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In vertebrate animals, the sterol metabolic network is emerging as a central player in 
immunity and inflammation. Upon infection, flux in the network is acutely moderated by 
the interferon (IFN) response through direct molecular and bi-directional communications. 
How sterol metabolism became linked to IFN control and for what purpose is not 
obvious. Here, we deliberate on the origins of these connections based on a systematic 
review of the literature. A narrative synthesis of publications that met eligibility criteria 
allowed us to trace an evolutionary path and functional connections between cholesterol 
metabolism and immunity. The synthesis supports an ancestral link between toxic levels 
of cholesterol-like products and the vitamin D receptor (VDR). VDR is an ancient nuclear 
hormone receptor that was originally involved in the recognition and detoxification of 
xenobiotic marine biotoxins exhibiting planar sterol ring scaffolds present in aquatic 
environments. Coadaptation of this receptor with the acquisition of sterol biosynthesis 
and IFNs in vertebrate animals set a stage for repurposing and linking a preexisting 
host-protection mechanism of harmful xenobiotics to become an important regulator 
in three key interlinked biological processes: bone development, immunity, and calcium 
homeostasis. We put forward the hypothesis that sterol metabolites, especially oxysterols, 
have acted as evolutionary drivers in immunity and may represent the first example of 
small-molecule metabolites linked to the adaptive coevolution and diversification of host 
metabolic and immune regulatory pathways.
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introdUCtion

Host-protection pathways against foreign harmful exogenous 
agents, inclusive of biotoxins and pathogens, exist in all branches 
of life. Pathways that allow the removal of biotoxins and meta-
bolic by-products are considered to be distinct from those that 
neutralize and eliminate pathogens. For instance, it is understood 
that the P450 enzymes, which represent an ancient detoxifica-
tion system, and interferon (IFN) pathways, that are central for 
immunity against infection in animals, are biologically unrelated. 
However, could specific metabolic pathways and metabolites pro-
vide an interconnection?

The substrates for P450 enzymes, while highly diverse, are 
lipophilic molecules often containing multiple planar ring struc-
tures. Notably, the most highly related P450s across the different 
kingdoms are involved in the metabolism of sterols (constituting 
multiple planar ring lipophilic molecules) and which further 
contribute an essential enzymatic role in the production of 
endogenous lipid metabolites, in particular as part of the sterol 
biosynthesis pathway (1–3). It has been debated whether the 
adaptation of P450 enzymes to the biosynthesis of sterols became 
firmly established in early eukaryotic (or late-stage prokaryotic) 
evolution with the arrival of atmospheric oxygen leading to the 
production of cholesterol in animals, ergo-sterol in fungi, and 
phyto-sterols in plants (4–7). The primary driver for sterol bio-
synthesis evolution was likely the selective advantage imparted 
by cholesterol toward modulation of membrane properties. 
However, too much cholesterol in membranes of cells, especially 
in the endoplasmic reticulum, the site of biosynthesis, can be 
highly toxic and accordingly sterol production, storage, and 
elimination is under stringent homeostatic regulation.

Sterols are not only required for membranes but also for 
the synthesis of steroid hormones, which regulate diverse 
physiological functions ranging from reproduction to stress and 
immunity. Outside the well-known functions of steroids, sterols, 
and in particular oxidized cholesterol and sterol metabolites, 
oxysterols, have been more recently found to have key roles in 
immunity (8, 9). Most importantly, the regulation of metabolic 
flux in cholesterol biosynthesis is directly linked to immune 
control through coupling to IFN signaling (10–13). Also see 
Robertson and Ghazal (14) for a review of our most current 
understanding of how IFN regulation is molecularly wired to 
sterol biosynthesis. We, therefore, posit that natural selection 
may have coadapted sterol metabolism and secondary metabo-
lites as a link between functionally unrelated host-protection 
pathways in countering harmful chemical and biological agents. 
This proposition evokes the question of whether there is evidence 
for an ancestral gene that supports a link between these distinct 
host-protection pathways?

To address this question we sought to systematically review 
and provide a narrative synthesis of the literature based on 
investigating the ancestral connections between sterol metabo-
lites, immunity, and xenobiotics. We find evidence supporting 
an evolutionary course for co-opting the ancestral, xenobiotic 
binding, vitamin D receptor (VDR) to adaptively recognize a 
specific non-typical oxysterol molecule, 1,25-dihydroxyvitamin 
D3, that in present day mammals governs prominent functions 

in calcium homeostasis, and immunity. It is important to clarify 
that vitamin D3 is a ring-opened version of 7-dehydrocholesterol 
and hence of the general class of sterols and steroids. For this 
reason and although vitamin D3 metabolites are not derived from 
cholesterol, we consider 25-hydroxyvitamin D3 (the inactive form 
found in serum) and 1,25-dihydroxyvitamin D3 (the active ligand 
to VDR) as non-typical oxysterols; as they are oxidized forms of 
the ring-opened cholesterol precursor 7-dehydrocholesterol.

