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Several lines of evidence point out the relevance of nucleotide-binding oligomerization 
domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome 
as a pivotal player in regulating the integrity of intestinal homeostasis and shaping innate 
immune responses during bowel inflammation. Intensive research efforts are being made 
to achieve an integrated view about the protective/detrimental role of canonical and 
non-canonical NLRP3 inflammasome activation in the maintenance of intestinal micro-
environment integrity. Evidence is also emerging that the pharmacological modulation of 
NLRP3 inflammasome could represent a promising molecular target for the therapeutic 
management of inflammatory immune-mediated gut diseases. The present review has 
been intended to provide a critical appraisal of the available knowledge about the role of 
canonical and non-canonical NLRP3 inflammasome activation in the dynamic interplay 
between microbiota, intestinal epithelium, and innate immune system, taken together as 
a whole integrated network regulating the maintenance/breakdown of intestinal homeo-
stasis. Moreover, special attention has been paid to the pharmacological modulation of 
NLRP3 inflammasome, emphasizing the concept that this multiprotein complex could 
represent a suitable target for the management of inflammatory bowel diseases.

Keywords: canonical, non-canonical, NLRP3, bowel inflammation, intestinal homeostasis, immune system, 
enteric microbiota

iNTRODUCTiON

A growing body of evidence highlights the relevance of the nucleotide-binding oligomerization 
domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the 
pathophysiology of several autoinflammatory syndromes [i.e., cryopyrin-associated autoinflamma-
tory syndromes (CAPS), Schnitzler’s syndrome], as well as metabolic and/or inflammatory disorders 
(i.e., obesity, atherosclerosis, type 2 diabetes, gout, and intestinal inflammation) (1–3). In the setting 
of intestinal microenvironment, NLRP3 inflammasome plays a pivotal role both in regulating the 
integrity of intestinal homeostasis and in shaping innate immune responses during bowel inflamma-
tion (3). In particular, the NLRP3 inflammasome, through the adaptor protein apoptosis-associated 
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speck-like protein (ASC), recruits and activates caspase-1 leading 
to processing and release of IL-18 and IL-1β. These are two key 
cytokines involved both in the control of immune tolerance and 
support to immune and tissue events occurring in the presence 
of inflammation (4). This pathway is currently designated as 
“canonical NLRP3 inflammasome activation.” In addition, a “non-
canonical NLRP3 inflammasome activation,” which depends on 
caspase-11 in mice (human orthologs are caspase 4 and caspase 
5), has been described to be pivotal in the maintenance of intes-
tinal immune homeostasis (5).

Several lines of preclinical evidence have unraveled a dual role 
of NLRP3 inflammasome in the pathogenesis of bowel inflam-
mation (6). In particular, some studies showed a regulatory 
and reparative role of NLRP3 in the maintenance of immune 
tolerance and epithelial barrier integrity (7, 8). Conversely, oth-
ers reported that the overactivation of NLRP3 inflammasome 
during intestinal inflammation is associated with a breakdown of 
intestinal immune balance, with consequent detrimental effects 
to the host (9). In this context, research efforts are currently being 
focused on a better understanding of the role of canonical and 
non-canonical NLRP3 inflammasome in the pathophysiology of 
intestinal inflammation.

Based on the above background, the present review has 
been intended to provide an integrated and critical appraisal 
of the available knowledge about the protective or detrimental 
role of canonical and non-canonical NLRP3 inflammasome 
activation in the maintenance of intestinal homeostasis as well 
as in sustaining the pathophysiological events underlying bowel 
inflammation. Special attention has been paid to point out how 
NLRP3 inflammasome influences the dynamic interplay between 
microbiota, intestinal epithelium, and innate immune system, as 
well as how the pharmacological modulation of this enzymatic 
complex could represent a suitable strategy in the management 
of inflammatory bowel diseases (IBDs).

MeCHANiSMS OF CANONiCAL AND 
NON-CANONiCAL NLRP3 
iNFLAMMASOMe ACTivATiON

Canonical NLRP3 inflammasome activation requires two paral-
lel and independent steps: transcription and oligomerization 
(Figure  1) (10). The first step is regulated by innate immune 
signaling, mediated primarily by toll-like receptor (TLR)-adaptor 
molecules myeloid differentiation primary response 88 (MyD88) 
and/or cytokine receptors, such as the tumor necrosis factor 
receptor, which, in turn, activate pro-IL-1β and NLRP3 transcrip-
tion via nuclear factor-κB (NF-κB) activation (11). The second 
step results in NLRP3 inflammasome oligomerization, leading to 
caspase-1 activation and, in turn, IL-1β and IL-18 processing and 
release (12). Various stimuli associated with infections, includ-
ing an increase in extracellular adenosine triphosphate (ATP), 
extracellular osmolarity or pH alterations, β-amyloid  fibers 
and degradation of extracellular matrix components, increase 
in potassium efflux, reactive oxygen species (ROS), cathepsin 
activation, and deubiquitination, can promote NLRP3 inflamma-
some oligomerization and activation by initiating assembly of a 

multiprotein complex consisting of NLRP3, the adaptor protein 
ASC, and pro-caspase-1. The recruitment of ASC is pivotal for 
the activation of pro-caspase-1 into its cleaved form (13–18). 
Caspase-1 activation promotes also, independently from IL-1β 
maturation, pyroptosis, a key defense mechanism against microbial 
infections, which blocks the replication of intracellular pathogens 
via cytoplasmic swelling and promotes phagocytosis of surviv-
ing bacteria (19–21). In particular, recent evidence has shown 
that caspase-1 cleaves the linker between the amino- terminal 
gasdermin-N and carboxy-terminal gasdermin-C domains in 
gasdermin D, an acid cytoplasmic protein, which plays a criti-
cal role in the process of pyroptosis (22, 23). Pyroptosis then 
promotes the release of additional cytosolic proteins, such as high 
mobility group box 1 (HMGB1) alarmin, a pro-inflammatory 
mediator significantly involved in the pathogenesis of several 
inflammatory chronic diseases (Figure 1) (24–26).

Besides canonical NLRP3 inflammasome activation, a non-
canonical caspase-11-dependent NLRP3 activation has been 
characterized (Figure  1) (5). In particular, Gram-negative 
bacteria (i.e., Citrobacter rodentium, Escherichia coli, Legionella 
pneumophila, Salmonella typhimurium, and Vibrio cholerae) 
activate the TLR4–MyD88 and toll/IL-1 receptor homology-
domain-containing adapter-inducing interferon-β (TRIF) path-
ways, with a consequent nuclear translocation of NF-κB, which 
in turn promotes the transcription of IL-1β, IL-18, and NLRP3 
as well as interferon regulatory factor (IRF)-3 and IRF7 genes 
(27, 28). Subsequently, the IRF3–IRF7 complex elicits the expres-
sion of interferon (IFN)-α/β, which binds the IFN-α/β receptor 
1 (IFNAR)/IFNAR2 receptor leading to activation of the JAK/
STAT pathway and consequent transcription of caspase-11 gene 
(19, 29–31). In addition, binding of lipopolysaccharide (LPS) to 
caspase-11 and/or as-yet-unidentified scaffold proteins or recep-
tors induced by Gram-negative bacteria, escaping phagosomes, 
have been shown to activate the effector functions of caspase-11 
(32, 33). In particular, once activated, caspase-11 induces pyrop-
tosis through cleavage of gasdermin, as well as HMGB1 and 
IL-1α release, and promotes IL-1β processing and release through 
activation of the NLRP3-ASC-caspase-1 pathway (Figure 1) (22, 
23, 32).

These different NLRP3 activation processes occur indepen-
dently. However, caspase-11 enhances the canonical caspase-1 
processing and IL-1β/IL-18 production in the presence of 
specific stimuli (e.g., cholerae toxin or E. coli) (5, 22). In this 
setting, further in vitro experiments on cultured cells should be 
implemented to clarify the molecular mechanisms underlying the 
interplay between caspase-1 and -11 in promoting the canonical 
and/or non-canonical NLRP3 inflammasome activation.

