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The adaptive immune system is able to detect and destroy cells that are malignantly 
transformed or infected by intracellular pathogens. Specific immune responses against 
these cells are elicited by antigenic peptides that are presented on major histocompat-
ibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at 
the cell surface. Since these MHC I-presented peptides are generated in the cytosol by 
proteasomal protein degradation, they can be metaphorically described as a window 
providing immune cells with insights into the state of the cellular proteome. A crucial ele-
ment of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit 
machinery, which contains as key constituents the transporter associated with antigen 
processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes 
and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn 
samples peptides in the ER for their ability to form stable complexes with MHC I, a 
process called peptide proofreading or peptide editing. Through its selection of peptides 
that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide 
epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into 
the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been 
gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog 
called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to 
function as a second MHC I-specific chaperone and peptide proofreader. Although 
TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share 
a common catalytic mechanism with Tsn. This review focuses on the current knowledge 
of the multivalent protein–protein interactions and the concomitant dynamic molecular 
processes underlying peptide-proofreading catalysis. We do not only derive a model 
that highlights the common mechanistic principles shared by the MHC I editors Tsn and 
TAPBPR, and the MHC II editor HLA-DM, but also illustrate the distinct quality control 
strategies employed by these chaperones to sample epitopes. Unraveling the mech-
anistic underpinnings of catalyzed peptide proofreading will be crucial for a thorough 
understanding of many aspects of immune recognition, from infection control and tumor 
immunity to autoimmune diseases and transplant rejection.

Keywords: adaptive immunity, antigen presentation, MHC, peptide-loading complex, peptide editing, quality 
control, tapasin, molecular tug-of-war
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FiGURe 1 | Molecular environment of tapasin (Tsn) within the peptide-loading complex (PLC). Structural organization of the PLC. The individual 
components of the PLC are shown according to their domain organization. Tsn, covalently linked to the oxidoreductase ERp57 through a disulfide bridge (yellow 
line), interacts via its transmembrane region with the heterodimeric ATP-binding cassette transporter TAP1/2, which shuttles antigenic peptides across the 
endoplasmic reticulum (ER) membrane in an ATP-dependent manner. The monoglucosylated (G) N-glycan of the MHC I is shown as white branched lines. This 
multivalent interaction network localizes recruited calreticulin-associated MHC I molecules directly at the peptide source, facilitating selection of high-affinity epitopes.
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iNTRODUCTiON

Presentation of antigenic peptides on major histocompatibility 
complex class I (MHC I) molecules is fundamental to the recog-
nition of infected and cancerous cells by the immune system (1). 
Peptides derived from intracellular pathogens or endogenous self-
antigens by proteasomal degradation and peptidase trimming are 
transported from the cytosol into the endoplasmic reticulum (ER) 
lumen by the ATP-binding cassette (ABC) transporter associated 
with antigen processing (TAP), a component of the peptide-
loading complex (PLC) that resides in the ER membrane (2–4). 
In the ER, the peptides are then processed by specific proteases 
and loaded onto MHC I molecules, which subsequently travel to 
the cell surface where they are scanned by CD8+ T-lymphocytes. 
However, the peptides are not indiscriminately loaded onto MHC 
I molecules, but rather selected for high affinity and stability 
in an optimization step called peptide proofreading or editing 
(5). While TAP already achieves some degree of selectivity, the 
actual proofreading step, ensuring that stable peptide–MHC I 
complexes are presented to the immune system (6), is catalyzed 
by two MHC I-specific chaperones called tapasin (Tsn) (7–9) and 
TAP-binding protein-related (TAPBPR) (10). The selection of 
high-affinity peptide epitopes is essential: it gives T cells enough 
time to scan the peptide–MHC I complexes and prevents the 
exchange of endogenous peptides against exogenous peptides on 

the MHC I molecules, which would distort the presentation of the 
intracellular proteome status (1).

