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T follicular helper cells (TFh) are key components of the adaptive immune system; they 
are primarily found in germinal centers (GCs) where their interaction with B cells sup-
ports humoral immune responses and efficient antibody production. They are defined 
by the expression of CXC receptor 5, program death-1, ICOS, and secretion of IL-21. 
Their differentiation is regulated by B-cell lymphoma 6. The relationship and function 
of circulating TFh to bona fide TFh resident in the GC is much debated. HIV infection 
impacts the TFh response with evidence of aberrant TFh function observed in acute 
and chronic infection. Effective TFh responses are associated with the development of 
broadly neutralizing antibody responses to HIV and may be important for viral control. In 
addition, TFh are preferentially infected and act as a key reservoir for latent HIV infection. 
This review explores recent developments in our understanding of TFh differentiation, 
regulation, function, and the relationship between cTFh and those in GCs, and the com-
plex interaction between TFh and HIV infection.
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inTRODUCTiOn

Optimal immune function requires effective communication between all arms of the immune sys-
tem. An efficient humoral immune response to pathogens is dependent on the interaction between 
helper T cells and B cells. T cell help is critical to optimize antibody production and class switching 
and allows for the development and production of targeted high-affinity antibodies. The subset of 
T helper cells responsible for this interaction remained elusive until the beginning of this century 
when Kim et al. described a subset of CXC receptor 5 (CXCR5)+ T cells in the germinal center (GC) 
with B helper activity (1) coined T follicular helper cells (TFh). TFh cells play a significant role in 
supporting B cell activation and antibody production during the humoral immune response. They 
are critical for B cell support, somatic hypermutation (SHM), and antibody class switching (2). TFh 
dysfunction and expansion has been implicated in a number of disease states including Rheumatoid 
Arthritis (3), SLE (4), and other autoimmune diseases.

In health, the interaction between Tfh, B cells, and IL-21 supports B cells to proliferate and 
differentiate into plasma cells thereby leading to efficient antibody production. Consequently, the 
relationship between TFh cells, humoral immunity, and mechanisms for viral persistence in the set-
ting of chronic viral infections has received much attention. The role of TFh in supporting specific 
antibody responses has been described in hepatitis C (5), hepatitis B (6), and lymphocytic choriomen-
ingitis virus (LCMV) clearance in mice (7). In acute hepatitis C, the development of HCV-specific 
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antibodies correlates with increased ICOS expression (5), while 
increased frequencies of TFh is associated with an active Hepatitis 
B phenotype (6). In the murine model, epigenetic changes which 
support TFh differentiation have been shown to be important for 
resolution of LCMV infections (7). These observations support 
the role of TFh cells in the development of effective pathogen-
specific antibody responses to chronic viral infections. The 
interplay between HIV infection and TFh cells is complex, with 
evidence supporting dysregulation of TFh function by HIV itself 
and conversely, that the frequency of TFh subsets positively corre-
lates with effective humoral responses to HIV, as measured by the 
development broadly neutralizing antibodies (BNAbs) (8). This 
review aims to summarize the current data and recent advances 
in our understanding of the role of TFh in HIV infection, with 
particular emphasis on the phenotypic and functional differences 
between GC and peripheral-circulating TFh cells (pTFh).

PHenOTYPiC AnD TRAnSCRiPTiOnAL 
PROFiLe OF TFh CeLLS

T follicular helper cells are a subset of memory CD4 T cells that 
are localized in the B-cell follicles of secondary lymphoid tissues 
and provide help for B cells. TFh–B cell interactions allow the 
production of high affinity, class-switched antibodies following 
natural infection or vaccination, as well as the establishment of 
B cell memory (9). TFh cells are defined by their expression of 
high levels of surface markers of program death-1 (PD-1) and 
chemokine CXCR5, especially within the GCs of secondary 
lymphoid tissue. PD-1+ CXCR5+ phenotypically distinguishes 
GC T-follicular helper cells from other T helper cell subsets and 
from peripheral CXCR5+ cells with the capacity for B cell help 
(Figure  1A). This phenotype holds true for GC TFh cells, but 
peripheral-circulating TFh cells seem to have lower levels of 
PD-1, where a considerable proportion of CD4+ T cells express 
only CXCR5 (Figure 1B). However, TFh cells’ identity as a “bona 
fide” subset of T helper cells was not established until B-cell lym-
phoma 6 (Bcl-6) was discovered to be the “master” transcription 
factor that drives TFh cell differentiation and function (10–12).