NLRP3 iNFLAMMASOMe iN THe 
PATHOPHYSiOLOGY OF BOweL 
iNFLAMMATiON

A dynamic interplay between enteric microbiota, intestinal 
epithelium, and mucosal immune system contributes to the 
maintenance of intestinal homeostasis (34). Indeed, dysbiosis, 
alterations of intestinal epithelial barrier and uncontrolled 
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FiGURe 1 | Mechanisms of canonical and non-canonical NLRP3 inflammasome activation. Diagram showing the canonical and non-canonical NLRP3 inflammasome activation, and representation of the 
molecular mechanisms through which several compounds inhibit NLRP3 activation and counteract intestinal inflammation. Left panel: first step of canonical NLRP3 inflammasome activation by TLRs–MyD88 and/or 
TNFR, which activate pro-IL-1β and NLRP3 transcription via NF-κB activation. The second step results in NLRP3 inflammasome oligomerization, leading to caspase-1 activation as well as IL-1β and IL-18 release. 
Extracellular ATP, degradation of extracellular matrix components, increase in potassium efflux, ROS, cathepsin activation, and deubiquitination promote NLRP3 inflammasome oligomerization and activation. 
Caspase-1 activation promotes also pyroptosis and HMGB1 release. Right panel: first step of non-canonical NLRP3 inflammasome activation. Gram-negative bacteria (i.e., Citrobacter rodentium, Escherichia coli, 
and Vibrio cholerae) activate the TLR4–MyD88 and TRIF pathways, with consequent nuclear translocation of NF-κB, which promotes the transcription of IL-1β, IL-18, and NLRP3 as well as IRF-3 and IRF7 genes. 
The IRF3–IRF7 complex (1) elicits the expression of IFN-α/β (2) that binds the IFNAR1/IFNAR2 receptor (3), leading to activation of the JAK/STAT pathway (4) and transcription of caspase-11 gene (5). In the second 
step, unidentified scaffold proteins or receptors induced by Gram-negative bacteria cleave and activate caspase-11, which induces pyroptosis as well as HMGB1 and IL-1α release, and promotes the activation of 
NLRP3-ASC-caspase-1 pathway. Abbreviations: NLRP3, nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing protein 3; TLRs, toll-like receptors; MyD88, adaptor molecules 
myeloid differentiation primary response 88; TNFR, tumor necrosis factor receptor; NF-κB, nuclear factor-κB; ATP, adenosine triphosphate, ROS, reactive oxygen species; HMGB1, high mobility group box 1; TRIF, 
toll/IL-1 receptor homology (TIR)-domain-containing adapter-inducing interferon-β; IRF, interferon regulatory factor; IFN, interferon; IFNAR, interferon-α/β receptor; IL, interleukin; P2X, purinergic receptor 7; JAK/
STAT, janus kinase/signal transducers and activators of transcription; NRF2/ARE, nuclear factor (erythroid-derived 2)-like 2/antioxidant response element.
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TABLe 1 | Summary of current pre-clinical evidence supporting the differential role of NLRP3 inflammasome in intestinal inflammation.

Animal 
model

Genetic phenotype Treatment/timing Outcome Role of 
NLRP3

Reference

DSS Nlrp3−/−, Asc−/−, and caspase-1−/− 2.5% (w/v)/6 days ✓ Body weight loss
✓ Diarrhea
✓ Rectal bleeding mortality

Protective (7)

TNBS Nlrp3−/−, Asc−/−, and caspase-1−/− (30 mg/mL)/3 days ✓ Body weight loss
✓ Diarrhea
✓ Rectal bleeding mortality

Protective (7)

DSS Nlrp3−/−, Asc−/−, and caspase-1−/− ✓ 3% (w/v)/5 days and sacrifice 
at day 7

✓ 3% (w/v)/7 days and sacrifice 
at day 9

✓ Disruption of the intestinal epithelial barrier
✓ Increase in mucosal permeability
✓ Bacterial translocation
✓ Systemic dissemination

Protective (37)

DSS Nlrp3−/−, Asc−/−, caspase-1−/− 2% (w/v)/9 days ✓ Less severity of colitis
✓ Reduced pro-inflammatory cytokines levels

Detrimental (9)

DSS Nlrp3−/−, Asc−/−, caspase-1−/− 2% (w/v)/9 days ✓ Less severity of colitis
✓ Reduced pro-inflammatory cytokines levels

Detrimental (41)

IL-10−/− IL-10−/− n.a. ✓ Increase in colonic IL-1β and IL-17 levels Detrimental (42)

DSS, dextran sodium sulfate; TNBS, 2,4,6-trinitrobenzenesulfonic acid; w/v, weight/volume; IL-1β, interleukin-1beta; IL-17, interleukin-17.
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immune responses to pathogenic stimuli represent the main 
factors implicated in the pathogenesis of bowel inflamma-
tion. IBDs, including Crohn’s disease and ulcerative colitis, 
comprise chronic and relapsing inflammatory disorders that 
affect the gastrointestinal tract (35). In this context, NLRP3 
inflammasome has been found to act as a key player both in 
the maintenance and breakdown of intestinal immune toler-
ance. Indeed, through the regulation of intestinal epithelial and 
immune innate cells (monocytes, macrophages and dendritic 
cells), it contributes to maintaining intestinal homeostasis, 
while sustaining also the pathophysiological events underlying 
bowel inflammation (36). However, despite more than a decade 
has passed since the discovery of inflammasomes, the role of 
NLRP3 inflammasome in the intestinal homeostasis as well as 
in the pathophysiology of bowel inflammation remains multi-
faceted and controversial (6). A number of preclinical inves-
tigations have attempted to unravel the role played by NLRP3 
inflammasome in this setting. Accordingly, current data on the 
involvement of canonical and non-canonical NLRP3 pathways 
in the pathophysiology of bowel inflammation are addressed in 
the following section.

Canonical NLRP3 inflammasome 
Activation
In an attempt of understanding the role of canonical NLRP3 
inflammasome in the pathophysiology of bowel inflammation, 
several efforts have been made to implement research on the 
effects of NLRP3 gene deletion and its components on immune 
and non-immune cell activity, as well as on pathophysiological 
events downstream its activation in preclinical models of colitis 
(see Table  1). Two initial reports showed that NLRP3 plays a 
key role in the regulation of intestinal homeostasis, maintaining 
the epithelial barrier integrity and reducing mortality during 
experimental colitis (7, 37). In particular, Nlrp3−/−, Asc−/−, and 
caspase-1−/− mice were found to be more susceptible to colitis 
induced by dextran sodium sulfate (DSS) and 2,4,6-trinitroben-
zenesulfonic acid (TNBS), both characterized by body weight 

loss, diarrhea, rectal bleeding, and mortality, suggesting a 
protective role of NLRP3 inflammasome in the digestive tract. 
Such a favorable action was ascribed to the ability of NLRP3 
of inducing IL-18 release, a crucial mediator in the repair of 
colonic mucosal barrier that, through binding IL-18 receptors 
on intestinal epithelial cells, exerts a restorative effect on the 
enteric epithelium (Figure 2). In addition, Nlrp3−/− mice showed 
an elevation of nitric oxide (NO) levels, likely resulting from an 
increase in inducible NO synthase (iNOS) activity, and a decrease 
in the anti-inflammatory IL-10 cytokine and protective growth 
factor TGF-β expression, thus suggesting the ability of NLRP3 to 
regulate the production of pro- and anti-inflammatory mediators 
in the presence of bowel inflammation (7). However, the molecu-
lar mechanisms underlying NLRP3 inflammasome-dependent 
regulation of these inflammatory factors remain to be deter-
mined. In the same paper, the authors showed also that NLRP3 
activation modulated the activity and trafficking of neutrophils 
as well as leukocyte recruitment. In particular, NLRP3-deficient 
neutrophils showed a pattern of altered migration, attenuated 
chemotactic responses, and enhanced spontaneous apoptosis 
(7). These findings support the view that NLRP3 inflammasome 
acts in a reparative key, regulating neutrophil and leukocyte 
phagocytic activity.

Consistent with the above results, Zaki et  al. observed that 
the induction of colitis in Nlrp3−/− mice was associated with a 
disruption of intestinal epithelial barrier and an increase in 
mucosal permeability as compared to DSS wild-type (WT) 
mice, with consequent bacterial translocation into the mucosa 
and systemic dissemination (37). Such detrimental effect on the 
intestinal epithelial barrier, besides a decrease in the inflammas-
ome-dependent IL-18 cytokine release, resulted from the ability 
of NLRP3 to regulate crypt bactericidal capacity and the expres-
sion of colonic β-defensin, an antimicrobial peptide released by 
macrophages implicated in the resistance of epithelial surfaces to 
microbial colonization (Figure  2) (7). These findings highlight 
the relevance of NLRP3 in modulating the interplay between 
intestinal epithelium and innate immune cells, suggesting a 
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FiGURe 2 | Canonical and non-canonical activation of nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome pathways in 
intestinal homeostasis and inflammation. Diagram showing the role of canonical and non-canonical activation of NLRP3 inflammasome pathways in intestinal homeostasis and inflammation. Left panel: 
Canonical and non-canonical NLRP3 inflammasome activation in intestinal homeostasis. Canonical NLRP3 inflammasome activation plays a key role in the maintenance of the integrity of intestinal epithelial barrier 
as well as in the enteric microbiota composition through the release of IL-18 by macrophages and intestinal epithelial cells, the regulation of crypt bactericidal capacity, and the release of colonic β-defensin by 
macrophages. Likewise, non-canonical NLRP3 inflammasome activation contributes to maintain the integrity of intestinal epithelial barrier through IL-18 release by macrophages and intestinal epithelial cells. In 
addition, caspase-11 contributes, in a NLRP3-independent manner, to the maintenance of intestinal homeostasis promoting the release of Il-1α and IL-22. Right panel: Canonical and non-canonical NLRP3 
inflammasome activation in intestinal inflammation. In the acute phase of inflammation, canonical NLRP3 inflammasome activation promotes the release of IL-1β and IL-18, contributing to tissue repair and 
maintenance of epithelial barrier integrity. Conversely, in the chronic phase of inflammation, canonical NLRP3 inflammasome overactivation is associated with an increase in IL-1β and IL-18 release that is harmful to 
the host. In addition, IL-1β and IL-18 release induce the differentiation of T cells into pathogenic Th1 and Th17 phenotypes, which contribute to sustain the inflammatory response. Non-canonical NLRP3 
inflammasome activation plays a protective role during bowel inflammation likely via IL-18 release that stimulates intestinal epithelial cell proliferation and barrier repair. In addition, the release of IL-22 and IL-1α 
contributes to the repair of intestinal epithelial barrier. However, caspase-11 contributes also to promote intestinal epithelial cell proliferation and barrier repair by recruitment of yet unidentified inflammasome-
independent pathways.
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key role of NLRP3 inflammasome in the maintenance of the 
integrity of intestinal epithelial barrier as well as in orchestrat-
ing the mucosal innate immune response during inflammation. 
However, further investigations should be implemented to 
identify the exact mechanism through which NLRP3 modulates 
the intestinal epithelium–innate immune system interplay both 
under physiological conditions and in the presence of bowel 
inflammation.

