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Fatigue is a highly disabling symptom in various medical conditions. While inflammation 
has been suggested as a potential contributor to the development of fatigue, underlying 
mechanisms remain poorly understood. In this review, we propose that a better assess-
ment of central fatigue, taking into account its multidimensional features, could help 
elucidate the role and mechanisms of inflammation in fatigue development. A description 
of the features of central fatigue is provided, and the current evidence describing the 
association between inflammation and fatigue in various medical conditions is reviewed. 
Additionally, the effect of inflammation on specific neuronal processes that may be 
involved in distinct fatigue dimensions is described. We suggest that the multidimen-
sional aspects of fatigue should be assessed in future studies of inflammation-induced 
fatigue and that this would benefit the development of effective therapeutic interventions.

Keywords: central fatigue, inflammation, immune system, multidimensional assessments, motivation, ventral 
striatum, anterior cingulate cortex, insula

iNTRODUCTiON

Fatigue is a highly disabling symptom that is common in various medical and psychiatric conditions 
(1–4). In some cases, the origin of fatigue can be explained by alterations in muscle metabolism or 
the cardiovascular system, but for most clinical populations, such as cancer survivors and patients 
suffering from multiple sclerosis (MS) or chronic fatigue syndrome/myalgic encephalomyelitis 
(CFS/ME), fatigue pathophysiology remains hard to establish. In these conditions, inflammation 
has been hypothesized as a possible contributor (5, 6), based on an extensive literature showing the 
capacity of inflammatory factors to act on the central nervous system (CNS) and induce behavioral 
changes, including fatigue (7–9). Furthermore, alterations in inflammatory processes are found in 
patients suffering from medical conditions also characterized by high rates of fatigue, such as cancer 
survivors and patients with MS or diabetes (6). However, despite reported associations between 
fatigue and circulating levels of inflammatory markers in populations of patients suffering from these 
diseases (10, 11), the specific role and biological mechanisms of inflammation in the development 
of fatigue symptoms remain elusive. One of the reasons may be that fatigue is rarely assessed from a 
multidimensional perspective.
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FATiGUe: A MULTiDiMeNSiONAL 
PeRSPeCTive

Definitions of Fatigue
The multidimensional aspect of fatigue has been addressed in 
previous literature. One distinction relates to peripheral and 
central fatigue (12), with peripheral fatigue described as “the 
inability to sustain a specified force output or work rate during 
exercise,” and central fatigue as “the failure to initiate and/or 
sustain attentional tasks and physical activities requiring self-
motivation” (13). This distinction thus lies mainly in the origin 
of the feeling, with peripheral fatigue developing from peripheral 
physiological and neuronal systems (e.g., neuromuscular trans-
mission, muscular metabolism, or the cardiovascular system), 
whereas central fatigue results from changes in the CNS. Central 
fatigue is further comprised of several dimensions, namely physi-
cal fatigue, mental/cognitive fatigue, and motivational changes. 
Physical fatigue is characterized by a difficulty in performing 
physical activities, while mental/cognitive fatigue is described 
as difficulties concentrating and carrying out cognitive tasks 
(14). These distinctions reflect the behavioral outputs of central 
fatigue. For these behaviors, motivational changes appear to be 
central. Motivational inputs, such as expected rewards and ben-
efits, modulate the effort exerted by the individual in any given 
situation (15). Hence, fatigue has been suggested to arise when 
the balance between the energy costs and the expected reward 
of an action is disrupted (16). Consequently, central fatigue may 
depend on flawed integrations of motivational inputs and/or 
energy expenditure (13, 15).

Another important aspect to take into account regarding cen-
tral fatigue is the distinction between physiological and pathologi-
cal fatigue. Biologically, fatigue is first and foremost an adaptive 
physiological process. It is the reduction of effort, resulting from 
perceived exertion (appraised by motor and sensory inputs) 
and motivational factors (15). Fatigue is a signal to rest, and it 
encourages energy preservation to prevent injuries, which may 
be beneficial after intense work or sleep loss, or when the bodily 
resources need to be redirected toward fighting pathogens during 
an infection (17). Fatigue also helps focus on more energy-efficient 
actions (16). As such, healthy, normal physiological processes of 
fatigue are denoted physiological fatigue in this review, as opposed 
to pathological fatigue, which is a state where the adaptive func-
tion has been lost. Although central fatigue is primarily a feeling, 
and usually assessed through subjective measurements (e.g., 
self-report questionnaires), it can also be measured objectively, 
using physical, cognitive, or motivational tasks.