This review will describe the major players in catalyzed peptide 
proofreading, in particular Tsn, with a focus on the molecular 
mechanisms of the proofreading activity, the associated protein 
plasticity, and the dynamics of the interaction partners. Key 
information about these aspects of antigen presentation has 
recently been obtained mainly by structural, biochemical, and 
computational studies.

MOLeCULAR eNviRONMeNT AND 
ARCHiTeCTURe OF Tsn

Tapasin is a type I transmembrane protein of the ER with a short 
cytoplasmic tail and an ER-lumenal region of ~400 amino acids, 
which harbors the catalytic activity (11). Together with the ABC 
transporter TAP, the lectin-like chaperone calreticulin (Crt), and 
the disulfide isomerase ERp57 (ER protein 57), it forms the PLC 
(12) (Figure 1). Tsn is conjugated with ERp57 via a disulfide bond 
(7, 13), which is important for its full activity (12), and primarily 
interacts with TAP through its transmembrane domain, thereby 
forming a bridge between peptide-receptive MHC I and the pep-
tide translocator TAP (14–17). Apart from its catalytic activity, 
the Tsn–ERp57 conjugate therefore plays a crucial architectural 
role and ensures the stability of the PLC (13, 18). The structure 
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of Tsn–ERp57 has been solved by X-ray crystallography (19), 
revealing that the lumenal part of Tsn is L-shaped and consists 
of two domains, a distal N-terminal fusion domain of a seven-
stranded β barrel and an immunoglobulin (Ig)-like fold followed 
by a C-terminal (membrane-proximal) IgC1 domain. The cova-
lently linked ERp57 adopts the conformation of a twisted U, and 
its main function appears to reside in a facilitated recruitment of 
properly glycosylated MHC I molecules (12, 18–20), which are 
bound through their glycan moiety by Crt that also associates 
with ERp57 via its P domain (21–23) (Figure 1).

Tsn DiFFeReNTiALLY iNTeRACTS wiTH 
OPTiMALLY AND SUBOPTiMALLY 
LOADeD MHC i

Initial hints that Tsn is a vital component of antigen processing 
came from experiments with a Tsn-deficient cell line (24–26) 
and Tsn-knockout mice (27, 28). Loss of Tsn leads to a drastic 
reduction in MHC I surface expression (16, 24, 27, 28). Using the 
ER-lumenal domains of Tsn and the HLA-B*08:01 heavy chain, 
zippered by Jun and Fos leucine peptides, it could be shown that 
Tsn increases the dissociation of certain peptides from MHC 
I (29), but the degree of Tsn sensitivity of different peptides 
could not be directly correlated with their intrinsic dissociation  
half-lifes. In the same study, experiments with peptides lacking 
either the N- or C-terminus indicated that catalysis by Tsn involves 
disruption of conserved hydrogen bonds at the C-terminal end 
of the peptide-binding groove. The authors concluded that 
Tsn selects high-affinity peptides by generating an energy bar-
rier through widening of the MHC I peptide-binding groove. 
Wearsch and Cresswell used soluble, recombinantly generated 
Tsn–ERp57 conjugate and cell extracts of Tsn-negative cells 
transfected with HLA-B8 to provide evidence that Tsn–ERp57 
promotes the exchange of intermediate- and low-affinity peptides 
for high-affinity epitopes (12). These initial demonstrations 
of Tsn-catalyzed peptide dissociation and discrimination of 
unstable peptide–MHC I complexes have later been confirmed 
by analyzing peptide loading onto the mouse MHC I allele 
H2-Kb using isolated microsomes (30). Thus, Tsn is more than 
a simple facilitator as it had initially been postulated in a study 
that was denying Tsn any ability to discriminate between low- 
and high-affinity peptides (31). It is remarkable that Tsn is able 
to enrich MHC I molecules with high-affinity epitopes despite 
an estimated 1,000-fold excess of low-affinity over high-affinity 
peptides in its environment (32). Because MHC I molecules are 
intrinsically flexible and unstable without tightly bound peptides 
(33–37), Tsn also acts as a chaperone during peptide exchange, 
stabilizing peptide-free MHC I (29). Several attempts have been 
made to mechanistically explain the observed effects of Tsn on 
MHC I (5, 12, 29, 30, 38, 39), and the principles of its activities 
are now clearer, thanks to several recent studies, including the 
description of the Tsn–ERp57 crystal structure (19). To further 
biochemically dissect the Tsn–MHC I interaction and the pep-
tide-editing process in vitro, a tethering approach was employed 
that incorporated ERp57 and used recombinant biotinylated 
Tsn and MHC together with dimeric neutravidin to mimic the 
structural organization of Tsn–ERp57 and MHC I within the 