Besides the regulation of non-immune and immune cells 
activity, NLRP3 inflammasome influences also the composition 
of enteric microbiota (7, 38). In particular, fecal microbiota in 
NLRP3−/− mice did dramatically differ, in terms of load and 
species, from WT mice, and such microbial shifts occurred in 
Nlrp3−/− mice prior to the induction of colitis, suggesting that a 
reduced inflammasome functionality is associated with enteric 
bacterial dysbiosis (37). Taken together, these findings expand 
further available knowledge about the regulatory role of inflam-
masome in homeostasis, since it appears to coordinate a dynamic 
interplay between gut microbiota and epithelium–innate immune 
system, contributing to the maintenance of intestinal microenvi-
ronment integrity (Figure 2).

Several lines of evidence point out the concept that deficien-
cies in NLRP3 inflammasome components can protect mice from 
DSS-induced colitis (9, 39). In particular, in a study by Bauer 
et al., DSS Nlrp3−/− mice developed a less severe colitis and pro-
duced lower levels of pro-inflammatory cytokines as compared 
with DSS WT mice. In addition, the pharmacological inhibition 
of caspase-1 with pralnacasan protected from colonic mucosal 
damage as with NLRP3 deficiency, suggesting that NLRP3 
inflammasome contributes to the pathophysiology of intestinal 
inflammation and that NLRP3 blockade could represent a viable 
pharmacological strategy for the management of bowel inflam-
mation (39, 40). Different findings about the different roles of 
NLRP3 inflammasome in bowel inflammation might be ascribed 
to different experimental conditions. For instance, in reports 
showing a protective and regulatory action of NLRP3, experi-
ments were performed at the seventh day after 5 days of 3% DSS 
treatment and 2 days without DSS exposure, or 7 days of contin-
ued 2.5% DSS exposure. By contrast, in the paper by Bauer et al., 
describing a detrimental role of NLRP3 in colitis, mice received 
2% DSS for 9 days. It is therefore conceivable that, extending DSS 
exposure, the overactivation of NLRP3 becomes detrimental 
for the intestinal microenvironment. Indeed, 6 days after colitis 
induction, the histopathological score was significantly reduced 
in DSS NLRP3−/− mice, as compared with DSS WT (39).

Interestingly, in a subsequent paper, Bauer et al. hypothesized 
a putative role of NLRP3 inflammasome both in the innate 
and adaptive immune response. In particular, unlike intestinal 
epithelial cells, where inflammasome-induced IL-18 release 
promoted a mucosal repair after DSS-induced damage, NLRP3-
induced IL-18 release from lamina propria macrophages and 
dendritic cells elicited the activation and differentiation of CD4+ 
T cells into the Th1 pro-inflammatory phenotype (Figure  2) 
(41). The relevance of NLRP3 in the modulation of immune cell 
differentiation was further confirmed by observing that lamina 
propria dendritic cells in NLRP3−/− mice expressed a tolero-
genic phenotype (CD103+ DC) both under physiological and 

inflammatory conditions, which may, at least in part, explain the 
reduced susceptibility of Nlrp3−/− mice to colitis (41). However, 
the molecular mechanisms through which NLRP3 triggers the 
differentiation of dendritic cells into a pro-inflammatory pheno-
type are still unclear and deserve further investigations.

In support of the above results, showing a detrimental role 
of NLRP3 in bowel inflammation, Zhang et al. (9) observed a 
causative link between NLRP3 inflammasome activation and 
development of chronic intestinal inflammation, showing that 
the increase in colonic IL-1β levels in IL-10−/− mice promoted 
IL-17 release, known to contribute to the pathogenesis of 
chronic colitis both in animal models and IBD patients (42). 
Treatment with IL-1 receptor antagonist or caspase-1 inhibitors 
suppressed IL-1β and IL-17 production, thus ameliorating spon-
taneous colitis in IL-10−/− mice. In this setting, it appears that 
the lack of anti-inflammatory IL-10 cytokine triggers unknown 
molecular mechanisms that could influence IL-1β release 
through gene transcription and/or direct regulation of canoni-
cal caspase-1-dependent inflammasome activation (9). Based 
on these findings, the authors hypothesized that, in the absence 
of anti-inflammatory IL-10 cytokine, intestinal inflammasomes 
undergo a condition of prolonged activation, leading to an 
uncontrolled and aberrant inflammasome-mediated immune 
response that contributes to the development of chronic colitis 
(9). Therefore, since IL-10 appears to modulate inflammasome 
activation, an in vivo pharmacological modulation of IL-10 in 
animal models of hapten-induced colitis could help to unravel 
the mechanisms underlying the negative regulation of inflam-
masome by IL-10.

Another considerable issue pertains to the relationship 
between NLRP3 and gut microbiota. Indeed, Bauer et  al. (41) 
observed that cohousing of Nlrp3−/− mice with WT animals 
abrogated the protective effect of NLRP3 deficiency during 
colitis, and increased DSS susceptibility. Based on these results, 
it is conceivable that changes in enteric bacterial composition 
and a condition of NLRP3 hypo-functionality could contribute 
to the pathophysiology of bowel inflammation (41). Therefore, 
although these findings are in contrast with previous observa-
tions, showing a protective role of NLRP3 during colitis (37), both 
highlight the relevance of NLRP3-enteric microbiota interplay in 
the maintenance of intestinal homeostasis.

Non-Canonical NLRP3 inflammasome 
Activation
Besides canonical NLRP3 inflammasome activation, over the 
last years, a pivotal role in the pathophysiology of intestinal 
inflammation has been proposed also for non-canonical caspase-
11-dependent NLRP3 inflammasome activation. In particular, 
caspase-11, widely expressed in both hematopoietic- and non-
hematopoietic cells, including macrophages and epithelial cells, 
once activated by Gram-negative bacteria, promotes NLRP3 
inflammasome assembly and subsequent release of IL-1β, IL-18 
and regulates IL-1α and HMGB1 release and pyroptosis (43, 44).

The contribution of caspase-11 to NLRP3 inflammasome 
activation has been initially investigated in animal models of 
acute exposure to enteric bacteria, sepsis, and endotoxic shock 
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(45, 46). Recently, several lines of evidence have shown that 
caspase-11-induced inflammasome activation plays a protec-
tive role during intestinal inflammation (8, 47). In particular, 
Williams et  al. (8) observed that Casp11−/− mice displayed a 
significantly increased morbidity, colonic tissue damage, and 
leukocyte infiltration following DSS exposure, thus suggest-
ing an increased susceptibility to DSS-induced colitis that 
was ascribed to a decrease in colonic inflammasome-induced 
IL-1β and IL-18 release (8). DSS Casp11−/− mice showed also 
a significant increase in caspase-1 expression, which, however, 
was not associated with an increased inflammasome activity 
(8). In support of the protective role of caspase-11, it has been 
observed that both chimeric Casp11−/− mice, receiving WT bone 
marrow (WT → Casp11−/−), and chimeric WT mice, receiving 
Casp11−/− bone marrow (Casp11−/−  →  WT), were more sensi-
tive to DSS-induced colitis as compared to WT mice receiving 
WT bone marrow. In particular, chimeric WT → Casp11−/− or 
Casp11−/− → WT DSS mice displayed a significantly increased 
histopathological damage, epithelial tethering, large areas of 
erosion, extensive areas of ulceration, enhanced inflammatory 
cell infiltration, and increased crypt atrophy as compared with 
chimeric DSS WT → WT animals (8). A proposed mechanism, 
underlying the protective role of caspase-11-induced inflam-
masome activation, calls into play its ability of regulating the 
release of IL-18, IL-22, and IL-1α cytokines, known to promote 
intestinal epithelial cell proliferation and barrier repair (47). 
Indeed, Casp11−/− DSS mice showed reduced colonic IL-18, 
IL-22, and IL-1α levels in comparison with WT DSS animals, 
thus suggesting that decreased levels of these cytokines, in par-
ticular IL-18, could contribute to the increase in epithelial barrier 
permeability, with consequent bacterial translocation into the 
lamina propria and exacerbation of the inflammatory response 
(48–50). Taken together, these findings suggest that caspase-11, 
via non-canonical inflammasome activation, regulates mucosal 
and epithelial barrier integrity during intestinal inflammation by 
increasing epithelial cell proliferation and inhibiting cell death 
(Figure 2).

