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Mesenchymal stromal cells (MSCs) are considered adult progenitor stem cells and have 
been studied in a multitude of tissues. In this context, the microenvironment of nasal 
polyp tissue has several inflammatory cells, but their stroma compartment remains little 
elucidated. Hence, we isolated MSCs from nasal polyps Polyp-MSCs (PO-MSCs) and 
compared their molecular features and gene expression pattern with bone marrow-derived 
MSCs (BM-MSCs). Initially, both PO-MSCs and BM-MSCs were isolated, cultivated, and 
submitted to morphologic, differentiation, phenotypic, immunosuppressive, and gene 
expression assays. Compared to BM-MSCs, PO-MSCs showed normal morphology 
and similar osteogenic/adipogenic differentiation potential, but their immunophenotyping 
showed lack of immune-associated molecules (e.g., CD117, HLA-DR, PDL-1, and PDL-
2), which was linked with less immunoregulatory abilities such as (i) inhibition of lympho-
cytes proliferation and (ii) regulatory T cell expansion. Furthermore, we detected in the 
PO-MSCs a distinct gene expression profile in comparison with BM-MSCs. PO-MSC 
expressed higher levels of progenitor stem cells specific markers (e.g., CD133 and 
ABCB1), while BM-MSCs showed elevated expression of cytokines and growth factors 
(e.g., FGF10, KDR, and GDF6). The gene ontology analysis showed that the differentially 
modulated genes in PO-MSC were related with matrix remodeling process and hexose 
and glucose transport. For BM-MSCs, the highly expressed genes were associated with 
behavior, angiogenesis, blood vessel morphogenesis, cell–cell signaling, and regulation 
of response to external stimulus. Thus, these results suggest that PO-MSCs, while 
sharing similar aspects with BM-MSCs, express a different profile of molecules, which 
presumably can be implicated in the development of nasal polyp tissue.
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inTrODUcTiOn

Mesenchymal stromal cells (MSCs) are considered adult progeni-
tor stem cells and have been studied in a set of pro-regenerative 
studies (1). MSCs are multipotent cells, with ability to differenti-
ate into mesodermal cell lines (e.g., chondrocytes, adipocytes, 
and osteocytes) and can be obtained from several tissues (e.g., 
bone marrow, adipose tissue, umbilical cord, and muscle) (2); 
however, their presence in tissues affected by intense inflamma-
tion, as polyps, remains poorly elucidated.

Nasal polyposis (NP) is a chronic inflammatory condition of 
the upper airways, characterized by an overgrowth of paranasal 
sinus mucosa, with increase in eosinophil infiltration and high 
levels of interleukin 5 and eosinophil cationic protein (3, 4). 
The inflammatory reaction involves several cell types in NP and 
is primarily driven by a T helper-2 response (5, 6). Two major 
factors are related to nasal polyp formation: an abnormal remod-
eling response, creating a mechanical dysfunction (7, 8) and a 
lack of immune regulatory effects, favoring a severe inflammatory 
process (9).

In this sense, MSCs have a great therapeutic potential, showing 
specific immunomodulatory effects and an ability to directly or 
indirectly modulate the fibrotic process (10–12). These two MSCs 
abilities could have an immediate impact on NP, mitigating the tis-
sue inflammation and rebalancing the remodeling process. In this 
context, our group and others’ recent studies have demonstrated a 
potential role of bone marrow-derived MSCs (BM-MSCs) in the 
modulation of several immune cells in inflamed nasal polyp tissue 
(13, 14). Considering this perspective, MSCs derived from nasal 
polyps could show different features, which would participate in 
the regulation of NP microenvironment, thus eliciting favorable 
conditions for polyp development.

Hence, in this study, we isolated MSCs from nasal polyp tissue 
[Polyp-MSCs (PO-MSCs)] and pointed out their main char-
acteristics in comparison to classically known BM-MSCs. We 
demonstrated that PO-MSCs share similar aspects with classical 
BM-MSCs but have a different gene expression profile, which is 
associated with signaling pathways linked to stem cell biology, 
metabolic processes, and matrix remodeling.