PLC. By combining this strategy with photo-cleavable peptide to 
synchronize and follow the catalytic process in real time, it was 
possible to demonstrate that Tsn increases the dissociation rate 
of low- and intermediate-affinity (suboptimal) peptide epitopes 
up to 10-fold (40). The exchange of suboptimal peptides for 
high-affinity ones turned out to be extremely slow in the absence 
of Tsn. Furthermore, the experiments provided unequivocal 
evidence that Tsn is able to discriminate between optimally and 
suboptimally loaded MHC I (40). This differential interaction of 
Tsn with MHC I, depending on the peptide cargo, is key to its 
ability to help selecting immunodominant peptide epitopes.

MeCHANiSTiC MODeL OF Tsn-
CATALYZeD PePTiDe PROOFReADiNG:  
A MOLeCULAR TUG-OF-wAR

Differential antibody binding experiments and mutational analy-
ses based on the Tsn–ERp57 structure helped to narrow down the 
main site of interaction with MHC I to a conserved region in the 
N-terminal domain of Tsn including residues E185, R187, Q189, 
and Q261 (19). MHC I residues that influence the interaction 
with Tsn (41–46) lie in two lumenal regions of the heavy chain, 
primarily on the same side as the α2-1 and α2-2 helices that form 
the flanking wall on one side of the peptide-binding groove. The 
crystal structure of a peptide-deficient non-classical MHC I (47) 
and MD simulations with HLA-A*02:01 (48) demonstrated that 
the binding groove in the peptide-free state adopts a more open 
conformation than in the peptide-bound state and is character-
ized by increased flexibility in the α2-1 helix close to the F pocket. 
A certain degree of flexibility of α2-1 had already been proposed 
earlier, based on structural comparisons (49–51). In contrast to 
the plasticity of the α2-1 helix region, the A-pocket region close 
to the binding region of the peptide N-terminus is significantly 
more rigid (48, 52–54). Since Tsn chaperones the peptide-free 
conformation, it has been speculated to do so by stabilizing the 
α2-1 helix in a position that leaves the binding groove in an open, 
peptide-receptive state (19).