The protective role of caspase-11-induced non-canonical 
NLRP3 inflammasome activation has been shown in a model 
of Gram-negative C. rodentium infection-induced colitis (51). 
In particular, in autophagy defective mice, made knock out for 
nucleotide-binding oligomerization domain-like receptors NLRs 
(NOD2) and recruit receptor interacting protein 2, infected 
with C. rodentium, the increase in oxidative stress activated the 
c-Jun N-terminal kinase (JNK) signaling that, in turn, increased 
caspase-11 expression and non-canonical NLRP3 inflammasome 
activation, with consequent protection of colonic epithelial bar-
rier (51). These results corroborate previous findings, supporting 
the regulatory role of non-canonical NLRP3 inflammasome 
activation in the maintenance of intestinal homeostasis, and, 
most importantly, they show that, besides the TLR4–TRIF–IFN-β 
pathway, JNK signaling promotes non-canonical inflammasome 
activation. In this context, despite the observation that JNK sign-
aling can be activated also by TLR stimulation (52), it is not clear 
whether the stimulation of TLR–MyD88–JNK pathway promotes 
caspase-11-dependent non-canonical NLRP3 inflammasome 
activation during intestinal inflammation. Therefore, there is still 

need to evaluate the role of this pathway in animal models of 
colitis.

At odds with the above data, Demon et al. (53) suggested that 
sensitivity to DSS colitis in Casp11−/− mice is independent from 
caspase-1-induced canonical inflammasome activation, since the 
colonic levels of IL-1β and IL-18, as well as circulating HMGB1 
in DSS Casp11−/− mice, did not differ from DSS WT mice, sug-
gesting that caspase-11 protects against colitis independently 
from inflammasome activation and, therefore, hypothesizing 
an unidentified pathway for caspase-11 in bowel inflammation 
(Figure  2) (53). These conflicting findings about the relevance 
of caspase-11-induced non-canonical inflammasome activation 
could result from different experimental designs, as well as 
from environmental variability. For instance, since caspase-11 is 
activated by Gram-negative bacteria, changes in gut microbiota 
composition could (i) influence hypo- or hyper-activation of 
caspase-11-induced non-canonical NLRP3 inflammasome, (ii) 
alter basal IFN production (54, 55), with subsequent changes 
in caspase-11 expression and/or function, or (iii) trigger yet 
unidentified molecular NLRP3-independent pathways involved 
in the pathophysiology of gut inflammation.

Discussion
Current data allow to hypothesize that NLRP3 inflammasome 
can play both protective and detrimental roles in bowel inflam-
mation, depending on the choice of colitis models and variations 
of commensal enteric microflora. In particular, in the model of 
DSS-induced acute colitis, which causes a direct damage to the 
epithelial barrier, with consequent stimulation of innate immune 
cells by commensal bacteria, infiltration of myeloid cells and 
massive inflammation, IL-1β and IL-18 appear to be essential for 
tissue repair and the maintenance of epithelial barrier integrity 
(56), thus suggesting a protective role of NLRP3. By contrast, 
in animal models of chronic colitis, the inflammasome-induced 
IL-1β release induces differentiation of T cells into pathogenic 
Th17 phenotypes, thus contributing to sustain the inflammatory 
process (9). Despite these conflicting and heterogeneous findings, 
it appears that, in the first acute phase of inflammation, the 
NLRP3 inflammasome acts as a key player to restore intestinal 
homeostasis. Conversely, in chronic colitis, where a disruption 
of the intestinal epithelial barrier and an exacerbation of the 
mucosal immune response occur, the overactivation of NLRP3 
inflammasome results to be harmful to the host (Figure  2). 
However, the results from knockout mouse models, where there 
is a complete removal of NLRP3 protein complex, cannot be eas-
ily and fully translated into the clinical setting, since NLRP3 gene 
deletion might trigger unknown compensatory immune mecha-
nisms that influence the disease outcome. Furthermore, it is also 
noteworthy that in animals with complete deletion of NLRP3 
gene no distinction between canonical and/or non-canonical 
NLRP3 inflammasome activation can be made. Therefore, the 
in vivo pharmacological modulation of canonical NLRP3 inflam-
masome in more predictive animal models of colitis should 
be investigated, in order to clarify the role of this enzymatic 
complex in the pathophysiology of bowel inflammation. Data 
on the effects stemming from the pharmacological modulation 
of NLRP3 inflammasome are discussed in the following sections.
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With regard to non-canonical NLRP3 inflammasome 
activation, the majority of current data suggest that caspase-
11-dependent NLRP3 activation, although dispensable for 
caspase-1-inflammasome assembly, contributes to protection 
against DSS-induced colitis regulating the epithelial barrier 
integrity. However, owing to scarce, conflicting and heterogene-
ous findings, it remains unclear whether caspase-11, expressed 
in the colonic mucosa, plays a protective role also in intestinal 
inflammation independently from canonical NLRP3 inflamma-
some activation. Accordingly, there is a strong need for further 
experiments, aimed at evaluating how the simultaneous caspase-1 
and caspase-11 gene deletion, as well as the pharmacological 
modulation of caspase-11, could interfere with NLRP3 assembly 
and consequently with the pathophysiology of bowel inflamma-
tion. In addition, given the relevance of intestinal microbiota 
in caspase-11 activation, extensive investigations are needed to 
evaluate whether changes in enteric bacteria composition could 
influence caspase-11 activity and consequent non-canonical 
inflammasome assembly.

PHARMACOLOGiCAL MODULATiON OF 
NLRP3 iNFLAMMASOMe iN BOweL 
iNFLAMMATiON

The involvement of inflammasome pathways in the patho-
physiology of intestinal inflammation is fostering research on 
the potential therapeutic benefits, in terms of anti-inflammatory 
activity, resulting from the pharmacological targeting of NLRP3 
inflammasome. At present, the majority of available studies have 
investigated the role of NLRP3 in several experimental models 
of colitis, displaying remarkable beneficial effects by the pharma-
cological modulation of this enzymatic complex (57–59). In par-
ticular, DSS-induced colitis has been largely employed, since in 
this model lysosomal damage and increased ROS levels can lead 
to an overactivation of NLRP3 inflammasome (39). Following 
DSS administration, surface molecules produced by microor-
ganisms or other inflammatory factors (i.e., LPS) can promote 
also the first step of NLRP3 assembly, through the activation of 
NF-κB transcription, with subsequent increase in NLRP3 as well 
as pro-IL-1β and pro-IL-18 protein levels. Furthermore, DSS 
treatment is associated with an increase in extracellular ATP or 
bacterial toxins, which are able to stimulate caspase-1 activation 
directly, thereby releasing IL-1β and IL-18 (39, 58). Accordingly, 
several targets have been identified for inhibiting the assembly 
of NLRP3 (Figure 1).

A pioneering study by Dashdorj et  al. (59) showed that 
MitoQ, a mitochondria-targeted derivative of the antioxidant 
ubiquinone, endowed with antioxidant and anti-apoptotic 
properties, exerted beneficial effects on experimental colitis 
through a decrease in colonic NLRP3 and caspase-1 expres-
sion, with consequent decrease in IL-1β and IL-18 release (59). 
The molecular mechanism underlying NLRP3 inflammasome 
blockade was proposed to depend on the ability of MitoQ to 
suppress ROS-induced dissociation of thioredoxin-interacting 
protein (TXNIP), from thioredoxin, thus inhibiting the inter-
action of TXNIP with NLRP3 (59). Indeed, although Masters 

et al. (60) showed that TXNIP is not essential to NLRP3 activa-
tion in bone marrow-derived macrophages primed with LPS 
and then stimulated with S. aureus, silica, or ATP, in the setting 
of colitis, where an increase in oxidative stress and activation 
of different inflammatory pathways occur, the dissociation of 
TXNIP could represent one of the mechanisms underlying 
NLRP3 activation (59).

The inhibition of mitochondrial ROS generation, as a 
suitable pharmacological target for inhibiting NLRP3 inflam-
masome assembly, has been confirmed by a subsequent study, 
showing that in  vivo administration of levornidazole, the 
levo isomer of ornidazole generally used for protozoan infec-
tions, to DSS mice exerted enteric anti-inflammatory effects 
through the blockade of NLRP3 inflammasome assembly by 
suppression of ROS generation. These findings suggest that the 
blockade of NLRP3 upstream signaling could represent a suit-
able pharmacological target for the management of intestinal 
inflammation (61).