MaTerials anD MeThODs

Msc isolation and culture
The mononuclear cells for BM-MSCs isolation were collected 
from healthy donors at the Support Group for Children and 
Adolescents with Cancer in the Children’s São Paulo Hospital 
(GRAAC), after ethical approval and donors’ consent (n = 6, 
protocol no. 45/09, accession number: 30540214.0.0000.5505). 
PO-MSCs were collected after endoscopic polypectomy sur-
gery in patients with NP (n = 4), according to ethical approval 
and donors’ consent at São Paulo Hospital, number: EPOS 
12 (3). Both MSC subtypes were isolated according to Pezato 
et al. (13). Briefly, the transplantation plastic filters containing 
bone marrow cells were washed in PBS solution, and the cells 
were isolated using Ficoll-Hypaque method (Sigma, USA). The 
PO-MSCs were isolated from nasal polyp tissues by mechanical 

dissociation (using forceps and scissors), followed by 50 min of 
enzymatic digestion at 37°C (collagenase IV 1 mg/mL, Sigma). 
Both cells were washed in sterile PBS and filtered in a 70-μm 
filter (BD Biosciences, USA). After, both MSC subtypes were 
suspended and cultivated in 25  cm2 culture flasks (Corning, 
NY, USA) at 37°C in D-MEM low-glucose culture medium 
(45 mM NaHCO3, 10% FBS, 100 U/mL penicillin, 100 U/mL 
streptomycin, Gibco, USA) in a humidified atmosphere and  
5% CO2.

In Vitro Differentiation assays
The in  vitro multipotent differentiation potential into mesen-
chymal lineages (i.e., adipocytes and osteoblasts) was assessed 
using the adipogenesis and osteogenesis Mesenchymal Stem 
Cell Kit (Millipore, USA), according to the manufacturer’s 
specifications.

immunophenotyping
The immunophenotyping of both different types of MSCs was 
carried out using a specific set of antibodies (i.e., CD34, CD45, 
CD105, CD90, CD73, CD54, CD117, HLA-DR, PDL-1, and PDL-
2, BD Bioscience, USA), according to the manufacturer’s recom-
mendations. The cells were collected, and the immunostaining 
was adjusted to 1:100 of antibody dilution. Then, the cells were 
incubated with a specific antibody per 30 min at room tempera-
ture in FACs buffer (PBS + 2% FBS). Then, the cells were washed 
in PBS solution and suspended in FACs buffer for acquisition in 
a flow cytometer. The FACs Canto II (BD, Beckton Dickson) was 
used for cell acquisition, and the FlowJo software was used for 
data collection and analysis.

lymphocyte Proliferative assay  
and Treg expansion
For investigate the immunosuppressive potential of PO-MSCs 
and BM-MSCs, these cells were cultivated with fresh peripheral 
blood mononuclear cell (PBMC) in two different lymphocytes/
MSCs proportions: (i) 5:1 and (ii) 20:1. The lymphocytes 
were isolated from healthy donors by Ficoll-Hypaque method 
(Sigma, USA) and previously labeled with fluorescent dye, Cell 
Trace (Life Technologies, USA), following the manufacturer’s 
instructions. For proliferation assay, PBMCs were cultivated 
by 6  days with or without MSCs (from Polyp or BM) under 
anti-CD3/CD28 stimulus (1/2 μg/mL, respectively) with RPMI 
medium +  10% FBS in flat bottom 96-well plate (TPP, USA). 
Then, all non-adherent cells were collected, stained with anti-
Foxp3, anti-CD4, and anti-CD8 conjugated antibodies (APC, 
FITC, and Percep, BD, Beckton Dickson) and subsequently 
analyzed by flow cytometry following protocols and acquisition 
parameters aforementioned.

gene expression Profile of Mscs  
and In Silico analysis
Total RNA from both bone marrow and nasal polyp MSC cells was 
extracted using an RNeasy Mini Kit (50) (Qiagen, South Korea), 
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FigUre 1 | characterization of Polyp-Mscs (PO-Mscs) and bone marrow-derived mesenchymal stem cells (BM-Mscs). (a) Fibroblast-like morphology 
of PO-MSCs; (B) mesodermal differentiation potential of PO-MSC; (c) fibroblast-like morphology of BM-MSCs; (D) mesodermal differentiation potential of BM-MSC; 
(e) immunophenotyping of mesenchymal stromal cells derived from polyp and bone marrow tissues; and (F) Ki-67 expression in PO-MSC and BM-MSCs. A similar 
morphology and differentiation potential into adipocyte- and osteocyte-like cells were observed in cultures of PO-MSCs and BM-MSCs. However, the PO-MSCs in 
comparison with BM-MSCs showed a decreasing in the expression of surface molecules related to immunoregulation (i.e., CD117, HLA-DR, PDL-1, and PDL-2) 
and proliferation (Ki-67) (*p < 0.05).
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according to the manufacturer’s instructions. The concentration 
and integrity of RNA samples were, respectively, evaluated using 
a Nanodrop spectrophotometer (Thermo Scientific, USA) and 