Taken together, central fatigue appears to be not just “fatigue,” 
but a complex symptom that comprises several dimensions and 
concepts (Figure 1). In this review, we will focus on the effects of 
inflammation on central fatigue and illustrate the importance of 
multidimensional assessments in understanding the pathophysi-
ology of inflammation-induced central fatigue.

issues to Consider when Studying Fatigue
Fatigue is a highly subjective experience that every human being 
experiences at some point. This intuitive everyday understanding 

of fatigue may complicate formal assessments. A subjective 
distinction between normal (physiological) but pronounced 
fatigue versus pathological fatigue may be difficult to describe 
and, as such, the nature and intensity of pathological fatigue 
may be difficult to understand for relatives and caregivers (18). 
Furthermore, in everyday speech, fatigue is often used inter-
changeably with tiredness, which in turn is used as a synonym 
for sleepiness, i.e., sleep propensity (19, 20). Although fatigue 
and sleepiness are generally considered different concepts in both 
research and clinical practice, some assessment scales use sleepi-
ness as a dimension of fatigue (21), and some tasks that induce 
mental fatigue also cause sleepiness (22, 23). This relationship is 
further complicated by the concept of tiredness, which may be 
considered equal to fatigue or as a lesser version thereof (24). In 
addition, other feelings can also be interpreted as—and overlap 
with—fatigue, such as boredom (25). Evidently, there is a need 
for a clear characterization of fatigue, both physiological and 
pathological. The literature on diseases in which fatigue is one of 
the main causes of suffering for the patients, such as cancer, may 
help in this regard. The interdisciplinary workgroup Assessing 
the Symptoms of Cancer using Patient-Reported Outcomes high-
lights several characteristics of cancer-related fatigue (26), some 
of them appearing critical for distinguishing pathological from 
physiological fatigue. For example, as opposed to physiological 
fatigue, pathological fatigue is not alleviated by sleep or rest (18) 
and is not proportional to the degree of activity (27).

Beyond the distinction between physiological and pathologi-
cal fatigue, the assessment of fatigue should be performed keeping 
in mind the several dimensions and conflicting or overlapping 
concepts, as discussed above (Figure 1). These dimensions may 
in fact involve distinct neuronal systems (see Part 3 of the current 
review). What is called “fatigue” may thus be driven by different 
underlying mechanisms from one patient to another and from 
one condition to another. While some self-assessment scales 
encompass several kinds of fatigue [e.g., the multidimensional 
fatigue inventory (MFI) (14)], others rely on single or non-
specific aspects and, although having clinical relevance, may 
prevent the understanding of the pathophysiological processes. 
In addition, while the use of long or intense physical or cognitive 
tasks assesses fatigue in an objective way, these objective measures 
do not always correlate with subjective measures, indicating that 
they may actually assess distinct components (28) and may not 
be ecologically valid.

Given the large clinical overlap between pain and fatigue (29), 
the conceptualization of fatigue could be inspired by that of pain. 
In pain research, both central and peripheral biological compo-
nents have been identified (30), as well as a fairly well-described 
neuronal network (31). There are clear mechanistic differences 
between acute and chronic pain (32), and, depending on the 
diagnosis, peripheral and central dysfunctions are involved to dif-
ferent degrees (33). However, some components are common for 
all pain diagnoses (34), and low-grade inflammation has  recently 
been added to this list (35, 36). Following this rationale of pain 
research, we suggest that there are identifiable biological mecha-
nisms that drive fatigue and that these include peripheral and 
central components, as well as identifiable neuronal networks. 
Moreover, the mechanisms may change if the fatigue becomes 
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FiGURe 1 | Features of central fatigue. Central fatigue is a complex symptom including several dimensions and concepts. It can be divided into physiological 
fatigue, a signal to rest and encourage energy preservation to prevent injuries, and pathological fatigue, when the adaptive function has been lost. Central fatigue is 
also comprised of several dimensions, namely physical fatigue, mental fatigue, and lack of motivation. These dimensions can be assessed in subjective or objective 
ways. Finally, the study of fatigue is further complicated by the difficulty in separating fatigue from close but distinct concepts, such as sleepiness and boredom.
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chronic and may vary for different conditions. Specifically, we 
argue that inflammation affects some of the biological systems 
underlying fatigue and that inflammation may therefore be one 
of the major driving forces for fatigue.