Consistent with the above data, two recent papers by Wang 
et al. (58) and Liu et al. (62) have reported that the inhibition 
of ROS formation exerted beneficial effects in colitis through 
the blockade of NLRP3 assembly (58, 62). In particular, 
these authors observed that two small molecules, 3-(2-oxo-
2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino-[2,1-a]
isoquinolin-4(11bH)-one (compound 1) and dimethyl fumarate, 
promote the transcription of genes coding for various detoxi-
fication and antioxidant enzymes, through the activation of 
NFE-related factor 2 (Nrf2). The subsequent inhibition of ROS 
formation has been shown to exert inhibitory effects on NLRP3 
assembly (58, 62). Indeed, after exposure to environmental or 
intracellular stresses, such as ROS, Nrf2 translocates into the 
nucleus and binds to antioxidant response elements (AREs), 
which in turn induce the production of cytoprotective enzymes, 
such as heme oxygenase 1, NAD(P)H quinine oxidoreductases, 
and glutathione S-transferases, that are pivotal to maintain opti-
mal cellular functions (63). In this respect, the stimulation of 
Nrf2/ARE pathway could represent an indirect molecular target 
to inhibit NLRP3 inflammasome activation. However, further 
extensive investigations are needed to characterize the actual 
molecular mechanisms underlying the Nrf2–ROS–NLRP3 
interplay and, most importantly, the correlation between Nrf2 
stimulation and NLRP3 inhibition in the setting of bowel 
inflammation.

Besides targeting the inflammasome upstream signaling, 
NLRP3 blockade via caspase-1 inhibition has been shown also 
to exert anti-inflammatory effects in DSS mice (57, 64). In par-
ticular, a synthetic benzimidazole derivative and fumigaclavine 
C, a fungal metabolite, through the inhibition of caspase-1 
activation, exerted beneficial effects on colonic inflammation 
reducing protein and mRNA levels of colonic TNF, IL-1β, and 
IL-17 pro-inflammatory cytokines (57, 64). However, even if 
both compounds have caspase-1 inhibition as ultimate goal, 
they influence intracellular signaling in different ways. Indeed, 
the benzimidazole derivative has been shown to inhibit MAPK 
and STAT1 signaling without interaction with NF-κB-mediated 
transcription, while fumigaclavine C was found to significantly 
interfere with NF-κB activation, STAT3 and STAT1 signaling. 
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These findings suggest that the inhibition of the primary TRL–
MyD88–NF-κB step involved in NLRP3 inflammasome 
activation, though at different steps of the intracellular cascade, 
represents a suitable pharmacological target for inhibiting the 
NLRP3 assembly, and therefore a promising strategy for treat-
ment of bowel inflammation.

In further support of the above data, a recent paper by Liu 
et  al. (65) showed that the inhibition of mucosa-associated-
lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a 
scaffold protein, which recruits the IκB kinase complex lead-
ing to release and activation of NF-κB, ameliorated clinical 
symptoms and histopathologic features of DSS-induced colitis 
through NF-κB and NLRP3 inhibition, thus interfering with both 
inflammasome activation steps (65, 66). In particular, treatment 
with two specific MALT1 inhibitors, MI-2 and mepazine, dose-
dependently attenuated the symptoms of colitis in mice through a 
decrease in protein and mRNA levels of colonic TNF, IL-1β, IL-6, 
IL-18, IL-17A, and IFN-γ pro-inflammatory cytokines (66). The 
mechanisms underlying the inhibitory effects of MALT1 in DSS-
induced colitis have been ascribed to the inhibition on NF-κB and 
NLRP3 inflammasome activation in macrophages, thus implying 
that MALT1-NF-κB signaling regulates NLRP3 inflammasome 
activation. However, since the NF-κB pathway is involved in 
the transcription of both pro- and anti-inflammatory mediators 
(i.e., IL-10 and TGF-β), extensive investigations are required to 
identify more selective targets to inhibit NLRP3 inflammasome 
oligomerization, thereby counteracting the pathophysiological 
events underlying NLRP3 activation, and attenuating bowel 
inflammation.

Of interest, several lines of evidence have shown that various 
NLRP3-targeting natural compounds are able to exert anti-
inflammatory effects on DSS-induced colitis in mice. Guo et al. 
(66) observed that oral administration of asiatic acid, a natural 
triterpenoid compound, dose-dependently attenuated body 
weight loss, shortening of colon length, histopathologic scores, 
myeloperoxidase activity, and colonic TNF, IL-1β, IL-6, and IFN-
γ levels in mice with DSS-induced colitis through the inhibition 
of NLRP3 inflammasome activation (67). In particular, the 
authors found that asiatic acid inhibited the upstream signaling 
of inflammasome oligomerization by suppressing mitochondrial 
ROS generation, as well as caspase-1 activation and inflamma-
some assembly. Likewise, treatment with fraxinellone, a natural 
lactone endowed with immunosuppressive activity, significantly 
reduced weight loss, diarrhea and colonic macroscopic damage, 
as well as myeloperoxidase, alkaline phosphatase, and colonic 
TNF, IL-1β, IL-6, and IL-18 levels in DSS-induced colitis mice 
(68). Such anti-inflammatory effects were ascribed to the inhibi-
tion of CD11b+ macrophage infiltration, as well as the decrease 
in mRNA levels for colonic macrophage-related proteins, includ-
ing intercellular adhesion molecule 1 (ICAM1), vascular cell 
adhesion molecule 1 (VCAM1), iNOS, and cyclooxygenase-2 
(COX-2), through NF-κB signaling and NLRP3 inhibition. These 
findings represent a point of novelty, since they support the view 
that the blockade of NLRP3 assembly can influence also the 
activation of infiltrating macrophages by inhibiting the release of 
intercellular adhesion molecules and pro-inflammatory media-
tors contributing to the inflammatory process.

Recent evidence has shown that several flavonoid derivatives 
exerted anti-inflammatory effects on colitis via NF-κB/NLRP3 
inhibition (69–71). In particular, treatment with wogonoside, 
a glucuronide metabolite of the bioactive flavonoid wogonin, 
reduced significantly colonic NF-κB and NLRP3 expression, as 
well as caspase-1 expression and activity in mice with colitis, exert-
ing beneficial effects on colonic inflammation (69). Likewise, the 
administration of alpinetin, a novel plant flavonoid isolated from 
Alpinia katsumadai Hayata, significantly attenuated diarrhea, 
colonic shortening, histological damage, and myeloperoxidase 
activity as well as colonic TNF and IL-1β expression in mice 
with DSS-induced colitis, likely by suppressing TRL4-NF-κB 
and NLRP3-ASC-caspase-1 signaling (70). However, the authors 
documented the ability of alpinetin of inhibiting NLRP3 activa-
tion in in vitro THP-1 cells, omitting the evaluation of alpinetin 
effects on NLRP3 activation in DSS mice.

The protective effects of flavonoids via NLRP3 inhibition have 
been shown also in a mouse model of DSS-induced colitis (71). 
In particular, a dietary apigenin (API) enrichment decreased the 
macroscopic and microscopic signs of colitis and reduced colonic 
PGE, COX-2, and iNOS expressions as well as serum matrix 
metalloproteinase (MMP-3) levels. In addition, API diet reduced 
IL-1β and TNF pro-inflammatory cytokine release in primary 
LPS-stimulated splenocytes. The beneficial effects of API on 
colonic inflammation result from the inhibition of both canonical 
and non-canonical NLRP3 inflammasome pathways, through the 
regulation of caspase-1 and caspase-11 enzyme expression and 
activity (71). Indeed, although caspase-11 has been proposed 
to mediate a protective role in the host during the acute phases 
of colitis, it appears to be detrimental in chronic inflammation, 
where it is significantly upregulated and promotes IL-1β and 
IL-18 release (8, 47). These findings demonstrate, for the first 
time, that the pharmacological blockade of both canonical and 
non-canonical NLRP3 activation could represent a suitable and 
promising pharmacological target for treatment of bowel inflam-
mation. Nevertheless, the molecular mechanisms through which 
API can block canonical and non-canonical NLRP3 assembly 
remain to be clarified.

OveRALL CONCLUSiON AND FUTURe 
DiReCTiONS

Studies aimed at characterizing the molecular mechanisms 
and downstream signaling underlying the canonical and non-
canonical NLRP3 inflammasome activation have unraveled the 
pivotal and dual role of this enzymatic complex in the intestinal 
homeostasis. According to current information, NLRP3 regulates 
the integrity of intestinal mucosal barrier under physiological 
conditions, but it can shape also the immune response against 
commensal microbiota during bowel inflammation.

One considerable deficiency in our knowledge concerns how 
canonical and non-canonical NLRP3 inflammasome coordinate 
differently the dynamic interplays among gut microbiota–
epithelium–innate immune system. For instance, it remains 
unclear whether alterations of enteric bacteria composition 
promote an abnormal caspase-1- and/or caspase-11-dependent 
NLRP3 inflammasome activation, or whether, vice  versa, the 
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A recent study by Coll et al. (72) showed that the pharmacologi-
cal blockade of canonical and non-canonical NLRP3 activation 
with MCC950, a recognized selective, small molecule inhibitor 
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from selective inhibition of canonical and non-canonical NLRP3 
inflammasome activation.

