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Natural killer (NK) cells are characterized by their ability to detect and induce apop-
tosis of susceptible target cells and by secretion of immunoregulatory cytokines such 
as IFN-γ. Activation of these effector functions is triggered upon recognition of tumor 
and pathogen (mostly virus)-infected cells and because of a bidirectional cross talk that 
NK cells establish with other cells of myeloid origin such as dendritic cells (DC) and 
macrophages. A common characteristic of these myeloid cells is their ability to secrete 
different members of the IL-12 family of cytokines such as IL-12, IL-23, and IL-27 and 
cytokines such as IL-15 and IL-18. Although the effect of IL-12, IL-15, and IL-18 has 
been characterized, the effect of IL-23 and IL-27 on NK cells (especially human) remains 
ill-defined. Particularly, IL-27 is a cytokine with dual functions as it has been described 
as pro- and as anti-inflammatory in different experimental settings. Recent evidence 
indicates that this cytokine indeed promotes human NK cell activation, IFN-γ secre-
tion, NKp46-dependent NK cell-mediated cytotoxicity, and antibody (Ab)-dependent 
NK cell-mediated cytotoxicity (ADCC) against monoclonal Ab-coated tumor cells. 
Remarkably, IL-27 also primes NK cells for IL-18 responsiveness, enhancing these 
functional responses. Consequently, IL-27 acts as a pro-inflammatory cytokine that, in 
concert with other DC-derived cytokines, hierarchically contributes to NK cells activation 
and effector functions, which likely contributes to foster the adaptive immune response 
in different physiopathological conditions.
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inTRODUCTiOn

Natural killer (NK) cells constitute one of the three major lymphoid cell populations in blood. They 
play a protective role against viral infections and tumors, although additional evidence indicates that 
NK cells are also key players during immunity against other intracellular pathogens (1, 2). In humans, 
evidence about their role during viral infections came from the observation that patients with rare 
primary immunodeficiencies that lead to the absence of NK cells or the presence of dysfunctional 
NK cells display increased susceptibility to different viruses (3, 4). Currently, we know that the 
relevance of NK cells in immunity goes far beyond viral infections, being active immunoregulatory 
cells during infections with other pathogens, and also during autoimmune processes and in allograft 
rejection (1). Moreover, it has been established that NK cells are abundant in different tissues where 
they may exert such functions, in particular, immunosurveillance against pathogens (5, 6).

From a functional aspect, human and mouse NK cells share the ability to induce apoptosis of 
susceptible target cells through the secretory and death receptor-mediated pathways (FasL and 
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TRAIL) as well as the capacity to secrete immunoregulatory 
cytokines (7). Nevertheless, phenotypic characterization of NK 
cells in both species is quite different. In mice, NK cells are mostly 
identified as CD3− CD49b+ cells, although in C57BL/6 mice but 
they can also be characterized as CD3−CD161b/CD161c+ cells 
(better known as CD3−NK1.1+ cells) (2, 8). In humans, NK cells 
are characterized as CD3−CD56+ cells but can be subdivided into 
different subpopulations based on a differential expression of 
CD56 and CD16 (9, 10). The majority of peripheral blood NK 
cells (about a 90%) are CD3−CD56dimCD16+, which display a 
high content of perforin and granzymes and a strong cytotoxic 
activity, while the rest of NK cells in blood are CD3−CD56bright 
CD16dim/− and produce immunoregulatory cytokines in response 
to different stimuli (11, 12). This subpopulation of NK cells is 
highly abundant in second lymph organs, where they instruct 
dendritic cells (DC) to promote Th1- and cytotoxic CD8 T cell-
biased responses, shaping in this way the adaptive immunity 
(13, 14). Some evidence suggests that CD56brightCD16dim/− can 
differentiate into CD56dimCD16+ cells upon in vitro stimulation, 
indicating that they may constitute developmental stages of fully 
mature CD56dimCD16+ NK cells (15–17). NK cell subpopulations 
also express different chemokine receptors involved in their hom-
ing to different anatomical niches (5, 18).