In the early 2000s, several groups described CXCR5+ T cells as 
having the preferential ability to activate B cells to produce class-
switched antibodies (1, 13). The chemokine receptor CXCR5 plays 
an important role in promoting T cell and B cell migration into 
B cell follicles in response to its interactions with CXCL13 (14). 
It has since been shown that these CXCR5+ T cells are TFh cells 
with a unique gene-expression profile compared to other CD4 
T cell subsets. TFh cells do not express Tbet, GATA3, RORyt, 
or Foxp3 and produce limited Th1/Th2/Th17 related cytokines. 
Gene-expression profiling of CXCR5+ TFh cells identified key 
molecules, i.e., BCL6, ASCL2, IL21, PDCD1 (PD-1), and ICOS, 
all of which are involved in the development, migration, and 
function of these cells (15, 16).

Naïve CD4 T cell differentiation toward the TFh lineage is 
primed by antigen-presenting dendritic cells (DCs) in the T cell 
zone, through the interaction between T cell receptor and major 
histocompatibility complex class II, and costimulatory mol-
ecules CD28 and ICOS. Activated antigen-specific CD4 T cells 

downregulate CCR7 and upregulate CXCR5, allowing them to 
migrate to B cell follicles. It has recently been shown that the 
initial step in TFh induction is the upregulation of aschaete-scute 
homolog 2 (Ascl2), which is a transcription factor that can induce 
CXCR5 expression, enabling pre-TFh cells to migrate toward 
the border of the B-cell follicle. Ascl2 has also been shown to 
repress non-TFh genes, allowing pre-TFh to differentiate into the 
follicular pathway (17).

Dendritic cells and B cells collaborate in TFh induction in a 
sequential manner, whereby TFh priming by DCs occurs prior to 
B cell presentation, allowing for optimal TFh development and 
GC formation (18, 19). DCs also secrete cytokines IL-6 and IL-12, 
which induces an early wave of Bcl-6 expression in pre-TFh cells, 
in a STAT3-dependent manner (20, 21). pre-TFh cells that receives 
a second signal from cognate antigen-primed B cells stabilizes 
Bcl-6 express (22). Bcl-6 corroborates with other transcription 
factors such as, IRF4, BATF and c-Maf, to drive the expression of 
Tfh cell signature genes critical for T cell–B cell interaction, which 
includes CXCR5, ICOS, Sh2d1a Pdcd1, and CD40L (11). IL-27 
can induce c-maf expression in collaboration with ICOS (23, 24). 
C-maf induces IL-21 production in CD4 T cells committed to 
TFh pathway. IL-21 acts as an autocrine cytokine to promote 
pre-TFh cell differentiation and homeostatic maintenance of TFh 
cells. It also plays a vital role in differentiation of GC B cells into 
memory and plasma cells. Optimal interaction between TFh and 
B cells determines the magnitude of the GC reaction and somatic 
mutation that in turn controls affinity maturation of B cells and, 
therefore, the breadth of the antibody response (25–27).