Another relevant issue concerns the inhibition of NLRP3 
downstream signaling through the blockade of IL-β receptor. In 
this respect, several lines of evidence have shown that treatment 
with IL-β receptor antagonists (i.e., anakinra) exerted beneficial 
effects in patients with immune-mediated inflammatory dis-
eases (i.e., rheumatoid arthritis, ankylosing spondylitis, and 
gout) (73). In addition, anakinra reduced postoperative inflam-
mation and ameliorated postoperative ileus in mice (74), thus 
suggesting that IL-1β receptor blockade exerts beneficial effects 
during intestinal inflammation. Based on these findings, it is 
conceivable that both upstream and downstream inhibition of 
NLRP3 inflammasome could represent suitable pharmacological 
approaches for treatment of bowel inflammation. Therefore, the 

possible effects of the pharmacological blockade of IL-1β recep-
tor in different animal models of colitis should be investigated, 
in order to find out the better strategy to inhibit the NLRP3 
inflammasome pathway and counteract bowel inflammation.

In support of preclinical findings, clinical evidence has 
documented an increased IL-1β secretion from colonic tissues 
and macrophages of IBD patients, these patterns being corre-
lated with the severity of disease, thus suggesting IL-1β as a key 
pro-inflammatory cytokine for the pathogenesis of IBDs (75). 
In addition, the activation of NLRP3 inflammasome in mono-
cytes infiltrating the lamina propria and M1 pro- inflammatory 
macrophages isolated from intestinal specimens of IBD 
patients, seems to contribute to the disruption of epithelial 
barrier through a deregulation of tight junction proteins (i.e., 
claudin-1, claudin-2, and junctional adhesion molecule-A), as 
well as to induce epithelial cell apoptosis (76). In particular, 
NLRP3 inflammasome-induced IL-1β and IL-18 release from 
monocytes infiltrating the lamina propria alters tight junctions 
and promotes apoptosis in intestinal epithelial cells, and, sub-
sequently M1 macrophages, recruited into the lamina propria, 
contribute to sustain the immune innate response, thus sug-
gesting a detrimental role of NLRP3 inflammasome in IBD 
patients (76). Accordingly, a translation of preclinical evidence 
into clinical practice could allow a better understanding of 
protective/detrimental shift of NLRP3 in IBD patients.

In conclusion, given the heterogeneity of preclinical stud-
ies and the paucity of human studies, extensive investigations 
are awaited for better understanding the NLRP3 inflamma-
some functionality in non-immune and immune cells since 
early stages of intestinal inflammation, in order to clarify the 
relevance of NLRP3 inflammasome in the pathophysiology of 
IBDs. In addition, considering the close inflammasome-gut 
microbiota interplay, and that genetic NLRP3 mutations and 
environmental factors, altering the gut microbiota, are involved 
in the pathogenesis of IBDs, future investigations should be 
addressed to characterize the correlation between changes in 
enteric bacteria composition and hypo- or hyperfunctionality of 
NLRP3 inflammasome.

AUTHOR CONTRiBUTiONS

CP, GL-C, and LA wrote the first draft of the manuscript. CP 
prepared the figures. CB and MF revised the manuscript.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.it.2011.
05.004
https://doi.org/10.1016/j.it.2011.
05.004
https://doi.org/10.1146/annurev-pathol-012414-040431
https://doi.org/10.1038/mi.2012.115
https://doi.org/10.1093/intimm/
dxu066
https://doi.org/10.1093/intimm/
dxu066
https://doi.org/10.1038/nature10558
https://doi.org/10.1100/tsw.2011.139
https://doi.org/10.1002/ibd.21478


11

Pellegrini et al. NLRP3 Inflammasome in Intestinal Inflammation

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 8 | Article 36

and experimental colitis pathogenesis. Am J Physiol Gastrointest Liver Physiol 
(2015) 308(2):G139–50. doi:10.1152/ajpgi.00234.2014 

9. Zhang J, Fu S, Sun S, Li Z, Guo B. Inflammasome activation has an important 
role in the development of spontaneous colitis. Mucosal Immunol (2014) 
7(5):1139–50. doi:10.1038/mi.2014.1 

10. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. 
Nat Rev Immunol (2013) 13(6):397–411. doi:10.1038/nri3452 

11. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert 
D, et  al. Cutting edge: NF-kappaB activating pattern recognition and 
cytokine receptors license NLRP3 inflammasome activation by regulat-
ing NLRP3 expression. J Immunol (2009) 183(2):787–91. doi:10.4049/
jimmunol.0901363 

12. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, 
et  al. Reconstituted NALP1 inflammasome reveals two-step mechanism of 
caspase-1 activation. Mol Cell (2007) 25(5):713–24. doi:10.1016/j.molcel. 
2007.01.032 

13. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma 
M, et  al. Cryopyrin activates the inflammasome in response to toxins and 
ATP. Nature (2006) 440(7081):228–32. doi:10.1038/nature04515 

14. Compan V, Baroja-Mazo A, López-Castejón G, Gomez AI, Martínez 
CM, Angosto D, et  al. Cell volume regulation modulates NLRP3 
inflammasome activation. Immunity (2012) 37(3):487–500. doi:10.1016/ 
j.immuni.2012.06.013 

15. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. 
The NALP3 inflammasome is involved in the innate immune response to 
amyloid-beta. Nat Immunol (2008) 9(8):857–65. doi:10.1038/ni.1636 

16. Lopez-Castejon G, Luheshi NM, Compan V, High S, Whitehead RC, Flitsch 
S, et  al. Deubiquitinases regulate the activity of caspase-1 and interleu-
kin-1beta secretion via assembly of the inflammasome. J Biol Chem (2013) 
288(4):2721–33. doi:10.1074/jbc.M112.422238 

17. Munoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, 
Núñez G. K(+) efflux is the common trigger of NLRP3 inflammasome 
activation by bacterial toxins and particulate matter. Immunity (2013) 
38(6):1142–53. doi:10.1016/j.immuni.2013.05.016 

18. Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, et  al. 
Critical role for calcium mobilization in activation of the NLRP3 inflam-
masome. Proc Natl Acad Sci U S A (2012) 109(28):11282–7. doi:10.1073/
pnas.1117765109 

19. Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated 
pyroptotic and apoptotic cell death, and defense against infection. 
Curr Opin Microbiol (2013) 16(3):319–26. doi:10.1016/j.mib.2013. 
04.004 

20. Martin-Rodriguez S, Caballo C, Gutierrez G, Vera M, Cruzado JM, 
Cases A, et  al. TLR4 and NALP3 inflammasome in the development of 
endothelial dysfunction in uraemia. Eur J Clin Invest (2015) 45(2):160–9. 
doi:10.1111/eci.12392 

21. Casson CN, Shin S. Inflammasome-mediated cell death in response to 
bacterial pathogens that access the host cell cytosol: lessons from Legionella 
pneumophila. Front Cell Infect Microbiol (2013) 3:111. doi:10.3389/fcimb.2013. 
00111 

22. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. 
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signal-
ling. Nature (2015) 526(7575):666–71. doi:10.1038/nature15541 

23. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD 
by inflammatory caspases determines pyroptotic cell death. Nature (2015) 
526(7575):660–5. doi:10.1038/nature15514 

24. Lopez-Castejon G, Pelegrin P. Current status of inflammasome blockers as 
anti-inflammatory drugs. Expert Opin Investig Drugs (2012) 21(7):995–1007. 
doi:10.1517/13543784.2012.690032 

25. Lu B, Wang H, Andersson U, Tracey KJ. Regulation of HMGB1 release by 
inflammasomes. Protein Cell (2013) 4(3):163–7. doi:10.1007/s13238-012- 
2118-2 

26. Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, et al. 
Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. 
J Immunol (2010) 185(7):4385–92. doi:10.4049/jimmunol.1000803 

27. Gurung P, Malireddi RK, Anand PK, Demon D, Vande Walle L, Liu Z, et al. 
Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing 
interferon-beta (TRIF)-mediated caspase-11 protease production integrates 
toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated 

host defense against enteropathogens. J Biol Chem (2012) 287(41):34474–83. 
doi:10.1074/jbc.M112.401406 

28. Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, et al. 
Detection of prokaryotic mRNA signifies microbial viability and promotes 
immunity. Nature (2011) 474(7351):385–9. doi:10.1038/nature10072 

29. Schauvliege R, Vanrobaeys J, Schotte P, Beyaert R. Caspase-11 gene expres-
sion in response to lipopolysaccharide and interferon-gamma requires 
nuclear factor-kappa B and signal transducer and activator of transcrip-
tion (STAT) 1. J Biol Chem (2002) 277(44):41624–30. doi:10.1074/jbc. 
M207852200 

30. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, et  al. 
Caspase-11 increases susceptibility to Salmonella infection in the absence of 
caspase-1. Nature (2012) 490(7419):288–91. doi:10.1038/nature11419 

31. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart 
LM, et  al. TRIF licenses caspase-11-dependent NLRP3 inflammasome 
activation by gram-negative bacteria. Cell (2012) 150(3):606–19. doi:10.1016/ 
j.cell.2012.07.007 