iNFLAMMATiON AND FATiGUe

The Activated immune System  
induces Fatigue
During activation of the immune system, immune cells produce 
pro- and anti-inflammatory cytokines, which are signaling mole-
cules that coordinate the fight against the pathogen. A less-known 
feature of cytokines is their capacity to act on the CNS, inducing 
behavioral alterations, including the development of fatigue [for 
reviews, see Ref. (7, 8)]. The cytokine signal reaches the brain via 
several immune-to-brain pathways, e.g., by a neuronal pathway 
via the vagus nerve or by a humoral pathway via brain locations 
with a weaker blood–brain barrier (37–39). Cytokines in the 
brain then induce modifications in neurotransmitter and neu-
roendocrine systems (Box 1), along with modifications in brain 
functions, which lead to behavioral changes.

Although cytokines induce a large array of behavioral changes, 
including changes in mood and cognitive functions, fatigue is, 
interestingly, one of the first and most common symptoms 
associated with an activated immune system (47). This has been 
demonstrated in patients suffering from cancer or hepatitis 

C, who undergo immunotherapy with the pro-inflammatory 
cytokine interferon-α, which activates the immune system and 
has neuropsychiatric side effects (48–50). Among these, fatigue 
develops very rapidly after instauration of the treatment in a 
large proportion (up to 80%) of patients, while other behavioral 
alterations, such as depressed mood and cognitive dysfunction, 
appear later and only in a subpopulation (30–60%) of patients 
(49, 51). This suggests that fatigue is very sensitive to the effects 
of cytokines, and underscores the biological connection between 
fatigue and inflammation.

Clinical Aspects of inflammation  
and Fatigue
There is increasing evidence supporting the role of inflammation 
in fatigue in clinical populations, particularly from cancer and 
cancer-related fatigue research (11, 52). During cancer treatment, 
the increase in circulating concentrations of inflammatory mark-
ers, such as C-reactive protein (CRP) and interleukin (IL-6), was 
related to the development of an overall feeling of fatigue (53–55). 
Inflammation has also been associated with higher levels of post-
cancer persistent fatigue. For example, breast cancer survivors 
who are fatigued, i.e., reporting lower levels of energy or vitality, 
show signs of activated inflammatory processes with increased 
concentrations of circulating inflammatory markers, as well as 
increased ex vivo inflammatory response to an immune challenge 
(56–58). In this population, higher levels of circulating CRP have 
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BOX 1 | Cytokine effects in the brain.

During the activation of the immune system, immune cells produce cytokines 
that coordinate the immune response. In addition to their peripheral actions, 
cytokines are able to signal to the CNS. Several such immune-to-brain 
communication pathways have been described, including a neuronal and a 
humoral pathway. The former refers to the fact that cytokines can activate 
the vagus nerve at the periphery, which then modulates functions of the brain 
targets of vagal afferents (38). Cytokines can also activate brain immune cells 
(microglia) that are located alongside brain vessels where the blood–brain 
barrier is weaker (e.g., in the circumventricular organs) (39). These cells then 
produce cytokines locally. The cytokine signal propagates in the brain via 
diffusion, microglial activation, and neuronal projections (37).

A crucial mechanism by which cytokines modulate neuronal functions is 
through modifications of monoaminergic neurotransmission, specifically by 
activating enzymes interfering with dopamine and serotonin biosynthesis. One 
of these enzymes is the GTP-cyclohydrolase 1 (GTP-CH1), which is involved 
in the production of neopterin. The production of neopterin happens at the 
expense of the production of tetrahydrobiopterin (BH4), which is an essential 
cofactor for the biosynthesis of dopamine and serotonin (40, 41). In addition, 
cytokines activate the indoleamine 2,3-dioxygenase (IDO), the rate-limiting 
enzyme degrading tryptophan along the kynurenine pathway (7, 42). The 
degradation of tryptophan reduces its availability for serotonin biosynthesis. 
By activating GTP-CH1 and IDO, cytokines thus reduce the synthesis of 
dopamine and serotonin. Cytokines also modulate dopamine- and serotonin-
transporter activity, reducing their synaptic availability (43, 44). In addition 
to neurotransmitter systems, cytokines modulate neuroendocrine systems, 
such as the hypothalamic–pituitary–adrenal axis, activating the release of 
corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol 
(45, 46).