On the basis of evidence presented, we further hypothesize 
that sterols and their oxidized metabolites have contributed as key 
evolutionary drivers for repurposing ancestral nuclear hormone 
receptors, in particular VDR, from protecting against harmful 
lipids to become important regulators of immunity.

tHe nUCLear HorMone reCeptor 
FaMiLy ConneCtion

Central to the recognition of sterol-like molecules and activation 
of detoxification systems and immunity are the nuclear hormone 
receptors (15, 16). In particular, the subfamily known as NR1I 
that includes the pregnane X receptor (PXR), constitutive andros-
tane receptor (CAR), and the VDR (15, 17). Although each have 
important individual functions in humans, these receptors act as 
important regulators of P450 enzymes and have strong genetic 
evidence suggesting they originated from a single ancestral 
nuclear receptor (18).

Notably, VDR that is activated by a specific ligand, 1,25-dihy-
droxyvitamin D3, generated from vitamin D that is derived from 
a precursor of cholesterol, 7-dehydrocholesterol from the sterol 
biosynthesis pathway and synthesis in humans begins in the 
skin upon exposure to ultraviolet B (UVB) light emitted from 
the sun. The vitamin D synthesis pathway is summarized in 
Figure 1 (for notation see Table 1), and involves the skin, liver, 
and kidneys (19). Interestingly, animals with fur and feathers are 
still able to synthesize vitamin D from sunlight despite UVB not 
reaching the skin (20). Here, vitamin D synthesis occurs through 
the sebaceous glands producing oily secretions (containing 
7-dehydrocholesterol) that cover fur or feathers and ingested after 
grooming (21–23).

Vitamin D deficiency can result in clinical disorders, the most 
notable being the characteristic bow-legged musculoskeletal 
manifestation known as rickets. Additional studies have also 
linked deficiency to cardiovascular disease, cancer, autoimmune 
conditions, and decreased antimicrobial protection (26–28). The 
VDR is known to heterodimerize with retinoid X receptor (RXR) 
and exerts biological effects as a ligand activated transcription 
factor by binding to specific vitamin D response element (VDRE) 
in gene promoters of over 200 genes (29). The active ligand of 
VDR is 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), also known as 
calcitriol, although certain bile acids are also capable of inducing 
transactivation to a lesser degree (Figure 1). 1,25(OH)2D3 is the 
active form of vitamin D, produced by enzymatic hydroxylation 
of the circulating 25-hydroxyvitamin D3 by cytochrome P450 
(CYP) enzyme 27B1 (see Figure 1).

While vitamin D and its receptor have been long regarded 
as mediators of calcium and phosphate homeostasis, VDR has 
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FiGUre 1 | the vitamin d synthesis pathway. Vitamin D3 can be acquired both endogenously from cholesterol in the skin and exogenously through diet 
(vitamin D2 and vitamin D3). In the skin, 7-dehydrocholesterol, a cholesterol precursor, is converted to previtamin D3 upon ultraviolet B (UVB) exposure. Through a 
series of cytochrome P450 enzyme-mediated reactions, previtamin D3 is converted first into 25(OH)2D3 in liver hepatocytes and then activated in the kidney by 
1α-hydroxylation, to form 1,25(OH)2D3. The degradation of 1,25(OH)2D3 and intermediate metabolites is mediated by negative feedback mechanisms (24). Figure 
created using the SBGN format on VANTED (25). See table 1 for notation.
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taBLe 1 | systems biology graphical notation legend.
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additional roles in innate and acquired immunity and xenobiotics 
(30). Vitamin D-mediated calcium homeostasis has been around 
since the first terrestrial vertebrates, including amphibians, which 
have also been observed to suffer from calcium deficient ailments 
such as rickets (31). Before the calcium endocrine system, ancient 
VDR functioned as a xenobiotic receptor, mediating the degrada-
tion of marine biotoxins (32). It still retains this ability, and in 
humans VDR is important in detoxifying the toxic secondary 
bile acid lithocholic acid (LCA) in the colon by activating the 
CYP3A4 P450 enzyme (30).

Vitamin D is itself an ancient sterol–steroid, present in phy-
toplankton and zooplankton (33). VDR orthologs have likewise 
been observed in ancient vertebrates (34) and invertebrates (35). 
Accordingly, we next examine the origin and early evolutionary 
progression of VDR and its role in detoxification.

priMordiaL nUCLear HorMone 
reCeptor FaMiLy oF tHe Vdr and 
BioLoGiCaL roLes in detoXiFiCation

The VDR is descended from a group of xenobiotic nuclear hor-
mone receptors known as NR1I, as shown in Figure 2. The NR1J 
nuclear receptor subfamily has important roles for xenobiotic 
detoxification in arthropods and nematodes (15, 16, 36). For 
instance, the related DHR96 receptor in Drosophila melanogaster 
can bind and detoxify a phenobarbital insult through a CYP 
transcriptional response (37), and NHR-8, in the Caenorhabditis 
elegans gut, senses colchicine and targets the activation of its cog-
nate detoxification pathway (38). Many of these related nuclear 
receptors have also shown the ability to bind small lipophilic 
molecules such as cholesterol or steroid hormones (15, 16, 36). 
In this way, conservation of function can be seen throughout 
the evolution of these nuclear receptors. We will first discuss the 
ancestral xenobiotic role of VDR before considering how evolu-
tionary pressures may have promoted the functional repurposing 
of this receptor with the acquisition of new roles including detoxi-
fication of endogenous compounds (e.g., vitamin D metabolites 
and bile acids), lipid regulation, and immunity.