Recently, identification of innate immune lymphoid cell 
populations (ILC), especially in mucosal sites, led to a reclas-
sification of NK cells as members of this extended family of cells 
of the innate immune response (19–22). ILC contribute to tissue 
homeostasis, and they seem to be important players of immunity 
in mucosal sites. Three groups of ILC populations have been 
described (ILC1, ILC2, and ILC3), which differ in their transcrip-
tional, phenotypic, and transcriptional signatures, respectively 
(19, 21, 22). Moreover, ILC phenotype and function mirrors the 
phenotype and function of T cells, indicating that innate immune 
cells display a similar functional compartmentalization as occurs 
with adaptive immune cells. NK cells have been classified as a 
subgroup of ILC1, suggesting that they could be some sort of 
ancestors or innate counterparts of T helper 1 and cytotoxic 
T lymphocyte (CTL) cells (19, 21, 22). Although all ILC1 express 
T-bet, respond to IL-12 and IL-15 and share the ability to produce 
IFN-γ, only NK cells express EOMES, which differentiates them 
from other ILC1 populations (19, 21, 22).

A vast array of surface receptors confer NK cells the ability 
to sense their environment. Direct recognition of target cells 
through inhibitory and activating receptors is a critical event that 
determines activation of NK cell-mediated cytotoxicity against 
susceptible cells (virus-infected or neoplastic cells), preserving 
healthy cells from such response (7). Many receptors that recog-
nize discrete ligands expressed on target cells and that trigger NK 
cell activation or promote inhibition of NK cell-mediated effec-
tor functions have been identified and cloned (2, 10). The better 
characterized receptors that regulate target cell recognition and 
activation by NK cells are CD16 or FcRγIII [which mediates anti-
body (Ab)-recognition of target cells and triggers Ab-dependent 
cell-mediated cytotoxicity or ADCC], CD314 or NKG2D, the 
natural cytotoxicity receptors CD335 (NKp46), CD336 (NKp44) 
and CD337 (NKp30), CD226 (DNAM-1), CD244 (2B4), mem-
bers of the CD158 or killer immunoglobulin-like receptor (KIR) 

family that carry a short cytoplasmic tail (KIR2DS and KIR3DS) 
and CD94/NKG2C, among others (2, 10, 23). Conversely, inhibi-
tory receptors that preclude NK cell activation are members of the 
CD158 or KIR family that carry a long cytoplasmic tail (KIR2DL 
and KIR3DL), CD94/NKG2A, TIGIT, and CD85j (ILT-2, LILRB1, 
or LIR-1), among others (2, 10, 23).

Natural killer cells not only sense and respond to ligands 
expressed on the cell surface of target cells. Instead, functional 
response of NK cells also depends on recognition of soluble 
factors such as pro-inflammatory cytokines (24). Nonetheless, 
other soluble factors also exert immunoregulatory functions on 
these cells. We and others (25–30) observed that NK cells express 
endosomal toll-like receptors (TLRs) and respond to specific 
agonists. In particular, human NK cells express functional TLR3, 
TLR7, and TLR9, and stimulation of NK cells with their agonists 
triggers IFN-γ secretion only in the presence of suboptimal 
concentrations of IL-12 or IFN-α but not IL-15 (25). This effect 
was further potentiated by co-engagement of NKG2D, one of the 
major cell surface receptors involved in recognition and elimina-
tion of tumor cells by NK cells, but TLR agonists do not seem 
to exert immunoregulatory effects on NKG2D-dependent NK 
cell-mediated cytotoxicity (5). Therefore, NK cells can sense and 
integrate signals derived from their surrounding environment, 
and that are detected by different categories of receptors.