PeRiPHeRAL-CiRCULATinG AnD GC  
TFh CeLLS

CXC receptor 5+ circulating TFh (pTFh)-like cells can also be 
found in human peripheral blood. However, the phenotype of 
pTFh is not as “clear-cut” compared to GC TFh. They are gener-
ally defined as being CXCR5+, CCR7lo, PD-1+, and ICOS+, 
although this phenotype is not as stringent as GC TFh (28). Others 
have reported pTFh to co-express CCR7 and are included in the 
central memory subset. It has also been shown that CXCR5+ 
Tcm cells lack CXCR3 and CCR4 and do not differentiate into 
Th1 or Th2 cells upon polarizing cytokine stimulation (2, 29). 
CXCR5 and PD-1 are stably expressed on pTFh cells and are not 
transiently upregulated upon non-specific antigen or cytokine 
stimulation. pTFh expressing these markers can help B-cells to 
differentiate into plasmablasts, but require secondary signals 
from B-cells, such as CD40L or ICOS interactions, as well as 
IL-21 secretion (8, 30, 31). However, blood pTFh and lymphoid 
TFh cells are clearly phenotypically different, particularly with 
respect to the expression of PD-1 and BCL-6 (32). Bcl-6 expres-
sion can be used to determine TFh in GCs (Figure 1B), but this 
is not the case in peripheral blood (Figure 1D), where Bcl-6 seem 
to be downregulated in ex vivo CD4 T cells. CXCR5+ PD-1+ 
pTFh subset contains higher IL21 mRNA compared to the other 
CD4+ subsets (Figure  1C) (unpublished data), with CXCR5+ 
PD-1− subset expressing higher levels of ICOS. It remains to be 
seen whether the CXCR5+ PD-1− subset are precursors to GC 
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FiGURe 1 | Phenotypic differences between tonsil and peripheral blood T follicular helper cells (TFh). (A) TFh, pre-Tfh, and non-TFh subsets in human 
tonsil. (B) BCL-6 expression on TFh (orange), pre-TFh (blue), and non-TFh (red) subsets in tonsil. (C) Ex vivo peripheral blood CD4 T cells separated into four 
quadrants comprising program death-1 (PD-1)− CXC receptor 5 (CXCR5)−, PD-1+ CXCR5−, PD-1+ CXCR5+ and PD-1− CXCR5+ subsets. (D) BCL-6 expression 
on PD-1− CXCR5− (green), PD-1+ CXCR5− (red), PD-1+ CXCR5+ (blue), and PD-1-CXCR5+ (orange) subsets in peripheral blood.
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TFh or TFh cells that have lost PD-1 expression in the periphery. 
Iyer and colleagues have shown that blood TFh may be a potential 
surrogate for GC responses by using a Rhesus macaque model 
(33). They sampled blood and lymph node at 1 and 2 weeks fol-
lowing SIV booster immunization and demonstrated that blood 
TFh effector responses (identified by Ki-67+ CXCR5+ expres-
sion) predicted magnitude of subsequent GC responses. Further 
studies in different disease contexts are required to correlate 
the phenotypic and functional differences previously observed 
between pTFh and GC TFh in order to understand the important 
dynamics of this subset in blood and tissue.

Hiv AnD TFh DYSFUnCTiOn

The impact of HIV on the frequency and function of TFh sub-
sets during both treated and untreated HIV infection is poorly 

understood. Host, viral, and treatment factors, such as the timing 
of Antiretroviral Therapy (ART) initiation with respect to stage 
of HIV infection duration, may influence the ability of TFh cells 
to support effective humoral responses. Furthermore, the sig-
nificance of pTFh and their relationship to GC TFh cells is much 
debated in health (34) and is likely to be further complicated by 
chronic HIV infection.

Untreated chronic HIV infection results in selective accu-
mulation of TFh cells in lymph nodes (35); Lindqvist et al. have 
demonstrated the relative accumulation of HIV-specific TFh 
cells in lymph nodes during chronic untreated HIV infection 
that was associated with HIV viremia, interestingly the majority 
of the expanded TFh cells were specific for Gag, as opposed to 
Env (36). The expansion of TFh is in contrast to the expected 
depletion of activated total CD4 T cells seen in untreated HIV 
infection. The observed TFh expansion is thought to be driven 
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by persistent antigenic stimulation mediated in part by IL-6 
signaling (37) which in turn drives the abnormal expansion of 
TFh cells, skewed B cell differentiation and impaired antibody 
production (35). Work by Cubas et al. support these findings and 
suggest PD-1 triggering by PD-L1 on Germial Center B cells as a 
mechanism for the observed abberant TFh dysfunction (38); their 
work demonstrates that PD-1 blockade enhances HIV-specific 
immunoglobulin production in vitro and that triggering of PD-1 
on TFh reduces cell proliferation and activation, in addition to a 
decrease in IL-21 production (38). IL-21 has been shown to be 
essential for provision of B cell help by TFh (30), and its addition 
rescues antibody production in vitro (37). More recent evidence 
suggest that the loss of regulatory control by T follicular regulatory 
(TFR) cells may also play a role in the inefficient GC responses 
seen in untreated HIV infection (39). Data from Rhesus Macques 
(RM) indicate that TFR may contribute to the regulation of TFh 
and GC B cells and that decreases in the TFR/TFh ratio during 
chronic SIV infection may lead to an uncontrolled expansion of 
both TFh and GC B cells (40).