One possible interface for binding of the α2-1 helix is the 
conserved patch of residues in the N-terminal domain of Tsn. 
This notion of Tsn–MHC I interaction is supported by recent 
multi-microsecond all-atom MD simulations of the Tsn–MHC I 
complex in the peptide-bound and peptide-free state, for which 
the crystal structures of the lumenal portions of Tsn and HLA-
B*44:02 were used as starting points (40, 55): two distinct inter-
faces were observed, one between the Tsn N-terminal domain 
and the MHC α2 domain, the other between the C-terminal 
domain of Tsn and the α3 domain of the MHC heavy chain 
(Figure 2). In the N-terminal interface, Tsn contacts the MHC 
α2-1 helix, the α2-1/2 hinge, and the underside of the β-sheet floor 
(β strands #7 and #8). The α2-1 helix is embraced and stabilized by 
Tsn in a conformation that maintains the peptide-binding groove 
in an open state. The MD simulations predict that the C-terminal 
interface consists of the CD8-binding site of the MHC and a 
cluster of basic Tsn residues (40, 55). The predicted Tsn contact 
residues are consistent with previous studies of potential Tsn 
interface residues (56–60). To establish the C-terminal interface, 
the membrane-proximal domain of Tsn has to rotate with respect 
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FiGURe 2 | Model of the tapasin (Tsn)–major histocompatibility complex class i (MHC i) interaction. Cartoon representation of the predicted Tsn–MHC I 
complex, based on multi-microsecond all-atom MD simulations, for which the crystal structures of the lumenal portions of Tsn and HLA-B*44:02 were used as 
starting models (40, 55). There are two distinct interfaces, one between the N-terminal (distal) domain of Tsn and the α2-1-helix region of the MHC I heavy chain 
(MHC I hc) (A), the other between the membrane-proximal domain of Tsn and the α3 domain of the MHC I hc (B). Residues predicted to be part of the interfaces are 
shown as sticks in the close-up views. β2m, β2-microglobulin.
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to its position in the X-ray structure. This is made possible by a 
flexible linker connecting the two domains of Tsn, which acts like 
a hinge that gives Tsn a substantial degree of plasticity and allows 
the domains to move relatively to each other (55). Intriguingly, 
stable interactions in the N-terminal interface are more numer-
ous in the peptide-free state than in the peptide-bound state, 
and, consequently, the F pocket of the peptide-binding groove is 
widened by 1–2 Å in the absence of peptide, most likely leading 
to a reduction in peptide affinity.

In summary, the catalytic working cycle of Tsn and its puta-
tive mechanism of action can be described as follows (Figure 3): 
Tsn monitors the quality of MHC I-associated peptides in terms 
of affinity by probing and acting on the α2-1 helix, a specific 
structural element of the peptide-binding groove close to the 
C-terminal anchor region of the peptide. Upon encountering 
a suboptimally loaded MHC I molecule, Tsn shifts the confor-
mational equilibrium to an open conformation of the binding 
groove by interacting with the α2-1 helix, thus inducing peptide 
dissociation and stabilizing the resulting peptide-free MHC. 
Only subsequent binding of a high-affinity peptide can compete 
with Tsn over the α2-1 helix to close the binding groove again. 
This lowers the affinity of MHC I for Tsn and finally triggers Tsn 
dissociation (40). The result is a peptide repertoire displayed on 
MHC I that is enriched with high-affinity peptide epitopes, which 
are able to release Tsn from MHC I (29, 40). In this proposed 
mechanism of peptide editing, Tsn and the peptide might be 
considered as two opponents in a tug-of-war over the α2-1 helix 
and the opening/closing of the binding groove. In its function 
as a peptide exchange catalyst, Tsn stabilizes a transition state, 
namely the high-energy intermediate of the peptide-free MHC I 
(Figure 4). Stabilizing this high-energy intermediate lowers the 

energy barrier of the peptide exchange reaction and consequently 
increases its rate. The stabilization of the peptide-free MHC I state 
relative to the peptide-bound state has been determined to be in 
the range of −8 kJ/mol (40). The resulting accelerated exchange 
kinetics allows sampling of the peptidome for high-affinity 
epitopes. Tsn essentially converts the un-catalyzed kinetically 
controlled peptide loading into a thermodynamically controlled 
process, facilitating the selection of high-affinity peptides from a 
pool mainly consisting of suboptimal epitopes (40). This notion 
of peptide-proofreading catalysis has been confirmed by kinet-
ics simulation studies (61). The proposed mechanism is further 
corroborated by experimental results and MD simulations that 
ascribe a dominant role in determining the stability of peptide-
bound MHC I to the F pocket region of the binding groove and 
the C-terminus of the peptide (35, 62–64).