Biological functions of NK cells are tightly regulated during 
their interaction with DC as a consequence of which NK cells 
promote maturation of DC and become activated by cell surface 
receptors such as NKp30 (31) and DNAM-1 (32) and cytokines 
such as IL-12, IL-15, and IL-18 (9, 13, 31–35). Remarkably, the 
consequences of this interaction are not only manifested in NK 
cells but also impact on the adaptive immunity as NK cells pro-
mote maturation of DC and instruct them to shape T cell activa-
tion toward Th1- and CTL-mediated responses (13, 14, 31, 33).

In this context, an integral analysis of factors that regulate 
NK cell effector functions may contribute to the development 
of novel strategies to improve immunosurveillance and promote 
a sustained tumoricidal capacity of NK cells (7). Therefore, the 
focus of our laboratory has been the investigation of how NK cells 
sense their environment and unravel novel factors that affect their 
phenotype and functions.

ReGULATiOn OF nK CeLL ACTivATiOn 
AnD eFFeCTOR FUnCTiOnS BY iL-27

IL-12 is the first described member of an extended family of 
cytokines produced mostly by myeloid cells (DC and mac-
rophages) in response to infectious agents and other insults (36). 
IL-12 promotes the generation of Th1, IFN-γ-producing cells 
during naive CD4+ T cell activation (37). Also, IL-12 produced by 
macrophages triggers NK cell-mediated IFN-γ production dur-
ing infection with intracellular parasites (38) and contributes to 
protection during acute infection (39). These findings unraveled 
the existence of a cytokine axis in which myeloid cell-derived 
IL-12 triggers lymphoid cell-derived IFN-γ production and 
contributes to resistance to infection.

Members of the IL-12 family of heterodimeric cytokines 
share protein subunits and receptor chains. IL-12 is composed 
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FiGURe 1 | Summary of cytokine axis involving iL-27 in human natural 
killer (nK) cell activation. Mature DC (mDC) secrete IL-12, IL-27, and 
IL-18, among others. During the cross talk between mDC and NK cells (and 
besides the known effect of IL-12), IL-27, alone or in concert with IL-18, 
triggers NK cell activation (upregulation of CD25 and CD69), IFN-γ 
production, and cytotoxicity against target cells that are otherwise resistant to 
non-stimulated NK cells. Such cytotoxic response involves recognition of 
target cells through NKp46- and CD16-dependent mechanisms (ADCC) and 
induction of target cell apoptosis via granule exocytosis and TRAIL-mediated 
mechanisms. Moreover, IL-27 also primes NK cells for IL-18-mediated 
augmented IFN-γ secretion which in turn upregulates ICAM-1 on target cells, 
facilitates the formation of NK cell–target cell conjugates, and therefore 
further increases the cytotoxic activity of NK cells. Since IL-18 primes NK 
cells for IL-12 responsiveness, IL-27-driven priming of NK cells for IL-18 may 
also contribute to further potentiate IL-12 responsiveness and fostering NK 
cell effector functions.
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by two subunits, namely, p35 and p40, and is recognized by a 
heterodimeric receptor composed of two chains IL-12Rβ1 and 
IL-12Rβ2 (36). Signaling through this receptor activates mainly 
STAT4, activates T-bet, and leads to IFN-γ production in NK 
and T cells, thus mediating pro-inflammatory effects (40–42). 
Since naïve T cells do not express IL-12Rβ2, IL-12 alone does 
not seem to be sufficient to guide T cell activation toward Th1 
cells (43). A similar effect was described for IFN-γ production 
by human and mouse NK cells (25, 44–46), suggesting that IL-12 
requires a cooperation with other factors to properly exert its 
effects on NK and T cell-derived IFN-γ production. IL-12 also 
enhances NK cell-mediated cytotoxicity against different target 
cells, affects expression of some cell surface receptors involved in 
target cell recognition (47–49), and, more recently, IL-12 has also 
been involved in the generation of memory-like NK cells (50, 51). 
IL-12 is secreted by DC and macrophages and has been shown to 
be a major player of a bidirectional cross talk that they establish 
with NK or T cells (36). Also, as a consequence of their cross talk 
with macrophages, NK cells can stimulate production of nitric 
oxide (NO) due to upregulation of inducible NO synthase (52). 
In addition, as a consequence of their cross talk with DC, NK 
cells can promote upregulation of costimulatory molecules such 
as CD86 (53).