The tunicate, Ciona intestinalis, represents the closest extant 
invertebrate relative of vertebrates possessing an ancestral VDR 
gene (39). Fidler et  al. (35) investigated the potential ligand-
binding properties of this receptor, named as CiVDR/PXRα for 
its homology with both the VDR and PXR. Interestingly, vitamin 
D, or indeed any bile salts, were unable to produce any transac-
tivation potential (40, 41). Despite speculation that the CiVDR/
PXRα ortholog may be used for calcium homeostasis, there is 
evidence for closer functional similarity to PXRs current role in 
xenobiotics. This possibility is supported by the argument that 
the ocean is a plentiful source of calcium, making any need for 
homeostasis redundant. Present day PXR function in humans is 
to detoxify foreign toxic compounds by sensing and then activat-
ing the enzyme CYP3A4. There is good experimental evidence 
to support a functional role for the C. intestinalis CiVDR/PXRα 
ortholog to be ligand activated by microalgal biotoxins, including 
okadaic acid and pectenotoxin-2 (35) (Figure 3). Filter feeding 
tunicates like C. intestinalis accumulate these biotoxins through 
the large quantity of microalgae in their diet. As high concentra-
tions of these chemicals are able to kill cells, CiVDR/PXRα’s abil-
ity to bind and detoxify them would be appropriate and consistent 
with PXRs current role in humans. Indeed, it has been shown 
that orthologous NR1Jβ receptors in mollusks likewise respond 
to xenobiotic insult from okadaic acid by activating detoxification 
pathways (42).

Similar to CiVDR/PXRα in C. intestinalis, NHR-8 and 
DHR96, members of the NR1J subfamily, in C. elegans and D. 
melanogaster, respectively, have also been shown to be essential 
for mediating xenobiotic resistance by promoting the expression 
of genes involved in metabolism of endo- and xenobiotics (37, 
43, 44). Increased expression of genes involved in xenobiotic 
metabolism, together with resistance to xenobiotics, are fre-
quently correlated with lifespan extension in C. elegans, D. mela-
nogaster, and mice, suggesting detoxification of diet-acquired 
toxins is a host-protection mechanism against accumulation of 
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FiGUre 2 | phylogenetic relationship of vertebrate vitamin d receptor (Vdr) with invertebrate orthologs. Both vertebrate and invertebrate VDR, 
belonging to the closely related NR1I and NR1J subgroups, respectively, regulate the expression of genes involved in xenobiotic metabolism (detoxification). 
Evolutionary change in the vertebrate VDR has resulted in the acquisition of new immunological functions. Distances between nodes are not to scale.
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specifically lipophilic toxins that negatively impact health during 
aging (The Green Theory of Aging) (16, 45). However, a recent 
study by Afschar et al. showed that DHR96 is indeed essential for 
mediating resistance to xenobiotics but not for increasing lifespan 
of insulin-mutant flies (44), indicating that xenobiotic resist-
ance and longevity may not be causally connected. It has been 
suggested that the co-occurrence of xenobiotic resistance and 
lifespan extension may have co-evolved because lowered insulin/
insulin-like growth factor signaling (IIS) can also signal the pres-
ence of pathogens (44). In line with this concept, in C. elegans 
and D. melanogaster, genes involved in xenobiotic metabolism 
have also been shown to be indirectly activated by toxic microbial 
by-products that directly cause dysfunction in cellular processes 
such as an altered metabolism, and decreased host translation 
and IIS (43, 46, 47).

eVoLUtionary repUrposinG oF 
priMordiaL Vdr FroM eXoGenoUs 
to endoGenoUs detoXiFiCation 
patHWays

Pharmacophore modeling of CiVDR/PXRα ligands revealed 
specific chemical scaffolds were required for receptor binding, 
comprising two hydrophobic features (in particular aromatic 
rings) and one hydrogen bond acceptor in a planar arrangement 
(35). The structure of activated vitamin D exhibits resemblance 
to this scaffold presenting a planar conformation with aromatic 
rings and hydrophobic features (48).

Further sequence identification by Ekins et  al. (41) demon-
strated a 67.6 and 17.1% similarity between the DNA binding 
domain (DBD) and the ligand-binding domain (LBD), respec-
tively, between CiVDR/PXR and hVDR. Lower conservation 
of the LBD suggests evolutionary adaptive changes in ligand 
affinity. It is perhaps this promiscuous ligand-binding quality that 
allowed the ancestral VDR to function as a xenobiotic receptor, 
by binding and detoxifying new toxic chemicals on exposure. The 
similarities in structure between 1,25(OH)2D3 and exogenous 
marine biotoxins, alongside the genetic variability of VDRs’ LBD, 
allowed for the eventual binding and regulation of 1,25(OH)2D3 
levels, a sterol-derived metabolite. As described below, observa-
tions in basal vertebrates provide insight toward understanding 
how this evolutionary pressure may have been applied.