The described model of catalyzed peptide editing also pro-
vides an explanation for the observation that different MHC I 
allomorphs vary in their dependence on Tsn (38, 40, 65, 66). 
The most striking examples of differential Tsn dependence are 
the two allomorphs HLA-B*44:02 and HLA-B*44:05. They only 
differ by a single residue at position 116 on the rigid floor of 
the peptide-binding groove, but exhibit a markedly different 
Tsn dependence: HLA-B*44:02 contains an aspartate and is 
strongly Tsn-dependent, whereas HLA-B*44:05 has a tyrosine 
and is Tsn-independent. While the crystal structures of the two 
allomorphs in the peptide-bound state are very similar (60, 67), 
MD simulations predict that upon dissociation of the peptide 
C-terminus, structural changes, mainly occurring in the mobile 
α2-1 helix region that contacts residue 116, are significantly more 
pronounced in HLA-B*44:02 than in HLA-B*44:05. The confor-
mation of HLA-B*44:02 shifts toward an open F pocket, whereas 
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FiGURe 4 | energy level diagram of the peptide exchange reaction. 
Energy level diagram of the un-catalyzed and catalyzed peptide exchange 
reaction (energy levels are qualitative and not drawn to scale). In its function 
as a peptide exchange catalyst, tapasin stabilizes the high-energy 
intermediate of the empty MHC I molecule. Stabilizing this high-energy 
intermediate lowers the energy barrier (ΔΔG‡) of the exchange reaction and 
hence increases the rate of peptide exchange toward the thermodynamically 
most favored high-affinity peptide.

FiGURe 3 | Proposed model of tapasin (Tsn)-catalyzed peptide 
proofreading. According to the model of Tsn-catalyzed peptide 
proofreading, Tsn scans the quality of major histocompatibility complex class 
I (MHC I)-bound peptides with regard to their affinity by sensing and acting on 
the α2-1 helix, a structural element close to the C-terminal anchor region of the 
peptide (F pocket). Intrinsic flexibility of the α2-1 helix is depicted by 
cartoon-blur semicircles. Peptide dissociation in the absence of Tsn can 
result in partial unfolding of the MHC molecule. Upon being confronted with a 
suboptimally loaded MHC I molecule (step 1), Tsn presumably stabilizes an 
open conformation of the binding groove by interacting with the α2-1 helix, 
inducing peptide dissociation and stabilizing the resulting empty MHC (step 
2). Only high-affinity peptides can subsequently compete with Tsn over the 
α2-1 helix to tighten the binding groove again (step 3). This lowers the Tsn–
MHC affinity and eventually triggers Tsn dissociation (step 4). As a result, the 
peptide repertoire presented on MHC I at the cell surface is enriched with 
high-affinity peptide epitopes capable of triggering an immune response (step 
5). The quintessence of the MHC I peptide-proofreading mechanism might 
be considered as a tug-of-war between Tsn and the peptide over the α2-1 
helix and the opening/closing of the binding groove.
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HLA-B*44:05 eventually adopts a closed conformation similar to 
the peptide-bound state (68, 69). The tyrosine of HLA-B*44:05 
appears to stabilize the α2-1 helix and thereby creates an overall 
more stable MHC I, which has lower affinity for Tsn. A more 
recent study, combining in vivo experiments with computational 
system models and MD simulations, came to the conclusion that a 
conformational intermediate of MHC I is central in the process of 
peptide selection, that the intrinsic ability of MHC I molecules to 
select high-affinity peptides correlates with protein plasticity, and 
that Tsn modulates the peptide-selector function by modifying 

MHC I plasticity via an allosteric coupling of the peptide-binding 
regions and the α3 domain of MHC I (65, 70). Besides additional 
in silico evidence, in vitro experimental data support the idea that 
plasticity is indeed an intrinsic property of MHC I proteins (37, 
71–75). The prediction that a region of the α3 domain (residues 
220-227) can communicate with the peptide-binding groove 
might indicate that the predicted C-terminal interface of the 
Tsn–MHC I complex plays an active role during catalysis. A cor-
relation between conformational flexibility and Tsn dependence 
similar to the HLA-B*44:02/B*44:05 pair has been described 
for the two allomorphs HLA-B*27:05 and HLA-B*27:09 (76), 
the former one being associated with the inflammatory disease 
ankylosing spondylitis.