The difficultly in sampling the GC TFh population has 
prompted investigation of pTfh as a surrogate marker for GC Tfh 
activity. Studies have demonstrated the ability of pTfh to provide 
B cell help (30, 41, 42). Work by Boswell et al. showed differential 
cytokine production by pTFh (such as IL-21, IL-2, and IL-17) 
compared with germinal Tfh (IL-4, IL-10, and IL-21, but com-
promised production of IL-2 and IL-17) (41), while Locci et al. 
have found that PD-1+ CXCR3− CXCR5+ CD4+ T cells were 
the subset with greatest ability to provide B cell help (8). Contrary 
to the expansion of GC TFh seen in chronic HIV, a study of pTFh 
reported a significant decrease in the pTFh population from HIV-
infected subjects compared to HIV-uninfected subjects, however 
this study did not involve concurrent sampling of GC Tfh (41). 
In addition, pTfh of chronic ART-treated aviremic individuals 
have been found to be functionally impaired in their ability to 
provide adequate B cell help when compared with those from elite 
controllers (43), while vaccine-induced Ab response to influenza 
has been associated with preserved Tfh function as measured 
by the secretion of IL-21 and CXCL13 (44). A recent study by 
Schultz et al. used an IL-21 capture assay to identify circulating 
IL-21+ CD4+ T cells. These were found to be transcriptionally 
and phenotypically pTFh cells (45). In addition to B cell help, 
IL-21 signaling also supports the antiviral function of CD8 and 
NK cells thereby playing an important role in control of chronic 
viral infections (46, 47). Increases in IL-21-producing blood 
CD4+ T cells have been observed during acute and chronic HIV 
infection with the elevated frequencies of HIV-specific IL-21-
producing CD4+ T cells associated with viral control (48). An 
expansion of HIV-specific IL-21+ pTFh cells in the ALVAC+ 
AIDSVAX vaccine study supports the hypothesis that induction 
of TFh cells might be involved in the superior humoral response 
(45). Taken together, these data seem to suggest that, in some 
individuals, HIV infection depletes pTFh numbers and impairs 
their function, while those better able to maintain robust TFh 
functionality may have greater propensity for viral control; how-
ever, lack of a standardized phenotypic definition for pTFh may 
confuse some of the reported findings. Furthermore, TFh func-
tion may be impacted by ART; initiation of ART early or during 

Primary HIV infection has been shown to be associated with later 
posttreatment viral control (49); a recent study investigated the 
impact of ART in acute HIV infection on TFh function report that 
early ART may prevent immune dysregulation while preserving 
pTFh function and B-cell memory, however, the benefit was less 
if ART is commenced in later stages of acute infection (36).

TFh, BROADLY neUTRALiZinG 
AnTiBODieS, AnD Hiv COnTROL

Hypergammaglobulinemia is a feature of untreated HIV infec-
tion and has been linked to an aberrant TFh–B cell interaction 
(37, 50), studies have shown a correlation between the expression 
of Bcl-6 in TFh cells and levels of total serum IgG antibody levels 
in untreated HIV (36). In the LCMV model, a model for chronic 
viral infection, the expanded TFh population has been shown to 
activate non-specific B cells resulting in hypergammaglobuline-
mia. This has also been observed during other persistent viral 
infections including HIV and hepatitis C (51).

The generation of BNAbs against HIV is observed in up to 20% 
of HIV-positive individuals (52). BNAbs are characterized by high 
levels of SHM which is supported by TFh during the GC reaction 
(53). Cohen et al. have shown an association between the frequency 
of PD-1+ CXCR5+ CD4+ Tfh cells during early-untreated HIV 
infection and future BNAbs development (54). A separate study 
has shown that the frequency of pTFh cells or more specifically 
PD-1+ CXCR3− CXCR5+ CD4+ T cells correlate with broadly 
neutralizing antibody responses (5). A longitudinal study using 
RMs found that high levels of continuous Env antigen production 
are required for driving GC TFh activation, which in turn leads 
to more effective broadly neutralizing antibody responses (55). 
In that study, Env-specific TFh cells but not total TFh correlated 
with IgG+ GC B cells and effective antibody production (55). 
These data imply that a period of uncontrolled viral replication 
(or adequate vaccination) may be required for a sufficient level 
of antigen exposure and subsequent effective BNAbs production.

The role of immune tolerance has also been implicated in the 
development of BNAbs, work by Moody et al., show that HIV-1-
infected individuals with BNAbs had a higher frequency of blood 
autoantibodies, a lower frequency of regulatory CD4+ T cells, 
a higher frequency of memory pTFh, and a higher TFR PD-1 
expression compared with HIV-1-infected individuals without 
BNAbs. The authors suggest the balance of TFR to TFh may allow 
for development of BNAbs (56).