1% agarose gel electrophoresis (Gibco, USA). Furthermore, 
reverse transcription of total RNAs was performed using the RT2 
First Strand Kit (Qiagen, South Korea). Global gene expression 
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FigUre 2 | lymphocyte proliferation assay in coculture with Polyp-Mscs (PO-Mscs) and bone marrow-derived Mscs (BM-Mscs). (a) Lymphocytes 
were stimulated with anti-CD3/CD28 antibodies per 6 day and were cocultivated in presence of PO-MSCs or BM-MSCs in two different dilutions with 5:1 and 20:1 
of lymphocytes/MSCs proportion. (a,B) Refer, respectively, to proliferation index of CD4+ and CD8+ lymphocytes in different conditions [i.e., without mesenchymal 
stromal cells (MSCs), with MSCs at 5:1 and 20:1 dilutions]. It was observed that both MSCs inhibited the total lymphocytes proliferation; however, PO-MSCs in 
comparison with BM-MSC had less immunosuppressive response at higher dilution (e.g., 20:1 proportion) (&p < 0.05 in comparison to all groups and *p < 0.05 in 
comparison to BM-MSC in 20:1 dilution with lymphocytes).
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profile was performed in 96-well plates per each set, following 
the recommendations specified in the products’ catalogs: RT2 
SYBR Green ROX qPCR Master Mix and Mesenchymal Stem 
Cells PCR array (84 genes; Qiagen, South Korea). Data analysis 
and normalization were performed using the free online software 
provided on the manufacturer’s website (Qiagen, South Korea). 
The signaling pathways associated with differentially modulated 
genes were performed in the GOminer web software (website or 
reference), according to the specificity in the default layout. The 
transcriptional factor enrichment analysis was carried out using 
the functional enrichment analysis web tool FUNRICH using 
standard default.

statistical analysis
All statistical analysis and graphs were performed using the 
GraphPad Prism 5 software (GraphPad, Inc., USA). Data were 
presented according to classical descriptive statistics. Results 
were tested for normal distribution by the Kolmogorov–Smirnov 
test with Dallal–Wilkinson–Lillie for a p-value. Categorical 
variables were expressed as percentages (%), and continuous 
variables (data) were presented as means ± SDs. The parametric 
Student’s t-test and One-way ANOVA test were used to assess 
differences between groups. For all analyses, a p-value ≤0.05 was 
considered statistically significant.

resUlTs

In Vitro characterization and 
immunophenotyping of PO-Mscs  
and BM-Mscs
First, both MSC subtypes were isolated and submitted to standard 
culture conditions (see Figure S1 in Supplementary Material). 
These cells had fibroblastic-like morphology (Figures 1A,C) and 
similar differentiation potential into mesodermal lineages such 
as adipocytes and osteocytes (Figures 1B,D). The immunophe-
notyping analysis of PO-MSCs and BM-MSCs showed a negative 
expression for hematopoietic surface markers (CD34 and CD45) 
and a positive status for classical mesenchymal markers, such 
as CD105, CD90, CD73, and CD54 (Figure 1E; Figure S2 and 
Table S1 in Supplementary Material). However, the PO-MSCs 
in comparison with BM-MSCs had reduced expression of 
molecules related to immune regulation process, e.g., CD117, 
HLA-DR, PD-L1, and PD-L2 (Figure 1E; Figure S2 and Table S1 
in Supplementary Material). The internal proliferation rates did 
not change along the passages showing no significant difference 
(data not showed); however, the global intranuclear Ki-67 expres-
sion (a proliferation pan marker) of BM-MSCs was higher than 
PO-MSCs (Figure 1F), suggesting that BM cells can present more 
proliferative status.
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FigUre 3 | Frequency of regulatory T cell (Treg) (cD4+/Foxp3+) in coculture with Polyp-Mscs (PO-Mscs) and bone marrow-derived Mscs  
(BM-Mscs). During coculture assay with CD4+ lymphocytes and mesenchymal stromal cells (Polyp and BM), it was possible to detected that only BM-MSC had 
strong abilities to promote the expansion of Treg population (CD4+/Foxp3+) at 5:1 dilution. Although PO-MSCs have expanded Tregs, its index was inferior to 
BM-MSC considering the 5:1 and 20:1 dilutions (&p < 0.05 in comparison to all groups and *p < 0.05 in comparison to BM-MSC in 5:1 dilution with lymphocytes).