In conclusion, the α2-1 helix appears to be the most malleable 
part of the peptide-binding region, and this plasticity emerges as 
a central determinant in the ability of MHC I molecules to scan 
a diverse range of different peptides; the α2-1 helix is used by Tsn 
as a control element to improve the selector function of MHC I 
allomorphs.

TAPBPR, A Tsn-ReLATeD PLAYeR iN  
THe MHC i ANTiGeN PReSeNTATiON 
PATHwAY

In the year 2000, a gene highly conserved among vertebrates 
and encoding a Tsn homolog was discovered (77) and named 
TAPBPR (78). Human TAPBPR shares 21% sequence identity 
with human Tsn and exhibits the same lumenal domain archi-
tecture. The structural homology between TAPBPR and Tsn has 
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been confirmed by small-angle X-ray scattering (79). Just like Tsn, 
TAPBPR is IFNγ-inducible (80–82), recognizes peptide-receptive 
MHC I in the ER, and catalyzes peptide proofreading (10, 79, 83), 
thereby altering the peptide repertoire presented on MHC I at 
the cell surface (83). The inducibility by IFNγ suggests a func-
tion in the control of viral infection. Interestingly, a correlation 
between the expression level of TAPBPR and glioblastoma patient 
survival has been demonstrated, arguing for a role of TAPBPR in 
the immune recognition of tumors (84). TAPBPR was also found 
in the leukocyte nuclear envelope proteome, and even a role of 
TAPBPR in positioning chromosomes in the nucleus has been 
postulated (85). In this context, TAPBPR has been speculated 
to facilitate loading of MHC I with pioneer translation products 
(10). Based on mutational data and the fact that the binding of 
TAPBPR and Tsn to MHC I is mutually exclusive, it has been 
concluded that the MHC I interaction interfaces, and hence the 
mode of MHC I stabilization, are conserved between Tsn and 
TAPBPR (79, 86). Despite these common features, TAPBPR 
contrasts with Tsn in several ways: TAPBPR lacks the positively 
charged residue in the center of the transmembrane region and, 
therefore, does not interact with TAP (14), i.e., it is not an integral 
constituent of the PLC. MHC I antigenic peptide selection is thus 
not restricted to the PLC. Moreover, TAPBPR is independent 
of ERp57 and other ER chaperones (81), in spite of an unpaired 
cysteine in its lumenal portion. Furthermore, as TAPBPR has no 
ER retention motif, it is not restricted to the ER, but also found 
beyond the medial Golgi compartment (81). Finally, TAPBPR 
has a different MHC I and peptide specificity. TAPBPR does not 
bind a pseudo-empty HLA-A*01.01 (79) using the strategy of 
photo-cleavable peptides (40). But, like Tsn, TAPBPR catalyzes 
peptide exchange on HLA-A*02:01, albeit with a different peptide 
preference (83); the fact that both exchange catalysts are active 
toward HLA-A*02:01 could be one reason why HLA-A*02:01 
surface expression is relatively unaffected as long as one of the 
two chaperones is present and is only diminished once both 
are absent (43, 83). TAPBPR also interacts with and is active 
toward HLA-B allomorphs, but weaker than for HLA-A*02:01 
(83). Consequently, TAPBPR deficiency in IFNγ-induced cells 
changes the peptide repertoire presented by HLA-B allomorphs, 
and TAPBPR depletion severely impacts HLA-B*07:02 surface 
expression, even in the presence of Tsn (83). TAPBPR interaction 
is not restricted to human allomorphs, but can as well be observed 
in the context of the murine MHC I molecules H2-Dd, H2-Ld, 
and H2-Db, indicating that TAPBPR uses conserved structural 
features in MHC I for recognition (79).