32. Vigano E, Mortellaro A. Caspase-11: the driving factor for noncanon-
ical inflammasomes. Eur J Immunol (2013) 43(9):2240–5. doi:10.1002/
eji.201343800 

33. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are 
innate immune receptors for intracellular LPS. Nature (2014) 514(7521):187–
92. doi:10.1038/nature13683 

34. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the 
intestinal microbiota and immune system. Nature (2012) 489(7415):231–41. 
doi:10.1038/nature11551 

35. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, 
Verne GN. Intestinal barrier function in health and gastrointestinal 
disease. Neurogastroenterol Motil (2012) 24(6):503–12. doi:10.1111/ 
j.1365-2982.2012.01921.x 

36. Rescigno M. The intestinal epithelial barrier in the control of homeostasis 
and immunity. Trends Immunol (2011) 32(6):256–64. doi:10.1016/j.it.2011. 
04.003 

37. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The 
NLRP3 inflammasome protects against loss of epithelial integrity and mortal-
ity during experimental colitis. Immunity (2010) 32(3):379–91. doi:10.1016/ 
j.immuni.2010.03.003 

38. Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, 
LeBlanc PM, et  al. Control of intestinal homeostasis, colitis, and colitis-as-
sociated colorectal cancer by the inflammatory caspases. Immunity (2010) 
32(3):367–78. doi:10.1016/j.immuni.2010.02.012 

39. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, et  al. 
Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by 
the NLRP3 inflammasome. Gut (2010) 59(9):1192–9. doi:10.1136/gut.2009. 
197822 

40. Loher F, Bauer C, Landauer N, Schmall K, Siegmund B, Lehr HA, et  al. 
The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces 
dextran sulfate sodium-induced murine colitis and T helper 1 T-cell acti-
vation. J Pharmacol Exp Ther (2004) 308(2):583–90. doi:10.1124/jpet.103. 
057059 

41. Bauer C, Duewell P, Lehr HA, Endres S, Schnurr M. Protective and aggra-
vating effects of Nlrp3 inflammasome activation in IBD models: influence 
of genetic and environmental factors. Dig Dis (2012) 30(Suppl 1):82–90. 
doi:10.1159/000341681 

42. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. 
Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta 
T cells, amplifying Th17 responses and autoimmunity. Immunity (2009) 
31(2):331–41. doi:10.1016/j.immuni.2009.08.001 

43. Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome 
activation: recent advances and novel insights. Trends Cell Biol (2015) 
25(5):308–15. doi:10.1016/j.tcb.2014.12.009 

44. Eldridge MJ, Shenoy AR. Antimicrobial inflammasomes: unified signalling 
against diverse bacterial pathogens. Curr Opin Microbiol (2015) 23:32–41. 
doi:10.1016/j.mib.2014.10.008 

45. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS 
activates caspase-11: implications in TLR4-independent endotoxic shock. 
Science (2013) 341(6151):1250–3. doi:10.1126/science.1240988 

46. Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M, Ma C, et  al. 
Noncanonical inflammasome activation of caspase-4/caspase-11 mediates 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1152/ajpgi.00234.2014
https://doi.org/10.1038/mi.2014.1
https://doi.org/10.1038/nri3452
https://doi.org/10.4049/jimmunol.0901363
https://doi.org/10.4049/jimmunol.0901363
https://doi.org/10.1016/j.molcel.
2007.01.032
https://doi.org/10.1016/j.molcel.
2007.01.032
https://doi.org/10.1038/nature04515
https://doi.org/10.1016/
j.immuni.2012.06.013
https://doi.org/10.1016/
j.immuni.2012.06.013
https://doi.org/10.1038/ni.1636
https://doi.org/10.1074/jbc.M112.422238
https://doi.org/10.1016/j.immuni.2013.05.016
https://doi.org/10.1073/pnas.1117765109
https://doi.org/10.1073/pnas.1117765109
https://doi.org/10.1016/j.mib.2013.
04.004
https://doi.org/10.1016/j.mib.2013.
04.004
https://doi.org/10.1111/eci.12392
https://doi.org/10.3389/fcimb.2013.
00111
https://doi.org/10.3389/fcimb.2013.
00111
https://doi.org/10.1038/nature15541
https://doi.org/10.1038/nature15514
https://doi.org/10.1517/13543784.2012.690032
https://doi.org/10.1007/s13238-012-
2118-2
https://doi.org/10.1007/s13238-012-
2118-2
https://doi.org/10.4049/jimmunol.1000803
https://doi.org/10.1074/jbc.M112.401406
https://doi.org/10.1038/nature10072
https://doi.org/10.1074/jbc.
M207852200
https://doi.org/10.1074/jbc.
M207852200
https://doi.org/10.1038/nature11419
https://doi.org/10.1016/
j.cell.2012.07.007
https://doi.org/10.1016/
j.cell.2012.07.007
https://doi.org/10.1002/eji.201343800
https://doi.org/10.1002/eji.201343800
https://doi.org/10.1038/nature13683
https://doi.org/10.1038/nature11551
https://doi.org/10.1111/
j.1365-2982.2012.01921.x
https://doi.org/10.1111/
j.1365-2982.2012.01921.x
https://doi.org/10.1016/j.it.2011.
04.003
https://doi.org/10.1016/j.it.2011.
04.003
https://doi.org/10.1016/
j.immuni.2010.03.003
https://doi.org/10.1016/
j.immuni.2010.03.003
https://doi.org/10.1016/j.immuni.2010.02.012
https://doi.org/10.1136/gut.2009.
197822
https://doi.org/10.1136/gut.2009.
197822
https://doi.org/10.1124/jpet.103.
057059
https://doi.org/10.1124/jpet.103.
057059
https://doi.org/10.1159/000341681
https://doi.org/10.1016/j.immuni.2009.08.001
https://doi.org/10.1016/j.tcb.2014.12.009
https://doi.org/10.1016/j.mib.2014.10.008
https://doi.org/10.1126/science.1240988


12

Pellegrini et al. NLRP3 Inflammasome in Intestinal Inflammation

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 8 | Article 36

epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 
(2014) 16(2):249–56. doi:10.1016/j.chom.2014.07.002 

47. Oficjalska K, Raverdeau M, Aviello G, Wade SC, Hickey A, Sheehan 
KM, et  al. Protective role for caspase-11 during acute experimental 
murine colitis. J Immunol (2015) 194(3):1252–60. doi:10.4049/jimmunol. 
1400501 

48. Siegmund B. Interleukin-18 in intestinal inflammation: friend and foe? 
Immunity (2010) 32(3):300–2. doi:10.1016/j.immuni.2010.03.010 

49. Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-
IL-22R pathway in regulating immunity and inflammation at barrier 
surfaces. Adv Immunol (2010) 107:1–29. doi:10.1016/B978-0-12-381300-8. 
00001-0 

50. Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory 
bowel disease. Gut (2004) 53(1):1–4. doi:10.1136/gut.53.1.1 

51. Lupfer CR, Anand PK, Liu Z, Stokes KL, Vogel P, Lamkanfi M, et  al. 
Reactive oxygen species regulate caspase-11 expression and activation 
of the non-canonical NLRP3 inflammasome during enteric pathogen 
infection. PLoS Pathog (2014) 10(9):e1004410. doi:10.1371/journal.ppat. 
1004410 

52. Takeda K, Akira S. TLR signaling pathways. Semin Immunol (2004) 16(1):3–9. 
doi:10.1016/j.smim.2003.10.003 

53. Demon D, Kuchmiy A, Fossoul A, Zhu Q, Kanneganti TD, Lamkanfi M. 
Caspase-11 is expressed in the colonic mucosa and protects against dextran 
sodium sulfate-induced colitis. Mucosal Immunol (2014) 7(6):1480–91. 
doi:10.1038/mi.2014.36 

54. Kawashima T, Kosaka A, Yan H, Guo Z, Uchiyama R, Fukui R, et al. Double-
stranded RNA of intestinal commensal but not pathogenic bacteria triggers 
production of protective interferon-beta. Immunity (2013) 38(6):1187–97. 
doi:10.1016/j.immuni.2013.02.024 

55. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg 
GF, et  al. Commensal bacteria calibrate the activation threshold of innate 
antiviral immunity. Immunity (2012) 37(1):158–70. doi:10.1016/j.immuni. 
2012.04.011 

56. Reuter BK, Pizarro TT. Commentary: the role of the IL-18 system and other 
members of the IL-1R/TLR superfamily in innate mucosal immunity and the 
pathogenesis of inflammatory bowel disease: friend or foe? Eur J Immunol 
(2004) 34(9):2347–55. doi:10.1002/eji.200425351 

57. Liu W, Guo W, Wu J, Luo Q, Tao F, Gu Y, et al. A novel benzo[d]imidazole 
derivate prevents the development of dextran sulfate sodium-induced murine 
experimental colitis via inhibition of NLRP3 inflammasome. Biochem 
Pharmacol (2013) 85(10):1504–12. doi:10.1016/j.bcp.2013.03.008 