4

Karshikoff et al. Inflammation, Fatigue, and Multidimensional Assessments

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 8 | Article 21

shown a positive correlation with overall levels of fatigue even 
after adjusting for several confounders, such as obesity, self-rated 
health, depression, and insomnia symptoms (59). Although most 
of these studies used unidimensional assessments of overall 
fatigue, some have reported an association between inflammation 
and multidimensional fatigue, probing for different aspects, such 
as physical or mental fatigue, in cancer patients. These studies 
indicate that inflammation in cancer patients and survivors may 
affect particularly the physical rather than the mental aspects 
of fatigue (60–63). Further investigation, aiming specifically at 
assessing the role of inflammation in the different dimensions 
of fatigue, is needed to determine whether inflammation indeed 
leads mainly to the development of physical fatigue, or whether it 
also contributes to the cognitive/mental and motivational aspects 
of fatigue in cancer patients.

The extreme clinical form of fatigue in CFS/ME has been 
the subject of extensive study and provides a good model for 
assessing the potential role of inflammation in the development 
of fatigue (6). CFS/ME is a debilitating multisystem condition 
primarily defined by a disabling fatigue for more than 6 months, 
along with several other symptoms, including pain and cognitive 
changes (64). Due to the nature of the illness, a broad array of 
fatigue questionnaires are used for this group of patients, meas-
uring several aspects of fatigue (65). One of the key symptoms 
is “postexertional fatigue” (64), which, interestingly, appears to 
be somewhat unique for this patient group (65). Although the 
underlying mechanisms of this disease are complex, a clear 
immunological component stands out; CFS/ME often appears fol-
lowing an infection, and some of the most promising treatments 
are immunomodulatory (64, 66). Furthermore, an extensive 

literature indicates that patients suffering from CFS/ME exhibit 
increased systemic production of pro-inflammatory cytokines 
[e.g., IL-6 or tumor necrosis factor (TNF)-α] and higher CRP at 
baseline as well as after immune stimulation, compared to non-
fatigued individuals (67–72). Altered cytokine production is also 
associated with the intensity of fatigue symptoms in CFS/ME 
patients (73, 74). Regarding multidimensionality, CRP concen-
trations have been found to associate with physical health-related 
quality of life but not with mental health-related quality of life 
in a mixed sample of healthy individuals, individuals with high 
level of fatigue, and patients with CFS/ME (72). Although these 
measures of health-related quality of life do not specifically assess 
fatigue, this study highlights the fact that inflammation may be 
only related to certain dimensions of symptoms or symptom 
clusters. This has also been indicated in other clinical conditions, 
such as type 2 diabetes. Type 2 diabetes is characterized by low-
grade but chronically increased concentrations of inflammatory 
markers, found to be closely associated with mental fatigue and 
lack of motivation, but not with physical fatigue (10). In other 
patient groups, inflammation has been found to relate to several 
dimensions of fatigue, both physical and mental. This is the case 
for patients suffering from MS, in which inflammation correlates 
with both physical and cognitive dimensions of fatigue, as well as 
with sleepiness (75).

Taken together, inflammation may be a key player in the devel-
opment of pathological fatigue. However, the few studies assess-
ing the role of inflammation in fatigue using a multidimensional 
perspective indicate that inflammation may not always relate 
to all dimensions of fatigue. In patient groups with long-term 
fatigue and comorbidity, other factors may thus be of greater 
importance for some aspects. Importantly, we do not advocate 
an “inflammation-specific type of fatigue,” but argue that the 
fatigue dimensions that are affected by inflammation may vary 
in different medical conditions. This is of high importance when 
considering the development of anti-inflammatory therapeutic 
interventions to improve fatigue in patients. Pharmacological 
treatments aiming at blocking the actions of cytokines, such as 
inhibitors of TNF-α, have been found to clinically reduce fatigue 
in patients suffering from rheumatoid arthritis or psoriasis (76, 
77). However, if inflammation relates only to a specific aspect of 
fatigue in a certain population, the use of cytokine inhibitors may 
only improve certain types of fatigue. For instance, medication 
with a monoclonal antibody against IL-1β (XOMA052) was 
found to affect physical, but not cognitive fatigue in type 2 diabe-
tes (78). A better understanding of the effect of inflammation on 
the multidimensional aspects of fatigue in medical conditions is 
therefore essential for long-term clinical applications.