Although it is now clear that TAPBPR is a bona fide peptide-
editing catalyst, its exact cellular role during antigen presentation 
is still unclear. TAPBPR might be part of an antigen presentation 
pathway that runs in parallel to the classical PLC-dependent 
one (10). However, the currently available data seem to support 
the view of a distribution of responsibilities between Tsn and 
TAPBPR, i.e., that TAPBPR is an additional quality control check-
point in the classical secretory antigen presentation pathway (83). 
Increased association between TAPBPR and MHC I has been seen 
in Tsn-deficient cells, implying that the two proteins work hand in 
hand (86). Initial peptide loading is probably carried out by Tsn 
within the PLC, and TAPBPR subsequently scans peptide–MHC 

I complexes outside of the PLC. However, because of the common 
binding mode, Tsn and TAPBPR might compete with each other 
for MHC I binding under certain conditions (79, 81). TAPBPR 
could also load epitopes derived from signal peptides onto MHC 
I, since it has a preference for HLA-A2 allomorphs, some of 
which are able to bind signal-sequence peptides (81, 86). Because 
TAPBPR operates outside of the PLC, it might act mainly as a 
chaperone recycling MHC I in regions where the concentration 
of optimal high-affinity peptides is lower than in the immediate 
vicinity of the TAP transporter (83). This theory seems to be sup-
ported by experimental evidence showing that TAPBPR increases 
the duration of MHC I–PLC interaction (81); this also points 
to a direct influence of TAPBPR activity on the PLC-mediated 
antigen presentation pathway. Furthermore, a more pronounced 
chaperone activity of TAPBPR is consistent with the finding that 
TAPBPR appears to bind substrate MHC I molecules with higher 
affinity than Tsn (79); however, the tighter binding could also be 
indicative of a more stringent peptide selection by TAPBPR.

Although the cellular process of catalyzed MHC I peptide 
loading turns out to be much more intricate than previously 
thought and the exact role of TAPBPR remains unknown, the 
line of evidence gained so far strongly suggests that TAPBPR 
represents a second peptide editor, in addition to Tsn. Due to the 
sequence and structural homology between TAPBPR and Tsn, 
the similar MHC I binding mode, and the shared biochemical 
characteristics, future studies of the interplay between TAPBPR 
and MHC I are expected to not only deepen our understanding 
of TAPBPR itself but also provide key information on the catalytic 
mechanism of Tsn.

Tsn/TAPBPR AND HLA-DM: TwO PATHS 
TO A COMMON GOAL

In the case of MHC class II, the non-polymorphic class II-like 
molecule HLA-DM is the chaperone that catalyzes peptide 
proofreading (87–91). It facilitates dissociation of class-II-
associated invariant chain peptides (CLIP) in late endosomes, 
stabilizes empty MHC II, and catalyzes selection of high-affinity 
binders from a pool of endocytosed antigens. Through peptide 
proofreading, DM is able to promote presentation of peptides 
with half-lifes of more than 2  days (92). Remarkably, as has 
been gleaned from in  vitro biochemical and crystallographic 
experiments with a mutated MHC II (93) and from an MHC II 
(DR)–DM complex structure, DM functions by interacting with 
the MHC II molecule close to the N-terminus of the peptide (94). 
HLA-DM induces a reorientation of a tryptophan in the P1 pocket 
of HLA-DR that normally interacts with the P1 anchor residue of 
the peptide. Additional structural changes in the vicinity of the P1 
pocket stabilize the empty pocket: for example, a phenylalanine 
of HLA-DR moves into a position that is normally occupied by 
the P1 anchor residue of the peptide. Furthermore, an asparagine 
that stabilizes the P2 peptide backbone in peptide–DR complexes 
becomes engaged with a rearranged glutamate. As these regions 
of the MHC II are crucial for high-affinity peptide binding and 
the rearrangements render key residues inaccessible, this explains 
the facilitated peptide dissociation. At the same time, these 
rearrangements stabilize the empty part of the binding groove 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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FiGURe 5 | Peptide proofreading by tapasin (Tsn) and DM—a 
structural comparison. A top view of the MHC peptide-binding groove is 
shown schematically, highlighting structural elements, which the two peptide 
editors interact with during catalysis (orange: DM; red: Tsn). Bound peptide is 
indicated by a yellow line (N, N-terminus; C, C-terminus). Please note that the 
cartoon, including the length of the peptide, is a simplified depiction 
combining features of class I and class II MHC. Structural elements of MHC 
interacting with DM are close to the N-terminus of the peptide; those 
elements, which Tsn acts on, are in the vicinity of the F pocket of MHC I at 
the C-terminus of the peptide.
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and thereby contribute to the chaperoning effect of DM. Only 
high-affinity peptides capable of competing with rearranged DR 
residues for access to the P1 pocket and the P2 site induce DM 
dissociation and get selected for presentation on the cell surface.