58. Wang Y, Wang H, Qian C, Tang J, Zhou W, Liu X, et  al. 3-(2-Oxo-2-
phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquino-
lin-4(1 1bH)-one (compound 1), a novel potent Nrf2/ARE inducer, 
protects against DSS-induced colitis via inhibiting NLRP3 inflam-
masome. Biochem Pharmacol (2016) 101:71–86. doi:10.1016/j.bcp.2015. 
11.015 

59. Dashdorj A, Jyothi KR, Lim S, Jo A, Nguyen MN, Ha J, et al. Mitochondria-
targeted antioxidant MitoQ ameliorates experimental mouse colitis by 
suppressing NLRP3 inflammasome-mediated inflammatory cytokines. 
BMC Med (2013) 11:178. doi:10.1186/1741-7015-11-178 

60. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, 
et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide 
provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat 
Immunol (2010) 11(10):897–904. doi:10.1038/ni.1935 

61. Wang X, Wang S, Hu C, Chen W, Shen Y, Wu X, et  al. A new pharmaco-
logical effect of levornidazole: inhibition of NLRP3 inflammasome acti-
vation. Biochem Pharmacol (2015) 97(2):178–88. doi:10.1016/j.bcp.2015. 
06.030 

62. Liu X, Zhou W, Zhang X, Lu P, Du Q, Tao L, et  al. Dimethyl fumarate 
ameliorates dextran sulfate sodium-induced murine experimental 
colitis by activating Nrf2 and suppressing NLRP3 inflammasome acti-
vation. Biochem Pharmacol (2016) 112:37–49. doi:10.1016/j.bcp.2016. 
05.002 

63. Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 
pathway in regulation of adaptive response to electrophiles. Free Radic Biol 
Med (2004) 36(10):1208–13. doi:10.1016/j.freeradbiomed.2004.02.075 

64. Guo W, Hu S, Elgehama A, Shao F, Ren R, Liu W, et  al. Fumigaclavine C 
ameliorates dextran sulfate sodium-induced murine experimental colitis 
via NLRP3 inflammasome inhibition. J Pharmacol Sci (2015) 129(2):101–6. 
doi:10.1016/j.jphs.2015.05.003 

65. Liu W, Guo W, Hang N, Yang Y, Wu X, Shen Y, et al. MALT1 inhibitors prevent 
the development of DSS-induced experimental colitis in mice via inhibiting 
NF-kappaB and NLRP3 inflammasome activation. Oncotarget (2016) 
7(21):30536–49. doi:10.18632/oncotarget.8867 

66. Seo SU, Kamada N, Muñoz-Planillo R, Kim YG, Kim D, Koizumi Y, et  al. 
Distinct commensals induce interleukin-1beta via NLRP3 inflammasome 
in inflammatory monocytes to promote intestinal inflammation in 
response to injury. Immunity (2015) 42(4):744–55. doi:10.1016/j.immuni. 
2015.03.004 

67. Guo W, Liu W, Jin B, Geng J, Li J, Ding H, et al. Asiatic acid ameliorates dextran 
sulfate sodium-induced murine experimental colitis via suppressing mito-
chondria-mediated NLRP3 inflammasome activation. Int Immunopharmacol 
(2015) 24(2):232–8. doi:10.1016/j.intimp.2014.12.009 

68. Wu XF, Ouyang ZJ, Feng LL, Chen G, Guo WJ, Shen Y, et al. Suppression of 
NF-kappaB signaling and NLRP3 inflammasome activation in macrophages 
is responsible for the amelioration of experimental murine colitis by the nat-
ural compound fraxinellone. Toxicol Appl Pharmacol (2014) 281(1):146–56. 
doi:10.1016/j.taap.2014.10.002 

69. Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, et al. Wogonoside protects against 
dextran sulfate sodium-induced experimental colitis in mice by inhibiting 
NF-kappaB and NLRP3 inflammasome activation. Biochem Pharmacol (2015) 
94(2):142–54. doi:10.1016/j.bcp.2015.02.002 

70. He X, Wei Z, Wang J, Kou J, Liu W, Fu Y, et  al. Alpinetin attenuates 
inflammatory responses by suppressing TLR4 and NLRP3 signaling path-
ways in DSS-induced acute colitis. Sci Rep (2016) 6:28370. doi:10.1038/ 
srep28370 

71. Márquez-Flores YK, Villegas I, Cárdeno A, Rosillo MÁ, Alarcón-de-la-Lastra 
C. Apigenin supplementation protects the development of dextran sulfate 
sodium-induced murine experimental colitis by inhibiting canonical and 
non-canonical inflammasome signaling pathways. J Nutr Biochem (2016) 
30:143–52. doi:10.1016/j.jnutbio.2015.12.002 

72. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, 
et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treat-
ment of inflammatory diseases. Nat Med (2015) 21(3):248–55. doi:10.1038/
nm.3806 

73. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking 
interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov (2012) 
11(8):633–52. doi:10.1038/nrd3800 

74. Stoffels B, Hupa KJ, Snoek SA, van Bree S, Stein K, Schwandt T, et  al. 
Postoperative ileus involves interleukin-1 receptor signaling in enteric 
glia. Gastroenterology (2014) 146(1):176.e–87.e. doi:10.1053/j.gastro.2013. 
09.030 

75. Coccia M, Harrison OJ, Schiering C, Asquith MJ, Becher B, Powrie F, 
et  al. IL-1beta mediates chronic intestinal inflammation by promot-
ing the accumulation of IL-17A secreting innate lymphoid cells and 
CD4(+) Th17 cells. J Exp Med (2012) 209(9):1595–609. doi:10.1084/jem. 
20111453 

76. Lissner D, Schumann M, Batra A, Kredel LI, Kühl AA, Erben U, et  al. 
Monocyte and M1 macrophage-induced barrier defect contributes to chronic 
intestinal inflammation in IBD. Inflamm Bowel Dis (2015) 21(6):1297–305. 
doi:10.1097/MIB.0000000000000384 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Pellegrini, Antonioli, Lopez-Castejon, Blandizzi and Fornai. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.chom.2014.07.002
https://doi.org/10.4049/jimmunol.
1400501
https://doi.org/10.4049/jimmunol.
1400501
https://doi.org/10.1016/j.immuni.2010.03.010
https://doi.org/10.1016/B978-0-12-381300-8.
00001-0
https://doi.org/10.1016/B978-0-12-381300-8.
00001-0
https://doi.org/10.1136/gut.53.1.1
https://doi.org/10.1371/journal.ppat.
1004410
https://doi.org/10.1371/journal.ppat.
1004410
https://doi.org/10.1016/j.smim.2003.10.003
https://doi.org/10.1038/mi.2014.36
https://doi.org/10.1016/j.immuni.2013.02.024
https://doi.org/10.1016/j.immuni.
2012.04.011
https://doi.org/10.1016/j.immuni.
2012.04.011
https://doi.org/10.1002/eji.200425351
https://doi.org/10.1016/j.bcp.2013.03.008
https://doi.org/10.1016/j.bcp.2015.
11.015
https://doi.org/10.1016/j.bcp.2015.
11.015
https://doi.org/10.1186/1741-7015-11-178
https://doi.org/10.1038/ni.1935
https://doi.org/10.1016/j.bcp.2015.
06.030
https://doi.org/10.1016/j.bcp.2015.
06.030
https://doi.org/10.1016/j.bcp.2016.
05.002
https://doi.org/10.1016/j.bcp.2016.
05.002
https://doi.org/10.1016/j.freeradbiomed.2004.02.075
https://doi.org/10.1016/j.jphs.2015.05.003
https://doi.org/10.18632/oncotarget.8867
https://doi.org/10.1016/j.immuni.
2015.03.004
https://doi.org/10.1016/j.immuni.
2015.03.004
https://doi.org/10.1016/j.intimp.2014.12.009
https://doi.org/10.1016/j.taap.2014.10.002
https://doi.org/10.1016/j.bcp.2015.02.002
https://doi.org/10.1038/
srep28370
https://doi.org/10.1038/
srep28370
https://doi.org/10.1016/j.jnutbio.2015.12.002
https://doi.org/10.1038/nm.3806
https://doi.org/10.1038/nm.3806
https://doi.org/10.1038/nrd3800
https://doi.org/10.1053/j.gastro.2013.
09.030
https://doi.org/10.1053/j.gastro.2013.
09.030
https://doi.org/10.1084/jem.
20111453
https://doi.org/10.1084/jem.
20111453
https://doi.org/10.1097/MIB.0000000000000384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation
	Introduction
	Mechanisms of Canonical and Non-Canonical NLRP3 Inflammasome Activation
	NLRP3 Inflammasome in the Pathophysiology of Bowel Inflammation
	Canonical NLRP3 Inflammasome Activation
	Non-Canonical NLRP3 Inflammasome Activation
	Discussion

	Pharmacological Modulation of NLRP3 Inflammasome in Bowel Inflammation
	Overall Conclusion and Future Directions
	Author Contributions
	References