inflammation and Fatigue in the  
General Population
Inflammation does not only relate to fatigue in clinical popula-
tions, but there is also a connection between inflammatory activity 
and fatigue in the healthy population. Inflammation, as measured 
with CRP levels, has been found to predict the development of 
fatigue in healthy subjects 5 years later, even after adjusting for 
several confounders (79). In addition, a recent study has shown 
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that CRP concentrations in the general population are associated 
with higher fatigue and reduced sleep quality, but not altered 
mood or concentration difficulties (80). An earlier study using 
a multidimensional assessment of fatigue in healthy individuals, 
however, contradicts these findings, showing that depressive 
symptoms and adiposity were better predictors of overall and 
physical fatigue than inflammation (81). Similar results were 
found in older individuals, for which the association of circulat-
ing concentrations of CRP and IL-6 with overall and physical 
fatigue was no longer significant when adjusting for depressive 
symptoms or adiposity (82). These results may at least partially be 
due to sex differences, as the authors also reported a significant 
relationship, independently of depressive symptoms and adipos-
ity, between CRP levels and fatigue intensity in women but not 
in men (83).

Inflammation thus seems to contribute to the development of 
fatigue even in the general population, but a multidimensional 
assessment is generally lacking. This is unfortunate given that 
it may prevent the understanding of the pathophysiology of 
fatigue. Indeed, the different dimensions of fatigue may involve 
distinct underlying neurological processes. One illustrating 
example relies on motivational changes, which may drive, at 
least partially, inflammation-induced fatigue (84). Decreased 
motivation results from specific alterations in reward-related 
neuronal processes, involving notably the mesolimbic dopamine 
pathway (85).

POTeNTiAL NeURONAL MeCHANiSMS 
UNDeRLYiNG DiMeNSiONS OF 
iNFLAMMATORY-iNDUCeD CeNTRAL 
FATiGUe

As described in Box 1, during the activation of the immune sys-
tem, the inflammatory cytokine signals reach the brain (38, 39), 
inducing changes in neurotransmitter and neuroendocrine 
systems, and leading to behavioral changes (7, 8). For example, 
cytokines can inhibit the synthesis of neurotransmitters, such as 
dopamine or serotonin, by activating specific enzymes involved 
in the rate-limiting steps of their biosynthesis (86, 87). These 
alterations in neurotransmitter systems ultimately lead to modi-
fications in neuronal functions, which in turn induce behavioral 
changes collectively called sickness behavior. Sickness behavior 
includes fatigue, reduced activity, altered mood state, changes in 
cognitive functions, and reduced appetite. Sickness behavior is an 
adaptive process allowing the body to rest and to redirect energy 
toward fighting infections (17, 88). Although most of the effects 
of cytokines on the CNS have been demonstrated with high 
levels of circulating cytokines (e.g., after an immune challenge or 
during immunotherapy), evidence also suggests that low-grade 
levels are enough to affect the brain (89, 90). Interestingly, the 
specific modifications of CNS functions during immune system 
activation can help infer some mechanisms that likely underlie 
inflammation-induced central fatigue. Notably, imaging studies 
of immune challenges highlight changes in activation of the 
anterior cingulate cortex (ACC), the anterior insula, and the 
ventral striatum (87, 91). As these areas have also been associated 

with fatigue in several medical conditions, they seem likely to 
underlie inflammation-induced fatigue symptoms (92). Here, we 
take this one step further and propose that specific functional 
brain alterations induced by inflammation may contribute to the 
development of the different dimensions of fatigue.