Other members of the IL-12 family of cytokines are IL-23, 
IL-27, and IL-35 (36, 54) which, as mentioned, are heterodimeric 
proteins that share not only one subunit with another member of 
the family but also signal through heterodimeric receptors with 
shared subunits (54, 55). As with IL-12, macrophages and DC 
can produce IL-23 and IL-27 upon sensing pathogens or their 
products (56–59). IL-23 is composed by one subunit shared with 
IL-12 (p40) that is associated with the p19 subunit to constitute 
the active form of IL-23. This cytokine signals through a heter-
odimeric receptor composed of IL-12Rβ1 and IL-23R, which 
activates Jak2/Tyk2, STAT1/STAT3/STAT4/STAT5 (60). IL-23 
activates NK cells and in this way, contributes to the antitumor 
immune response (61, 62). Nevertheless, other authors failed to 
demonstrate an effect of IL-23 on NK cells (63, 64), making the 
effects of this cytokine on NK cells an open question that warrants 
further investigation.

IL-27, in turn, is a heterodimeric cytokine composed by the 
EBI3 and p28 subunits that signals through a heterodimeric 
receptor composed by the WSX-1 and CD130/gp130 chains 
(54, 55, 65, 66). As with other members of this familty of 
cytokines, IL-27 is produced mainly by DC and macrophages 
upon microbial insults (55). Paradoxically, IL-27 displays pro- 
and anti-inflammatory functions due to activation of STAT1 
and STAT3, respectively (36), but its pro-inflammatory effects 
depend on induction of T-bet and IL-12Rβ2 expression (67–69). 
In line with a dual role of IL-27, it has been shown that this 
cytokine prevents tissue damage induced by excessive inflam-
mation (54, 70). The effect of IL-27 on NK cells and their ability 
to control tumor growth have been described in some mouse 
models (63, 70–76), while in other tumor models, an effect of 
IL-27 on NK cells was not observed (77). Therefore, the effects 
of IL-27 on mouse NK cells might be tumor-type dependent. 
In humans, it was reported that IL-27 can costimulate NK cells 
for IFN-γ gene expression (78), while we observed that mature 

DC secrete IL-27 and that this cytokine contributes to NK cell 
activation and effector functions (79). Indeed, IL-27 can directly 
trigger IFN-γ secretion through activation of STAT1 and pro-
mote activation of NK cells (upregulation of CD25 and CD69). 
IL-27 also promotes upregulation of NKp46 and subsequent 
NKp46-dependent NK cell-mediated cytotoxicity against target 
cells that are otherwise resistant to NK cell-mediated cytotoxic-
ity, through the secretory pathway and TRAIL (79). IL-27 also 
potentiates ADCC induced by therapeutic monoclonal antibod-
ies such as rituximab, trastuzumab, and cetuximab, suggesting 
that IL-27 may be helpful as adjuvant during immunotherapy 
in human patients (79). The effects of IL-27 on NK cells are 
summarized in Figure 1.

COOPeRATiOn BeTween CYTOKineS 
FOR nK CeLL STiMULATiOn: THe CASe 
OF iL-27 AnD iL-18