The lamprey (Petromyzon marinus) is the most basal extant 
vertebrate, and therefore, provides valuable information regard-
ing VDR functional evolution. The lamprey (lampVDR) has an 87 
and 60% homology with hVDR DBD and LBD, respectively (18, 
34). This differential increase in homology of the LBD in com-
parison with the tunicate CiVDR/PXR ancestral gene suggests 
VDRs’ ligand activated role may have changed. There have been 
three rounds of whole genome duplications (WGDs), represented 
as 1R, 2R, and 3R, since C. intestinalis. Humans diverged after 
the second round while Teleost fish were subjected to a third 
round and therefore, have an extra copy of the VDR gene (18). 
It is thought that after 1R, the combined VDR/PXR gene split 
giving rise to separate VDR and PXR genes with different but 
also overlapping functions. The lamprey was first to diverge after 
the 1R WGD event, as shown in Figure 2. While, a PXR homolog 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGUre 3 | Molecular structures of calcitriol, okadaic acid, and pectenotoxin-2. (a) Molecular structure of 1,25(OH)2D3, otherwise known as calcitriol 
(PubChem CID = 5280453), a vitamin D receptor (VDR) agonist. (B,C) Atomic structure of two natural Ciona intestinalis CiVDR/PXRα analogs, okadaic acid 
(446512) (B) and pectenotoxin-2 (6437385) (C), from left to right. Figures produced using MarvinSketch (http://www.chemaxon.com).
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has yet to be identified in the lamprey, lampVDR has been shown 
to have high affinity binding and transactivation by 1,25(OH)2D3, 
which functionally activates CYP3A4, and possibly CYP24A1, in 
order to detoxify high levels of this sterol (34) and providing an 
opportunity for an extended regulatory role for the VDR in lipid 
metabolism. Although the lamprey lacks a calcium endocrine 
system, lampVDR may contribute to the regulation of other 
processes such as skin differentiation, as an observed increase in 
VDR presence in mucous glands and keratinized teeth has been 
reported (34, 49).

Thus, in addition to the metabolism of exogenous xenobiotic 
compounds, VDR further acquired an ability to detoxify certain 
lipophilic endogenous molecules such as bile acids. Bile salt 
pathways are important vertebrate mechanisms by which cho-
lesterol can be removed from the body. There are at least three 
evolutionary classified bile salt pathways, referred to as early, later, 
and recent pathways (41) (Figure 4). The lamprey uses the early 
fish pathway, while chondrichthyes, such as the Little skate, use 
the later pathway. In mammals, the “recent” pathway converts 
cholesterol to 24-carbon (C24) bile acids, which can subsequently 
be converted to toxic secondary bile acids in the intestine by 
resident microorganisms (50). Indeed, one of the major roles of 
the hVDR is its ability to detoxify the secondary bile acid LCA 

by transactivation of CYP3A4 (30). As LCA is a product of the 
most recent C24 bile acid pathway, basal vertebrates such as the 
lamprey, which employ the “early” or “later” fish pathways, are 
unable to bind this molecule with their VDR (51). In mammals, 
LCA affinity is almost certainly a more recent evolutionary adap-
tion to changes in the gut microbiome resulting in the production 
of toxic secondary bile acids. This ability of VDR to subsequently 
transactivate the CYP3A4 gene in response to the binding of a 
toxic chemical traces an evolutionary path from VDRs’ ancestral 
xenobiotic function. In this regard, it is noteworthy that the 
NHR-8 and DAF-12 nuclear receptors in C. elegans, homologs of 
VDR and part of the NR1J subgroup, have convergently evolved 
to control and bind dafachronic acids, a bile acid look-alike, 
important in the life-cycle of this species (52, 53).

FUnCtionaL diVersiFiCation oF Vdr 
in Lipid MetaBoLisM and iMMUnity

Vitamin D receptor’s ancestral roots clearly stem from its ability to 
recognize and regulate detoxification pathways for environmental 
toxic chemicals, as observed in both NR1I and NR1J subgroups. 
From this stemmed, its ability to bind and detoxify endogenous 
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FiGUre 4 | schematic overview of the three major bile salt pathways 
throughout vertebrate evolution. All bile acids are derived from 
cholesterol, a 27-carbon molecule. In early fish, e.g., hagfish and sea 
lamprey, a 7α-hydrocholesterol is converted to 5α-bile alcohols, followed by 
conversion to 5α-bile alcohol sulfate. The production of bile salts in 
mammals, birds, cartilaginous fish, and in some teleost and amphibians is 
dependent on the conversion of 7α-hydrocholesterol into 5β-bile alcohol. In 
cartilaginous fish, mainly, but also in some teleost and amphibians, 5β-bile 
alcohol is further converted to 5β-bile alcohol sulfates (“Later pathway”). 
In mammals and birds, as depicted in the “Recent pathway,” bile salt 
production involves the conversion of 5β-bile alcohol to 24-carbon bile acids 
in the liver (cholic acid and chenodeoxycholic acid) by cytochrome 
P450-mediated oxidation. When these bile acids are secreted into the lumen 
of the intestine, cholic acid and chenodeoxycholic acid are converted, by 
colonic bacteria, to the secondary bile acids deoxycholic acid and lithocholic 
acid, respectively. While secondary bile acids in higher concentrations are 
potentially toxic to cells, they can, together with primary bile acids, be taken 
up into the blood stream and liver for re-secretion. In all pathways, the 
production of 7α-hydroxylation is the rate-limiting step in these reactions. 
Figure based on Ekins et al. (41).
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lipophilic molecules such as 1,25(OH)2D3 and bile acids using 
P450 enzymes. Sterol metabolites are important biological 
molecules requiring careful regulation for incorporation into 
cell membranes and steroid hormones. Accordingly, this opens 
a new opportunity for VDR to adopt a regulatory role through 
negative feedback mechanisms conferred by its ligand binding. 
The next section will discuss how sterol metabolites may have 
further coadapted VDR for driving the diversification of VDR 
functionality into lipid regulation, immunity, and bone prior to a 
role for VDR in calcium homeostasis (34).