The Basal Ganglia
Given that motivation is a core feature of fatigue and that inflam-
mation has been shown to modulate reward-related processes 
(88, 93, 94), it is possible that these reward-related processes are 
involved in the effect of inflammation on fatigue (84). The mes-
olimbic dopamine pathway, linking the ventral tegmental area to 
the nucleus accumbens (in the ventral striatum), is essential in 
the modulation of motivation (85, 95) and particularly in effort-
related motivational behaviors (96). This “non-motor part” of 
the basal ganglia has been suggested as a critical mechanism for 
the development of central fatigue (13, 97). Altered dopamine 
processes in the ventral striatum can lead to an effort–reward 
imbalance, with increased perception of energy costs of actions 
and/or decreased expectation of reward or benefits (16). This can 
lead to the feeling of physical and/or mental fatigue, although the 
underlying issue is a reduced motivation to perform physical or 
cognitive tasks (98). Additionally, even though fatigue research 
has focused mainly on the motivation pathway of the basal 
ganglia, the motor pathway may be involved as well. Decreased 
volume and activation of the putamen, caudate, and pallidum 
have been described in fatigued patients with MS or CFS, and 
are associated with the intensity of fatigue symptoms (99, 100).

Several lines of research indicate that inflammation may 
induce the development of fatigue, specifically through reduced 
motivation via alterations in basal ganglia functions. Cytokines 
are known to affect dopamine function (see Box 1), which leads 
to modifications in basal ganglia activity, such as the mesolimbic 
dopamine pathway. A reduced activation of the ventral striatum 
in response to hedonic reward has indeed been observed after an 
immune challenge (93, 101). This functional change has been sug-
gested to underlie the development of cytokine-induced fatigue 
(102, 103). Furthermore, fatigue, but also psychomotor slowing, 
that develops after the instauration of immunotherapy appears to 
relate to modifications in dopamine function (while mood and 
cognitive dimensions rather relate to serotonin function) (49–51, 
104). After the commencement of cytokine therapy, patients also 
exhibit increased glucose metabolism in the basal ganglia, which 
is associated with symptoms of fatigue and reduced motivation 
as assessed with the MFI (105, 106). In addition, the reduction 
of ventral striatal activity in response to reward observed during 
immunotherapy is associated with reduced motivation, reduced 
activity, as well as depressive symptoms (101). Immunotherapy-
induced physical fatigue, measured as decreased energy, was 
found to relate to increased basal activity both in the putamen 
and the ventral striatum (107), but motivational changes were not 
assessed in this study. Additionally, a recent study nicely illustrates 
the specific contribution of the ventral striatum in cytokine-
induced fatigue (108). In this study, very early ventral striatal 
alterations induced by immunotherapy (4 h after the initiation of 
immunotherapy) significantly predicted the later development of 
fatigue (4 weeks follow-up). Importantly, these changes in striatal 
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function did not predict mood symptoms, which supports the 
idea that inflammatory effects on the brain may be separated 
into distinct circuits that underlie the different parts of sickness 
behavior, some of which drive fatigue specifically. Nevertheless, 
fatigue was not assessed in a multidimensionality perspective in 
this study, and specific changes in motivation were not evaluated.

These studies highlight the potential contribution of the basal 
ganglia, particularly the mesolimbic pathway, in inflammation-
induced fatigue. While these studies have been conducted in 
conditions of high-level activation of the immune system, some 
data on older adults suggest that inflammation at a low-grade state 
is sufficient to induce alterations in the dopamine system, con-
tributing to the development of fatigue (41). However, although 
some of these studies have used multidimensional assessments of 
fatigue, including reduced motivation, those assessing the effect 
of inflammation on basal ganglia changes usually measure either 
fatigue or motivational changes, but rarely the two together.

The ACC
The ACC has been implicated in inflammation-driven processes 
in several studies (105, 109, 110), and we suggest that this area 
could be related to the cognitive aspects of fatigue. The ACC, 
in particular the dorsal part, is involved in conflict monitoring 
(111–113) and in cognitive control (114). Activation of the dor-
sal ACC seems to signal the adjustment of cognitive processes 
according to the difficulty or cognitive demand of the task (115). 
Interestingly, it has been suggested that the feeling of cognitive/
mental fatigue may arise from an increased cerebral effort to 
maintain a satisfactory performance (116). An increased activa-
tion of the ACC during a motor or mental task has been shown 
in fatigued patients with CFS or MS (117, 118) and was associ-
ated with a feeling of having to exert more effort (118). Thus, it 
is possible that the stronger activation of the ACC signals a need 
for increased cognitive processing, leading to a feeling of mental 
fatigue.