5

Oliveira et al. Polyp Stromal Cells Exhibit Progenitor Features

Frontiers in Immunology | www.frontiersin.org January 2017 | Volume 8 | Article 39

immunosuppressive assay of PO-Mscs 
and BM-Mscs in coculture with cD4+  
and cD8+ lymphocytes
In order to elucidate the immunoregulatory potential of PO-MSCs, 
we performed a coculture assay of these cells with T lymphocytes 
and compared its functionality with BM-MSCs, which classically 
present strong immunomodulatory abilities. First, we observed 
that lymphocyte alone showed higher proliferation index (>60%) 
(Figure 2). After, we detected at two different dilutions (i.e., 5:1 
and 20:1 lymphocytes/MSCs proportion) that both MSC sub-
populations (PO-MSCs and BM-MSCs) presented capacities to 
suppress CD4+ and CD8+ lymphocytes proliferation; however, 
the immunosuppressive potential was inferior to PO-MSC 
when compared with BM-MSC, considering the 20:1 propor-
tion (Figure  2). Interestingly, when we observed in this same 
coculture the frequency of CD4+/Foxp3+ cells, a subpopulation 
of regulatory T cell (Treg), its index was higher in BM-MSC pres-
ence than PO-MSC, considering the 5:1 proportion (Figure 3). 

However, no difference in Tregs frequency was verified in higher 
dilution (20:1 proportion) at both MSC populations: PO-MSCs 
and BM-MSCs (Figure 3).

analysis of the gene expression Profile of 
PO-Mscs in comparison with BM-Mscs
To improve our extensive characterization between these two 
MSC subpopulations derived from different tissues, we per-
formed the global gene expression profile, covering 84 genes 
associated with mesenchymal stem cell biology. The volcano 
plot analysis showed the significant modulation of specific 
genes, which were up- and downmodulated in the PO-MSCs 
in comparison with BM-MSCs (Figure 4A). More specifically, 
using the Venn Diagram strategy, we detected 15 upregulated 
genes, 23 downregulated genes, and 46 genes similarly expressed 
in PO-MSCs when compared with BM-MSCs (Figure 4B; Figure 
S3A in Supplementary Material). Subsequently, using heat map 
analysis, it was possible to observe the global differences in gene 
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FigUre 4 | global gene expression profile. (a) Volcano-plot graph showing the most representative upregulated (red) and downregulated (green) genes in 
Polyp-MSC (PO-MSC) in comparison with bone marrow-derived MSC (BM-MSC); (B) Venn diagram illustrating the number of upregulated/downregulated genes; 
and (c) heat map-cluster analysis demonstrating a global difference in gene expression, as well as the most representative clusters of samples and genes. 
Interestingly, there were several modulated genes in the comparison of PO-MSCs versus BM-MSCs, and the mesenchymal stromal cells from each tissue  
(Polyp and bone marrow) showed a different profile, being grouped in the same group.
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expression profile (green/down and red/up colors) between 
the two assessed cell types, as well as the most representative 
clustering groups of samples and genes for each cell prepara-
tions (Figure  4C; Figure S3B in Supplementary Material). 
Interestingly, several genes were modulated in the comparison 
of PO-MSCs versus BM-MSCs, and the samples of each differ-
ent tissue were grouped in distinctive clusters, demonstrating 
a similar transcriptional pattern between samples derived from 
polyp tissues and bone marrow tissues (Figure 4C).