As described above, VDR origin is based on recognizing and 
regulating the levels of lipophilic exogenous and endogenous 

molecules through the transcriptional regulation of P450 
enzymes. To more fully understand the functional relationship by 
which VDR interacts with various lipid metabolism and immune 
signaling pathways, we constructed a pathway biology diagram 
(Figure 5, for notation see Table 1) from the research synthesis 
of literature mapping all known interactions. Figure 5 shows that 
VDR is deeply embedded in a network of signaling pathways 
including PPAR-α and PPAR-γ, nuclear factor-kappa B (NF-κB), 
p38 mitogen-activated protein kinase (MAPK), transforming 
growth factor-beta (TGF-β), and eicosanoid synthesis. Of note, 
all of these pathways have instrumental roles in immunity, bone 
regulation, cell proliferation, and lipid metabolism.

A range of biological functions associated with VDR and 
targeted signaling pathways are shown in Table 2. Notably, most 
of these pathways not only regulate lipid metabolism, but have 
direct roles in immunity and bone homeostasis too. All these 
processes are interconnected. Lipids have a fundamental role 
in the immune system and directly affect immune cell function. 
They alter membrane fluidity, lipid peroxidation, gene expres-
sion, and eicosanoid production (54). Bone and immunity have 
a very close relationship, with bone marrow being a “high fat” 
primary hematopoietic tissue, controlling the production of B 
cells and other important innate and adaptive immune responses 
(55). Sterol biosynthesis is at the heart of this control network, 
using sterol-based interactions with the VDR to effectively regu-
late lipid metabolism and its associated features within bone and 
immunity. These pathways provide a link between the seemingly 
unconnected and multiple divergences of the VDR before addi-
tional more specific gene targets became evolutionary fixed and 
conserved, such as calcium homeostasis. In addition, it was also 
found that VDR has the ability to directly regulate fatty acid beta-
oxidation by interacting with the enzymes hexokinase, CBT1, and 
CBT2, possibly leading to a role for energy metabolism in adipose 
tissue (56, 57).

It is worth noting that all these interactions are compart-
mentalized in terms of tissue specific, time dependent, and 
multifactorial control levels. This view is consistent with the pos-
sibility that cholesterol, as a toxic molecule and precursor sterols 
to vitamin D, repurposed VDRs’ ancestral function to provide a 
wider regulation over lipid metabolism and immune pathways.

Vitamin D receptor has long been known to promote 
immune tolerance in the acquired immune system while 
providing protective innate mechanisms against pathogen 
infection. The acquired immune functions of the VDR are 
complicated, involving the regulation of multifaceted signal-
ing pathways such as PPAR-γ and NF-κB. The net outcome of 
these cross-regulatory responses results in attenuation of the 
immune adaptive response, involving stimulation of interleukin 
(IL)-10 and downregulation of IL-12 (75). The most notable 
case for innate immunity is the VDR function to induce 
expression of the cathelicidin antimicrobial peptide (CAMP) 
gene, an important host defense protein. Gombart et  al. (76) 
demonstrated that exaptation of an AluSx short interspersed 
element provided a perfect VDRE in the Camp promoter. 
Moreover, VDR is upregulated during infection in a toll-like 
receptor 2/1 (TLR2/1)-dependent manner (77–79). This shows a 
direct connection to innate immunity and is where the historic 

http://www.frontiersin.org/Immunology/
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taBLe 2 | the function of various signaling pathways and their corresponding interaction with the vitamin d receptor (Vdr).

pathway Functions possible Vdr interactions reference

PPAR-α
PPAR-γ

Fatty acid metabolism
Energy homeostasis
Immune function
Bone regulation

Protein–protein interactions between the ligand-binding domains 
of VDR and PPAR-α

(58)
(59)
(60)
(61)

Nuclear factor-kappa B Immune response
Inflammation
Cell cycle
Bone regulation

VDR sequesters IKKβ, preventing NF-κB activation
VDR modulates IκBα function, thereby controlling the 
translocation of NF-κB proteins

(62)
(63)
(64)
(65)

P38 mitogen-activated protein 
kinase (MAPK)

Inflammation
Skeletal muscle differentiation

VDR upregulates MAPK phosphatase-1 causing inactivation of 
p38 MAPK

(66)
(67)

Transforming growth factor-beta Cell growth and differentiation
Inflammatory and immunological 
processes

Reduces TGF-β expression
Inhibition of phosphorylated receptor-regulated SMAD
Upregulation of SMAD6
Inhibition of SMAD2/3 nuclear translocation

(68)
(69)
(70)
(71)

Eicosanoids Inflammation
Immune function
Tissue growth
Blood pressure

Inhibits cyclooxygenase-2
Stimulates 15-hydroxy-prostaglandin dehydrogenase
Regulates expression of 5-lipoxygenase

(72)
(73)

Nuclear factor of activated T-cells Immune function
Cell cycle
Cytokine signaling

VDR/retinoid X receptor complex interacts with target gene and 
prevents NFAT binding.