Inflammation-induced sickness may represent a more 
demanding mental state for an individual than full health does, as 
indicated by a decline in cognitive abilities during immune acti-
vation (119). Altered activation of the ACC, mostly an increase 
in the dorsal part, has been repeatedly reported during activation 
of the immune system (105, 109, 110, 120, 121). Importantly, the 
dorsal ACC was the structure most strongly activated during 
an attentional task in patients treated with immunotherapy, in 
comparison to control subjects (109). This activation also cor-
related with number of errors, in line with the involvement of the 
dorsal ACC in conflict monitoring. Furthermore, inflammation-
induced fatigue during a more acute model (typhoid vaccination) 
was found to significantly correlate with the activation of the 
ACC during a mental conflicting task (the Stroop task) (122). 
This was, however, not the case for those feeling fatigued after 
placebo, suggesting a specific mechanism of inflammation on 
ACC functions in the development of fatigue.

The insula
There is a growing interest in the potential role of the insular 
cortex in inflammation-induced fatigue. This brain area is 
considered a main hub for the perception of the physiological 

condition of the body, so-called interoceptive signals, and it has 
been suggested as the central structure for “human awareness” 
(123, 124). Speculatively, a tiresome task would require insular 
involvement for the brain to interpret the associated bodily 
signals, and the behavioral output to restore homeostasis and 
promote rest would be the feeling of fatigue. An increased 
responsiveness of the insula to interoceptive signals would, 
therefore, make individuals more prone to feeling fatigued. 
Interestingly, it has repeatedly been shown that inflammation 
increases insular activity (121, 122, 125–127). Two studies even 
show a relationship between inflammation-induced insular 
function and fatigue development (122, 126). In addition, 
patients with MS, a condition characterized by both altera-
tions of inflammatory processes and fatigue, exhibit increased 
activation of the insula during a motor task (128). To speculate 
further, inflammation may thus induce increased sensitivity to 
interoceptive signals, through stronger insula reactivity, leading 
to a more rapid development of an overall feeling of fatigue 
when performing tasks.

Other Central Processes
It is not our intention to reduce fatigue processes to the three 
brain structures above, and additional brain structures could very 
well contribute to fatigue in the situation of immune activation. 
For instance, the self-regulatory and cognitive functions of the 
pre-frontal cortices are likely to play an important role in the 
modulation of fatigue (129, 130). Nevertheless, our aim was to 
highlight that different neuronal functions may underlie different 
dimensions of fatigue and that more (multidimensional) studies 
are needed to comprehend the involvement of inflammation in 
its pathogenesis.

In addition, beyond the functions of specific brain areas, 
changes in the connections between structures may also underlie 
the development of fatigue (131–133). This research is still in its 
infancy, but bears great potential for understanding potential 
mechanisms. Inflammation has been shown to affect intrinsic 
connectivity (134–136) and, for instance, the connectivity 
between the insula and mid-cingulate cortex seems associated 
with the inflammation-induced state of malaise and discomfort, 
in line with the interoceptive role of insula (136). Although this 
has not yet been studied in relation to fatigue, it is probable that 
altered connections between structures, in addition to specific 
structural changes, also contribute to the development of fatigue 
(97, 137).

In summary, inflammation appears to induce changes in neu-
ronal functions that in turn may contribute to the development 
of fatigue (Figure 2). Although the specific involvement of the 
cerebral structures for the different dimensions of fatigue remains 
to be elucidated, we argue that a higher cognitive load during 
inflammation could lead to a feeling of mental fatigue and depend 
on changes in ACC function. The mesolimbic reward system on 
the other hand, may be involved in the dimension of fatigue that 
relates to lack of motivation, a feature that may be particularly 
prominent in inflammation-induced fatigue. Finally, higher 
sensitivity to interoceptive signals may induce an overall feel-
ing of fatigue. While inflammation may be involved in all these 
processes, it is also possible that, in some medical conditions or 
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patient subpopulations, inflammation contributes to only one or 
some of these processes. It is therefore important to character-
ize the specific dimensions of fatigue that develop in patient 
populations, and assess the role of inflammation. For instance, 
some aspects of fatigue may be derived from sleep alterations or 
changes in hormonal regulation in clinical populations, e.g., of 
insulin or cortisol, which can modulate brain functions including 
those in the above-mentioned areas (138–140).

