of IFN-I signaling were observed in Trypanosoma 
brucei brucei-infected Ifnar−/− mice, which showed similar levels 
of parasitemia to wild-type mice, suggesting that in this model 
parasite control is independent of IFN-I (109). However, IFN-I 
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regulates T cell infiltration to the brain parenchyma at chronic 
stages of the infection (109).

In conclusion, the contribution of IFN-I to protective immu-
nity against several protozoan parasites is still unclear. Variations 
in parasite numbers used for infections, the site of inoculation, 
and the dose of IFN-I all seem to influence the outcome and 
the interpretation of the results. A spatio-temporal analysis of 
the role of IFN-I integrated with a more detailed investigation 
of cell-specific signaling pathways elicited by the cytokine could 
help to better dissect the involvement of IFN-I in the immune 
response.
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