(74)

FiGUre 5 | interactions of the vitamin d receptor (Vdr) with ppar-α, nuclear factor-kappa B (nF-κB), p38 mitogen-activated protein kinase (MapK), 
transforming growth factor-beta (tGF)-β, β-oxidation, eicosanoid production, and nuclear factor of activated t-cells (nFat) pathways. From left to 
right, the pathways represented are PPAR-α/γ (blue), β-oxidation (light purple), NF-κB (red), p38 MAPK (green), TGF-β (turquoise), NFAT (dark purple), and 
eicosanoid synthesis (yellow). Figure created using the SBGN format on VANTED with edges representing high and low confidence interactions (25).  
See table 1 for notation.

8

Newmark et al. Sterols: Evolutionary Drivers in Immunity

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 62

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

Newmark et al. Sterols: Evolutionary Drivers in Immunity

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 62

treatment of tuberculosis with cod liver oil (high in vitamin D) 
may have a possible molecular explanation (80). Unsurprisingly, 
VDR-mediated innate immune responses have become targets 
of pathogen evasion techniques (81).

tHe ConneCtion WitH iFn siGnaLinG

Interferons are a group of signaling proteins required for antiviral 
defense. Released by virally infected cells or leukocytes, they 
mediate a variety of innate and adaptive immunological responses 
by upregulating over 300 interferon-stimulated genes (ISGs) 
(82). IFNs can be classified into three types depending upon the 
receptor to which they bind and the signal transduction pathways 
they activate (83). Type I IFNs are split into multiple subtypes 
including -α, -β, -ω, -ε, -τ, -δ, and -κ, each with independent and 
redundant functions. Type II IFNs are conserved to just higher 
mammals and have only one member, IFNγ. Lastly, type III, 
containing IFN-λ genes (IL-29, IL-28A, and IL-28B), have similar 
biological properties as type I, but their genetic sequence contains 
non-coding intron sequences (84–86). The IFN system has dis-
played remarkable conservation throughout vertebrate evolution, 
demonstrating its importance for immunological defense (87). It 
is also inherently linked to cholesterol metabolism, as described 
elsewhere (8–10, 14).

Interferons appeared to have originated soon after the evolu-
tion of vertebrates as IFN homologous genes and their transcrip-
tion factors have not yet been observed in primitive chordates 
such as the tunicate and sea urchin (87) or even closely related 
basal vertebrates such as the jawless fish, lamprey (88). We briefly 
discuss the evolution of type I and III IFN genes, as their ancestral 
homologs have coexisted with the evolving metabolic interactions 
between VDR, cholesterol, and immunity.

Interferon genes are present in many different varieties of 
fish, including the teleost clade of ray-finned fish that diverged 
from our evolutionary line 450 million years ago (87). Fish can 
possess singular or multiple IFN genes depending on the species 
and it is likely that vertebrate groups have independently evolved 
a vast array of structurally similar IFN molecules that perform 
different host protective functions (83, 89). Thus, the expanding 
role of IFNs coincided with the evolutionary changing roles of 
sterols and VDR.

Interferons act through the Janus kinase/signal transducer 
and activator of transcription (JAK/STAT) signal transduction 
pathways inducing and suppressing hundreds of genes. In 
mammals, IFNs are activated through a variety of pathogen 
pattern recognition systems, notably downstream of toll-like 
receptor (TLR) activation and by stimulator of interferon genes 
(STING)-activation that are now known to also target the sterol 
biosynthesis pathway. IFN signaling via STAT1 and IRF1 induces 
a cholesterol hydroxylase gene, CH25H and its cognate metabo-
lite 25-hydroxycholesterol as well as a microRNA (miR342-5p) 
that dramatically suppresses the flux in the sterol biosynthesis 
pathway. A change in the flux of sterol biosynthesis in turn 
activates STING that further re-enforces the IFN response 
(14). It is worth mentioning that VDR can interact with STAT1 
and curtail the nuclear translocation of ISGF3 and which may 

contribute to VDRs inherent immunosuppressive attributes 
(90). Furthermore, as mentioned above, numerous studies have 
reported on the importance of both IFN-expression and activa-
tion of the vitamin D-pathway on the expression of downstream 
effector molecules [e.g., antimicrobial peptides (AMPs)] that 
subsequently influence infection and inflammation (78, 91–99). 
Increased expression of type II IFN (IFNγ) have been correlated 
with macrophage activation, macrophage-dependent AMP gene 
expression, as well as with controlled growth of pathogenic 
intracellular microbes and better disease outcome (96, 97, 
99). Fabri et al. reported that IFNγ, released by T cells induce 
in a vitamin D-pathway-dependent in human macrophages, 
autophagy, phagosomal maturation, and antimicrobial activity 
against Mycobacterium tuberculosis (97).