CONCLUDiNG ReMARKS AND  
FUTURe CONSiDeRATiONS

In this review, we have highlighted the potential role of inflam-
mation in the development of pathological central fatigue. 
Importantly, we wanted to illustrate the need for multidimensional 
assessments of fatigue when assessing the role of inflammation, 
given that fatigue contains distinct features that may be explained 
by separate central mechanisms and may be specific to different 
medical conditions. Studying fatigue using a multidimensional 
perspective also appears highly relevant for the development of 
therapeutic interventions that target inflammation in order to 
improve fatigue. In cases where inflammation contributes to only 
some aspects of fatigue, the use of anti-inflammatory therapies 
may not be sufficient to improve the feeling of fatigue.

It is therefore important to disentangle the dimensions of 
fatigue if we are to understand the pathophysiological role of 
inflammation in this symptom. While the use of single, general 
measures of fatigue is sometimes preferable, depending on the 
researcher’s or clinician’s need (27), the choice of the fatigue 
measurement(s) should be carefully considered with regard 
to the study aims (141). This is especially true since no gold-
standard measure exists at this point. However, some recom-
mendations can be made for when the aim is to understand the 
underlying pathophysiological processes. Several self-report 
scales of multidimensional fatigue are available, such as the 
MFI (14), the Swedish Occupational Fatigue Inventory (SOFI) 
(21), the Checklist Individual Strength (CIS) (142), and the 
Multidimensional Fatigue Symptoms Inventory (MFSI) (143). It 
is also important to take into account the time span of fatigue. 
Hence, while one may assess the feeling of fatigue over a long 
period of time when referring to pathological fatigue (e.g., 1 or 
2 weeks as assessed with the MFI, CIS, or MFSI), measuring acute 
changes in fatigue when assessing the effects of inflammation is 
also crucial. This can be done by repeated assessments of the level 
of fatigue that the subject feels at the time of scale completion, as 
measured with the SOFI (which, however, lacks a mental fatigue 
dimension) or visual analog scales, such as the Visual Analogue 
Scale for Fatigue (VAS-F) (144), which only focuses on physical 
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fatigue. The use of an acute measurement of fatigue also allows 
for evaluating subjective fatigue induced by physical, mental, or 
motivational tasks. Using a fatigue-induced task can help define 
fatigue in a more precise way than when relying solely on reports 
that pertain to the past few weeks. Needless to say, the develop-
ment of new scales would be beneficial to the field. These should 
include both chronic and acute fatigue, as well as the multidimen-
sional features. In the meantime, we suggest using a combina-
tion of different scales. In addition, self-report scales could be 
combined with objective measures of fatigue, such as reduction 
of performance during a physical or mental task. Effort-related 
reward tasks, such as the Effort Expenditure for Reward Task 
(EEfRT) (145), in which subjects receive a monetary reward for 
effort, may also help in understanding the role of motivational 
changes in fatigue (146). Nevertheless, it is preferable to combine 
these objective assessments of fatigue with subjective measures, 
given that objective fatigue is not always associated with subjec-
tive reports of fatigue (28), and that fatigue is first and foremost 
a subjective experience.

In conclusion, although fatigue is increasingly taken into 
account by clinicians, the study of this symptom remains limited 
by being restricted to overall fatigue, which, as highlighted in 
this review, may encompass many different mechanisms. While 
inflammation may be involved in the development of fatigue, 
the specific underlying mechanisms remain poorly understood, 
perhaps partly because the different dimensions of fatigue are too 
rarely explored. The mechanisms underlying other inflammation-
induced neuropsychiatric symptoms have been inferred thanks 

to multidimensional assessments (51), and this strategy should 
be pursued when studying inflammation-induced fatigue as 
well. Fatigue is a critical and highly disabling symptom for many 
patient groups and individuals. We argue for the need of adequate 
multidimensional assessments in order to increase the under-
standing of the mechanisms underlying inflammation-induced 
fatigue, as well as for the development of effective therapeutic 
interventions.
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