Thus, the proteins catalyzing peptide proofreading of class I 
and class II MHC molecules, Tsn, TAPBPR, and DM, share key 
features: (i) they preferentially bind and stabilize MHC molecules 
that are empty or loaded with low-affinity peptides, (ii) they accel-
erate peptide exchange, favoring high-affinity epitopes, (iii) and 
they achieve the chaperoning effect and selection of high-affinity 
peptides by directly interacting with structural elements flanking 
the peptide-binding groove. But while Tsn and TAPBPR presum-
ably engage the MHC binding groove at the C-terminus of the 
peptide, DM acts at the N-terminus of the peptide (Figure 5) and 
has a high affinity for DR molecules loaded with peptides lack-
ing N-terminal residues including the P1 anchor. Interestingly, 
a monoclonal antibody (mAb 64-3-7) has been described that 
is able to distinguish between peptide-deficient and peptide-
loaded MHC I by recognizing a short epitope near the peptide 
N-terminus. The epitope is characterized by a tryptophan and a 
methionine that become solvent-exposed upon peptide dissocia-
tion. Thus, MHC I and MHC II appear to share some structural 
features in their peptide-receptive state at the binding region of 
the peptide N-terminus, e.g., a solvent-exposed tryptophan (71, 
94). Nevertheless, Tsn and TAPBPR have adopted a different 
mode of interaction with the peptide-binding groove.

In essence, both types of exchange catalysts lower the energy 
barrier for peptide dissociation and stabilize the empty binding 
groove in a state which only high-affinity epitopes are able to go 
past. However, in the case of Tsn and TAPBPR, catalysis seems 
to involve a tug-of-war over the α2-1 helix of MHC I, whereas in 
the case of DM, exchange catalyst and peptide mainly compete 
for residues around the P1 pocket of the MHC II molecule 
(Figure 5).

SUMMARY AND FUTURe DiReCTiONS

The recently obtained insights into peptide proofreading described 
in this review have significantly advanced our knowledge of this 
fundamental process in adaptive immunity and underline the 
importance of malleable structural elements and plasticity in the 
involved protein interaction partners. However, a comprehensive 
understanding of the molecular determinants in MHC I peptide 
editing will only be achieved once an experimentally determined 
structure of a Tsn–MHC I and/or TAPBPR–MHC I complex is 
available. Crystal structures of these two complexes will also help 
to fully comprehend the fact that different MHC I allomorphs 
exhibit varying degrees of Tsn/TAPBPR dependence and that 
Tsn and TAPBPR have different allomorph specificities. As has 

previously been noted (83), Tsn and TAPBPR might be decisive 
factors in shaping adaptive immune responses, since T cell 
receptors are able to recognize many different peptide–MHC I 
complexes. A thorough analysis of the mechanisms that underlie 
catalyzed peptide editing will therefore be critical to obtain a 
complete picture of immune recognition events in adaptive 
immunity governing such important processes as tumor surveil-
lance, infection control, and transplant rejection. This might 
enable mechanism-based strategies to manipulate antigen pres-
entation for therapeutic purposes, e.g., attenuating the processes 
in autoimmune diseases and upregulating antigen presentation 
in a targeted manner in cancer immunotherapy, antimicrobial 
therapies, and vaccination (95–97).
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