The role of IFN responses and the vitamin D-pathway has also 
been investigated in human leprosy. Teles et  al. have revealed 
an inverse correlation between IFNβ, IL-10, and IFNγ, where 
IFNβ, in an IL-10-pathway-dependent manner, inhibited the 
IFNγ-induced and vitamin D-dependent, AMP response in dis-
seminated and progressive lepromatous lesions (99). By contrast, 
IFNγ-specific genes were enriched in self-healing tuberculoid 
lesions. Both studies underscore the importance of adequate 
amounts of vitamin D in human populations for sustaining 
both innate and acquired immunity against infection. The close 
connection between IFN and the vitamin D-pathway have also 
been reported in experimental autoimmune encephalitis (EAE), 
a model for multiple sclerosis (MS) (100, 101), and diabetes (102), 
two non-infectious disorders characterized by excessive and 
uncontrolled inflammation and macrophage foam cell formation 
(characterized by accumulation of esterified cholesterol) (103, 
104). Early studies have shown that IFNγ plays a crucial role in 
the induction of 1,25(OH)2D3 (105, 106), the active vitamin D 
metabolite that bind to VDR, in initializing VDR dimerization 
with RXR and, in VDR–RXR activation of VDRE-containing 
target genes (107–109). Adams et al. showed that IFNγ induces 
production of 1,25(OH)2D3 in macrophages and that the effect was 
abolished by addition of anti-IFNγ to the culture medium (110). 
The tissue availability of 1,25(OH)2D3 in immune cells is depend-
ent on the expression of the activating enzyme 1α-hydroxylase 
(Cyp27b1) and its catabolic counterpart 25-OHD3-24-hydroxylase 
(Cyp24a1) (111). In addition to TLR signaling, expression of 
1α-hydroxylase can be induced by IFNγ stimulation (112–114). 
Activation by IFNγ stimulation require, however, the cells to be 
differentiated, as IFNγ stimulation of undifferentiated monocyte 
THP1 cells failed to induce Cyp27b1 expression (1α-hydroxylase) 
in the absence of a second stimulus [lipopolysaccharide (LPS)] 
(112). On the other hand, Cyp24a1 (25-OHD3-24-hydroxylase) 
expression is induced by the type 2 T helper cell cytokine IL-4, 
in toll-like receptor 2/1 ligand-activated monocytes, but not by 
IFNγ (114). Stoffel et  al. revealed that, in cultured monocytes, 
synergistic induction of Cyp27b1 gene expression by IFNγ and 
LPS, required, not only activation of the JAK/STAT pathway and 
NF-κB binding but also binding of phosphorylated C/EBPβ (by 
the p38 MAPK pathway) (113).

In addition to regulation of VDR through the transcriptional 
regulation of Cyp27b1, VDR gene expression was shown to be 
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FiGUre 6 | Vitamin d receptor (Vdr) is an ancient nuclear hormone 
receptor that was originally involved in the recognition and 
detoxification of xenobiotic marine biotoxins exhibiting sterol ring 
scaffolds present in aquatic environments. Coadaptation of this receptor 
with the acquisition of sterol biosynthesis and interferons in vertebrate 
animals set a stage for repurposing and linking a preexisting host-protection 
mechanism of harmful xenobiotics to become an important regulator in 
immunity.
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dependent on the IFNG gene (101). Ifng knockout (GKO) mice 
exhibited very low Vdr gene expression in the central nervous 
system. Correlating with the low Vdr expression, GKO mice also 
demonstrated an increased pathogenic T cells burden as well as 
a more severe EAE phenotype, suggesting that the aggressive 
autoimmune CD4+ T cell phenotype may be a consequence of 
inadequate Vdr gene expression (101). Furthermore, treatment of 
TLR2/1L-activated monocytes with IFNγ has been shown to not 
only stimulate Cyp27b1 expression but also Vdr gene expression 
(114). Collectively, these studies suggest that IFN-regulation of 
VDR activity is complex and regulated indirectly via regulation 
of 1α-hydroxylase, and possibly directly at the gene level by IFNγ-
induced STAT binding.

present day iFn-steroL  
MetaBoLiC LinK

Primitive NR1I and NR1J receptors have inherent affinities for 
lipophilic molecules, making them useful xenobiotic sensors 
in vertebrate and invertebrate organisms. Figure  6 depicts the 
adaption of this receptor from the detoxification of endogenous 
compounds including bile acids and vitamin D in vertebrate 
organisms to acquiring new biological roles associated with the 
increasing importance of sterols and especially oxysterols for 
immune cell function. From this foundation, VDR continued 
to develop further direct and indirect interactions with lipid 
metabolism pathways, placing VDR in an opportunistic position 
to influence the development and regulation of other important 
biological systems including, but not limited to, immunity, bone 
development, and cell proliferation. The immune roles have been 
further consolidated with the acquisition of fixed mutations, such 
as the VDR regulated production of innate AMPs.