PO-Mscs and BM-Mscs have  
Different Transcriptional Profiles
In an attempt to elucidate the differentially modulated genes in 
the PO-MSCs in comparison with BM-MSCs, we carried out 
the fold-change analysis and pointed out the most significant 
upregulated or downregulated genes. For PO-MSCs, we found 
PROM1, HNF1A, BMP7, TNF, ABCB1, IGF1, NES, GDF7, TBX5, 
VWF, FUT1, PDGFRB, CSF3, ITGAX, and ITGA6 as the most 
often expressed genes, and for BM-MSCs, we detected GDF6, 
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FigUre 5 | Differentially expressed genes in Polyp-Mscs (PO-Mscs) 
in comparison with bone marrow-derived Mscs (BM-Mscs). Bar plot 
representing the most upmodulated (a) and downmodulated (B) genes in the 
comparison of PO-MSC versus BM-MSC. A differential gene expression 
profile is observed between PO-MSCs and BM-MSCs, suggesting a distinct 
transcriptional background for these cell populations.

FigUre 6 | gene ontology analysis of differentially modulated genes in Polyp-Mscs (PO-Mscs) in comparison with bone marrow-derived Mscs 
(BM-Mscs). (a,B) Gene ontology analysis showing genes regulated (up/down) in PO-MSCs in comparison with BM-MSCs, which are predicted to be enriched in 
different signaling pathways. For the genes upregulated in PO-MSC, an association was found with alcohol metabolic process, hexose transport, glucose transport, 
carbohydrate metabolic process, and monosaccharide metabolic process, while for genes upregulated in BM-MSCs, the association was linked to behavior 
response, angiogenesis, blood vessel morphogenesis, cell–cell signaling, and regulation of external stimulus response.
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KDR, FGF10, GDF5, IFNG, SOX9, IL1B, LIF, BMP6, MCAM, 
GDF15, HGF, BDNF, JAG1, NT5E, SMURF2, VEGFA, FZD9, 
BMP4, MMP2, IL6, EGF, and FUT4 as the most upregulated 
ones (Figure 5). Surprisingly, the PO-MSCs in comparison with 

BM-MSCs showed higher expression of PROM1 or CD133 and 
ABCB1, which are considered progenitor markers, suggesting 
a different stem cell property for this MSC subtype. On the 
other hand, the BM-MSCs showed a strong regulation of genes 
associated with cytokines and growth factors (i.e., FGF10, KDR, 
and GDF6), which are particular for these BM-MSC subsets 
(Figure 5).

signaling Pathways associated with 
Upregulated genes in PO-Mscs  
and in BM-Mscs
To elucidate some interesting signaling pathways associated 
with most upmodulated/downmodulated genes in PO-MSCs in 
comparison with BM-MSCs, we performed the gene ontology 
analysis and searched for biological pathways that were signifi-
cantly enriched with those genes. Using this in silico analysis, we 
detected alcohol metabolic process, hexose transport, glucose 
transport, carbohydrate metabolic process, and monosaccharide 
metabolic process as most significant biological pathways associ-
ated with upregulated genes in PO-MSCs (Figure 6A). In contrast, 
for BM-MSCs, we found behavior, angiogenesis, blood vessel 
morphogenesis, cell–cell signaling, and regulation of external 
stimulus response as the most enriched signaling pathways linked 
to upregulated genes. Altogether, these findings suggest that 
PO-MSC and BM-MSC are different MSC cell subpopulations, 
showing distinct transcriptional background, which can reflect 
their specific biological properties for each tissue’s localization 
(polyp tissue and bone marrow) (Figure 6B).
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Transcription Factor enrichment analysis 
of Upregulated genes in PO-Mscs and in 
BM-Mscs
In search for functional regulatory association regarding upregu-
lated genes in PO-MSC or in BM-MSC, we empirically pointed 
out the most often associated transcriptional factors that were 
enriched with these genes. PO-MSCs showed the representative 
participation of POU2F1 (15.7%, p = 0.03) and TFAP4 (12.5%, 
p = 0.02) as main transcriptional regulators at upregulated genes, 
which are related to cancer stem cells, cell cycle, and histone 
regulation (Figure 7A). On the other hand, the transcription fac-
tors most often associated with upregulated genes in BM-MSCs 
were EGR-1 (22.5%, p < 0.01) and NFIC (18.4%, p < 0.01), which 
are linked to cell proliferation, differentiation, apoptosis, and 
cell growth (Figure  7B). Thus, based on transcription-binding 
sites regulation pattern, these cells can represent different MSC 
subtypes, which modulate their transcriptional profile according 
to the distinct interaction with specific microenvironments in 
which these cells are found (polyp tissue and bone marrow).