Cooperative effect of cytokines, in particular those secreted by 
DC and macrophages, has been described for many of them 
and reviewed elsewhere (24). Briefly, cooperative effects of 
IL-12 and IL-2 or IL-15 (80, 81), IL-2 and IL-15 (82), IL-12 
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and IL-18 (81, 83–85) for NK cell activation, IFN-γ production, 
and cytotoxicity have been described. In most cases, underly-
ing mechanisms of cytokine cooperation for NK cell activation 
remain ill-defined. IL-18 belongs to the IL-1 superfamily and 
has the peculiarity of having a critical effect on NK cells (86). 
IL-18 seems to play a major role as “cooperating cytokine” 
for NK cell activation and elicitation of effector functions 
(87, 88). Accordingly, NK cells from IL-18−/− mice display a 
deep impaired immune response against tumors and cannot 
be properly stimulated in  vivo with IL-12 to secrete IFN-γ 
(89). These and other experimental results led to the notion 
that IL-18 actually primes NK cells to become responsive to 
IL-12 (89–91). Remarkably, we demonstrated that IL-27 also 
primes NK cells but for IL-18-mediated IFN-γ secretion induc-
ing upregulation of T-bet expression in NK cells (79). T-bet 
is a critical transcription factor that regulates IFN-γ produc-
tion (92, 93) by promoting IFN-γ gene transcription (94). 
Moreover, cooperation between IL-27 and IL-18 enhances NK 
cell-mediated cytotoxicity through the secretory pathway and 
TRAIL and involves NK cell-derived IFN-γ. This is because 
IFN-γ secretion during effector–target cell contact increases 
the percentage of ICAM-1+ target cells that in turn facilitates 
the formation of NK cell–target cell conjugates and delivery of 
the cytotoxic hit (95). These effects are summarized in Figure 1.

As DC and macrophages stimulated with microbial products 
or tumor cells can secrete IL-12, IL-18, and IL-27 (36, 73), it is 
possible that stimulatory effects of IL-27 may occur when DC or 
macrophages secrete this cytokine and establish a bidirectional 
cross talk with NK cells. During this cross talk, IL-27 may prime 
NK cells for IL-18 responsiveness, while IL-18 secreted at the 
synaptic cleft between NK cells and DC (91) may in turn prime 
NK cells for IL-12 responsiveness (90). Although a kinetic 
analysis of the production of these cytokines needs to be per-
formed to establish the temporal relationship in their secretion, 
the cooperation between IL-27 and IL-18 that we described 
unravels the existence of a hierarchical cytokine network that 
is relevant during DC-NK cell cross talk that generates fully 
functional NK cells. In line with this hierarchical cytokine 
network in NK cell activation is the fact that IL-27 can initiate 
Th1 development by naïve T cells by promoting activation of 
STAT1 and STAT3, expression of T-bet, repression of GATA3 
(involved in Th2 differentiation), and production of IL-12Rβ2 
chain (67, 68, 96, 97). These changes in CD4 T cells during 
activation confer them the ability to sense DC-derived IL-12 
and consequently follow the path of Th1 differentiation, leading 
to secretion of IFN-γ.

Collectively, the cytokine axis composed of IL-27/IL-18/IL-12 
is indeed involved in optimal NK cell activation and in skewing 
CD4 T cell responses through a cross talk between these lymphoid 
cells (NK cells and T cells) and myeloid cells (DC), representing 
an important link between innate and adaptive immunity.

COnCLUDinG ReMARKS

Natural killer cells are currently viewed not only as cytotoxic cells 
but also as strong producers of immunoregulatory cytokines, in 
particular, IFN-γ. They belong to the family of ILC, and their 
effector functions are tightly regulated by interaction with DC 
and other cells of myeloid lineage, which secrete cytokines with 
NK cell-stimulating activity. IL-12 is one of the most relevant 
cytokines produced by myeloid cells that promote NK cell 
activation. The discovery of other members of the IL-12 family 
of cytokines, such as IL-23 and IL-27, and exploration of coopera-
tion between cytokines for NK cell activation have established 
that NK cells also become activated by IL-27. Interestingly, IL-27 
not only exerts direct effects on NK cells but also primes them for 
IL-18-responsiveness, which unveils another aspect of the intri-
cate cytokine network that regulates NK cell biological functions 
and that further demonstrates a hierarchical effect of different 
cytokines on these cells. Consequently, NK cells display the 
ability to integrate multiple signals from their environment and 
adjust their effector functions accordingly, probably to optimize 
the magnitude of their response to pathogens and tumor cells 
and shape adaptive immunity in different physiopathological 
conditions.
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