In conclusion, our findings support an evolutionary basis to 
the IFN–sterol–immune metabolic link, arising from the xeno-
biotic origins of a nuclear hormone receptor, VDR (Figure  6). 
Xenobiotics and immunity are considered separate pathways 

facilitating the removal of toxic molecules and pathogens, 
respectively. However, our narrative synthesis suggests that 
sterol metabolites acted as an evolutionary driver integrating a 
complex metabolic network under bi-directional IFN and VDR 
control. We believe this is likely to be a more general evolution-
ary mechanism for other nuclear hormone receptor functions in 
immunity such as glucocorticoid receptor, liver X receptor (LXR), 
and farnesoid X receptor (FXR) and possibly for other distinct 
immune directed metabolic pathways and associated ligand 
activated receptor systems.

ConCLUdinG reMarKs on 
tHe GENERAL HypotHesis oF  
MiCroBiaL–Host sMaLL-MoLeCULe 
MetaBoLites as FUnCtionaL and 
eVoLUtionary driVers For 
reCoGniZinG and deFendinG 
aGainst non-seLF

The question of whether a functional–evolutionary link between 
planar sterol-like molecules, immunity, and detoxification is 
specifically unique to VDR would implicate a limited selective 
role rather than one pertaining to a more central evolutionary 
principle with broader biological significance. Notably, in this 
context other evolutionary related subfamily 1 nuclear recep-
tors, including LXR, FXR, PXR, CAR, retinoic-acid receptor 
(RAR), and RAR-related orphan receptor (32), similarly exhibit, 
at a number of levels, cross talk between mevalonate-sterol 
metabolism and immunity, as well as in xenobiotic detoxification 
[for examples see Ref. (115–118)]. Interestingly, RXRs partner 
with many of these receptors and which recruits corepressor 
or coactivator molecules to regulate transcriptional responses. 
Homologs and orthologs of this highly conserved nuclear recep-
tor have been identified in marine and terrestrial invertebrates 
(119–123), so it is likely that RXR coevolved with VDR and the 
many other nuclear receptors it is associated with. RAR and RXR 
are activated by the vitamin A derived ligand, retinoic acid and 
its 9-cis conformer, respectively. While this lipophilic molecule 
is not a steroid-derived molecule, the heterodimerization of 
RXR provides an important but insufficient role of vitamin A 
metabolites in integrating with these receptor systems and sterol 
metabolism (124–127).

Of the related subfamily 1 nuclear receptors, strong con-
servation across vertebrate species can be found for the LXRs, 
with approximately 75% sequence identity in the LBD between 
human and non-mammalian LXRs (128). Consistent with 
the high degree of sequence conservation, ligand specifici-
ties between mammalian and non-mammalian vertebrates 
homologs, as well as between vertebrate and non-vertebrate 
LXR orthologs, are very similar (128). While vertebrate LXR 
agonists do not activate Ciona LXR, it is activated by a num-
ber of oxysterols as well as some pregnane and androstane 
steroids. In insects on the other hand, the ecdysone receptor 
(EcR) has been identified as the ortholog for both LXR and 
FXR combined (120). Together with its interaction partner, 
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ultraspiracle (ortholog of RXR), EcR play an essential role 
in insect development and reproduction, as well as in basic 
metabolism and immunity (129, 130). In mammals, FXRs, 
with their high expression in liver, adrenal glands, intestine, 
and kidney, are activated by farnysol and its metabolites, part 
of the mevalonate–sterol biosynthesis pathway (131) and by 
primary bile acids such as chenodeoxycholic acid (132–134). 
Together with PXRs and VDR, FXR serves as one of the major 
transcriptional regulators of bile salt synthesis, partly by regu-
lating the expression of CYP7A1 and CYP8B1 (135). Bile salts 
have to date not been detected in invertebrates, suggesting that 
regulation of bile salt synthesis is an evolutionary acquired trait 
specific for the vertebrate nuclear receptors. Two major evo-
lutionary shifts in bile salt structure have been identified (50, 
136) and hypothesized that the bile alcohols found in jawless 
fish (Agnatha) represents the “ancestral” bile salt phenotype 
from which the more “recent” vertebrate bile acids are derived 
(51). Secondary bile acids produced as a consequence of 
microbial metabolism in the gut are further detoxified through 
recognition by these nuclear receptors. In this regard, it is 
also notable that the related NRI family member, PXR that is 
well known for its xenobiotic detoxification role has also been 
shown to regulate intestinal inflammation by sensing bacterial 
metabolites (137). Furthermore, another unrelated xenobiotic 
receptor, the aryl hydrocarbon receptor, has been linked to the 
antibacterial response through sensing bacterial pigments and 
in enhancing IL-22 barrier immunity (138, 139).

While a comprehensive evolutionary history of LXR, FXR, and 
the other nuclear hormone receptors is beyond the present scope 
of this article; we believe the evolutionary path exemplified by 
VDR, in selecting dual functional roles in detoxification of harm-
ful planar lipids and immune recognition, represents a central 
driver for the evolution of these receptors and evokes a general 
hypothesis for the coevolution of microbial–host metabolism 
underlying host-protection pathways.
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