DiscUssiOn

Mesenchymal stromal cells can be isolated from almost all tissues 
and effectively cultured in vitro. Although their actual properties 
and biological functions have not been completely elucidated, 
these cells have been shown to represent an important approach 
in several clinical applications and in the regulation of immuno-
competent cell responses. Human nasal-derived MSCs have been 
isolated mainly from inferior turbinate tissue and from olfactory 
tissue by several groups, and it has been suggested to have a valu-
able role in tissue engineering and regenerative medicine (15–20).

In this study, we have isolated MSCs from abnormal nasal 
polyp tissue (PO-MSC) and compared their gene expression 
profile and immune phenotype with BM-MSCs. Our results 
showed that several MSCs immune-associated membrane mark-
ers CD117, HLA-DR, PD-L1, and PD-L2 were not expressed in 
PO-MSCs but were expressively present in BM-MSCs. These 
markers are mainly associated with the immuneregulatory 
capacity of MSCs. For instance, PD-L1 molecule is a component 
of the T-lymphocyte costimulatory pathway and plays a crucial 

FigUre 7 | Transcription factors associated with differentially modulated genes in Polyp-Mscs (PO-Mscs) and in bone marrow-derived Mscs 
(BM-Mscs). (a) Percentage of participation of transcriptional regulators in upregulated genes in PO-MSCs. (B) Contribution (%) of main transcriptional regulators 
associated with upregulated genes in BM-MSCs. It is possible to observe that the transcription factors most often associated with modulated genes in PO-MSC 
were POU2F1 (15.7%, p = 0.03) and TFAP4 (12.5%, p = 0.02), while EGR-1 (22.5%, p < 0.01) and NFIC (18.4, p < 0.01) were predicted as main transcriptional 
regulators in BM-MSC.
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role in controlling T-cell proliferation and immunosuppres-
sion, and hence, it prevents tissue damage and autoimmunity 
(21, 22). Furthermore, PD-1 ligand 2 (PD-L2) may also inhibit 
T-cell receptor-mediated proliferation and cytokine production 
by CD4+-activated T-cells (23). PD-L1 and PD-L2 have been 
reported to be highly expressed by human placenta MSCs, which 
have a strong effect on adhesion, migration, and immunosup-
pression mechanisms of T-cells (24). Considering this perspec-
tive, we performed here a classical immunosuppressive coculture 
assay with both MSC subtypes (Polyp and BM) in contact with 
CD4+ and CD8+ lymphocytes. We observed that both MSC 
populations suppressed lymphocytes proliferation; however, 
PO-MSCs were less effective at higher dilutions. In addition, this 
PO-MSC also promotes reduced Treg expansion when compared 
with BM-MSC at same proportion. These results suggest that, 
unlikely BM-MSCs, PO-MSCs may have limited capacity to 
modulate T-cell-mediated immune response by a mechanism 
apparently mediated by low expression of immunoregulatory 
surface markers (i.e., PD-L1 and PD-L2). A previous study of 
our group showed this mechanism when coculture of MSCs 
and lymphocytes were seeded with anti-PD-L1 inhibitor, and 
no Treg expansion or lymphocyte repression was observed (25). 
Thus, all this finding raises questions regarding the presence of 
strong anti-inflammatory properties in PO-MSCs, as classically 
observed in BM-MSCs (11, 13). Moreover, we identified that 
PO-MSCs, in comparison with BM-MSCs, expressed very lower 
levels of HLA-DR surface marker. Although BM-MSCs already 
is known to present low levels of HLA-DR (26), this finding can 
suggest an additional immunogenic advantage for PO-MSCs, 
since HLA-DR is widely involved with tissue engraftment and 
rejection (27) and its low expression suggests an therapeutic 
advantage for MSC derived from nasal polyp tissue. In fact, we 
assume that this fundamental tolerating ability was not tested in 
this study, and this point needs to be investigated in further works 
involving tumorigenesis assays.