TFh SUPPORT Hiv PeRSiSTenCe

Effective ART reduces plasma viral replication to undetectable 
levels (as measured by conventional HIV RNA qPCR assays to 
<20 copies HIV RNA/ml). However, complete eradication of HIV 
is still unachievable due to low-level viral replication in sanctuary 
sites and reactivation of virus from the latent HIV DNA reservoir. 
Suppression of HIV viremia in peripheral blood does not neces-
sarily reflect viral suppression in lymphoid tissue with variable 
tissue penetration of ART (57), further potentially skewing the 
relationship between HIV and GC and pTFh. In chronic treated 
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HIV infection, lymphoid tissue is the primary site of ongoing 
HIV replication (58, 59). GC TFh cells have been implicated  
in HIV persistence by supporting viral replication during treated 
infection and serving as an important cellular reservoir of  
HIV-1 DNA.

Germinal center TFh cells are highly permissive to HIV 
infection, with downregulation of PD-1 during HIV-1 replica-
tion (37). Cell sorting experiments by Perreau et al. have dem-
onstrated that TFh and CXCR5− PD-1+ populations in lymph 
node are most efficient in supporting HIV replication (45). A 
recent study looked at the role of pTFh, defined phenotypically 
as CD45RA− CCR7+ CXCR5+, in HIV persistence, they used 
an in vitro GFP reporter assay and found pTFh, in particular, 
PD1+ pTFh cells to be more permissive for HIV infection than 
non-pTFh cells (60).

T Follicular helper cells cells demonstrate greater HIV viral 
production compared to other CD4+ T-cell subsets. In untreated 
HIV-1 infection, CXCR5+ CD4+ T-cell subsets have been shown 
to contain 11- to 66-fold more HIV-1 RNA than CXCR5− subsets 
(37). A study in chronic HIV infection of pTFh cells demonstrated 
greater HIV production (measured by p24 expression after anti-
CD3/anti-CD28 stimulation). Also, higher frequencies of 2-LTR 
circles were observed in the pTFh cells than in non-pTFh cells, 
confirming the idea that TFh cells support HIV persistence dur-
ing ART-treated HIV infection (60).

Studies in non-human primates support the hypothesis 
that TFh cells in GCs act as a sanctuary site for ongoing viral 
replication in otherwise controlled SIV infection (61). Certain 
primates that can spontaneously control plasma SIV replication 
to levels below the limit of detection are termed “Elite” controlling 
monkeys, where HIV-specific CD8+-mediated viral control in 
extrafollicular sites was observed. Such monkeys had evidence of 
ongoing viral replication in GCs, from which HIV-specific CD8+ 
T cells are excluded (61). Bortitz et al. have published work that 
supports this mechanism of persistence; using samples from elite 
controllers, they detected viruses in lymph node with genetic and 
transcriptional markers of active replication most abundantly 

within PD1+, TFH-enriched cell populations (62). Recently, a 
specialized group of cytotoxic T cells that express CXCR5 have 
been described and termed “follicular cytotoxic T  cells.” These 
cytotoxic cells were shown to eradicate TFh-infected cells (63). 
A greater understanding of this subtype will be pivotal to eradi-
cate latently infected GC TFh cells.

COnCLUSiOn

Strong antibody responses are pivotal to the eradication of many 
pathogenic infections. The importance of TFh cells in regulating 
B cell development and function to produce broad neutralizing 
antibodies is now clearly evident. TFh dysregulation in HIV 
infection has been well characterized. Whether these cells are 
preferentially infected within GCs and remain as latent reservoirs 
still requires further investigation. Also, whether Pre-TFh cells 
within secondary lymphoid tissue are targets of HIV due to their 
high expression of CCR5 and whether they are able to upregulate 
PD-1 and become fully functioning TFh cells is still unclear. 
Molecules targeting TFh cell function, such as PD-1 blocking 
antibodies and recombinant IL-21 administration are currently 
being used in therapeutic cancer trials. Results from these trials 
will determine if they would be beneficial as immunotherapy in 
HIV infection. However, a caveat of using such therapies in the 
context of HIV infection is that although it may improve TFh-B 
cell interactions and antibody production, immune modulation 
of TFh function may also increase T cell activation and lead to 
reactivation of the virus that may lead to an increase in additional 
reservoirs within GCs. Detailed studies of this important subset in 
terms of its function within the GCs and its relationship to other 
T cell and B cell subsets will shed light on possible therapeutics 
that may be useful in HIV infection.
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