To analyze the molecular properties of PO-MSCs, we carried 
out a specific gene expression assay comprising the most relevant 
stem cell gene profile. We found a set of 15 genes that were statisti-
cally overexpressed in PO-MSCs, when compared to BM-MSCs. 
Interestingly, we observed that three genes (i.e., PROM1, 
HNF1A, and BMP7) had a higher fold-change index (>50-fold 
regulation) in PO-MSCs than in BM-MSCs. The PROM1, also 
known as CD133, is a gene that encodes a transmembrane 
glycoprotein, which is expressed in human hematopoietic stem 
cells and mouse neuroepithelial cells (28, 29). This molecule is 
considered a key biomarker for isolation and characterization of 
progenitor hematopoietic stem cells (30) and plays a crucial role 
in maintaining stem cell properties by suppressing cell differen-
tiation and regulating crucial cellular events such as regeneration, 
differentiation, and metabolism. The PROM1 and Nestin (NES) 
have been reported to be strongly expressed in ectomesenchymal 
stem cells derived from rat nasal respiratory mucosa (31). These 
genes are also highly expressed in cells from the nervous system, 
as observed by Weigmann et al. (29), suggesting that PO-MSCs 
may have a possible potential to differentiate into neuronal-like 
cells as nasal MSCs. Otherwise, this phenotype can also represent 
basal cells from the olfactory epithelium, which act as supportive 

stem cells for the neuroepithelial lineages and could be located 
inside of PO-MSC population, expressing higher levels of 
PROM1; however, this association needs also to be demonstrated 
in further investigations.

The HNF1, which was also upregulated in PO-MSCs, is 
a transcriptional activator that regulates the tissue-specific 
expression of multiple genes, especially in pancreatic islet and 
liver cells. HNF1 is also included in the human embryonic stem 
cell pluripotency pathway, where it regulates the transcription 
of other genes involved in cell growth, cell adhesion, epithelial 
formation, immune system, and inflammation, including TNF 
(32). Additionally, HNF1 may indirectly regulate the expression 
of BMP7, which encodes a complex of adherent junction proteins. 
These molecules are crucial for the formation and maintenance 
of epithelial cell layers, and hence, they participate in cell 
growth regulation (33). In NP context, the HNF1/BMP7 axis is 
important for epithelium integrity and is associated with TGF-β 
expression during the remodeling process (34–38). Altogether, 
these genes are closely associated with NP remodeling process, 
suggesting a prospective role of PO-MSCs in the modulation of 
NP microenvironment.

In our global expression gene analysis, we also detected 
four genes (i.e., GDF6, KDR, FGF10, and GDF5) that were 
significantly downregulated (more than 20-fold regulation) in 
the PO-MSCs when compared to BM-MSCs. The growth differ-
entiation factors GDF5 and GDF6 are part of the TGF superfam-
ily, which regulates cell proliferation and differentiation, bone 
and cartilage formation, and skeletal development. BM-MSCs 
have a strong capacity to differentiate into osteoblasts (39), and 
it is not surprising to find a broad expression of osteoblastic 
factors upregulated in these cells. However, the transcription 
level deficiency of GDF5 and GDF6 in PO-MSCs could not be 
totally clarified in this study. GDF-5 has been shown to play a 
crucial role not only in several musculoskeletal processes (40, 
41) in several studies but also in cell proliferation, inflammation, 
and extracellular matrix formation (42). The role of this factor 
in the expression of metalloproteinases and their inhibitors 
and the influence in healing during tendon injuries were also 
demonstrated by Park et al. (43). It has been also suggested that 
GDF6 is involved in tissue vascular regeneration and angiogen-
esis through regulation of the expression and the signaling of 
Smads molecules (44). However, it is noteworthy mentioning 
that all this evidence is based on the results obtained from stud-
ies performed in vitro or in animal models, which use mainly 
exogenously administrated or recombinant GDFs isoforms. 
Hence, the exact role of these growth differentiation factors in 
PO-MSCs still remains unclear.

Complementary to gene expression profile, our in  silico 
prediction analysis showed that POU2F1 and TFAP4 motifs 
are predicted to be enriched in PO-MSCs. These transcription 
regulators are mainly related to cancer stem cells, cell cycle, and 
histone regulation, attributing an internal transcriptional regula-
tory potential to MSC from NP tissue (45). On the other hand, 
we found EGR-1 and NFIC as predicted transcription factors to 
be regulated in BM-MSCs. These molecules are linked to cell 
proliferation, differentiation, apoptosis, and growth, suggest-
ing that bone marrow MSC has a prominent role as a cellular 
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