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T cell differentiation from naïve T cells to specialized effector subsets of mature cells 
is determined by the iterative action of transcription factors. At each stage of specific  
T cell lineage differentiation, transcription factor interacts not only with nuclear proteins 
such as histone and histone modifiers but also with other factors that are bound to the 
chromatin and play a critical role in gene expression. In this review, we focus on one 
of such nuclear protein known as tumor suppressor and scaffold matrix attachment 
region-binding protein 1 (SMAR1) in CD4+ T cell differentiation. SMAR1 facilitates Th1 
differentiation by negatively regulating T-bet expression via recruiting HDAC1–SMRT 
complex to its gene promoter. In contrast, regulatory T (Treg) cell functions are dependent 
on inhibition of Th17-specific genes mainly IL-17 and STAT3 by SMAR1. Here, we dis-
cussed a critical role of chromatin remodeling protein SMAR1 in maintaining a fine-tuned 
balance between effector CD4+ T cells and Treg cells by influencing the transcription 
factors during allergic and autoimmune inflammatory diseases.

Keywords: asthma, colitis, MAR, regulatory T cells, SMAR1, T helper cells

iNTRODUCTiON

Various subsets of T lymphocytes play a central role in vertebrate adaptive immune response. The 
Naïve T cells that are generated in the thymus mature into distinct subtype of T cells that differ greatly 
in their phenotypical and functional properties. Naive T cells when challenged with antigens undergo 
epigenetic alterations that affect expression of many genes involved in T cell-mediated immune 
responses. These changes ultimately lead to expression of cytokines that marks the functionality of 
T cells (1–4). Currently, the role of master regulators in the chromatin changes for lineage-specific 
differentiation of T cells is not well understood.

At the chromatin level, naïve T cell differentiation is associated with various changes in the 
nuclear matrix (4–6). A number of studies have suggested that the scaffold matrix attachment 
regions (SMARs) and groups of SMAR-associated proteins are required for transcription regulation 
at chromatin level during naïve T cell differentiation (7–9). For example, RUNX family of scaffolding 
proteins such as SATB1, CTCF, ID2, and BCL11b are known to associate with nuclear matrix and 
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regulate gene transcription (10–17). However, it has been difficult 
to explain the defect observed in CD4+ T cell polarization after 
the loss of SMAR proteins. Although the significance of various 
signaling pathways toward CD4+ T cell differentiation have been 
studied extensively, reports suggesting the role of SMAR regions 
and SMAR proteins have been lacking.

Recent findings have suggested a role of transcription factors 
and nuclear matrix proteins in the development of auto-inflam-
matory disease including rheumatoid arthritis, experimental 
autoimmune encephalomyelitis (EAE), inflammatory bowel 
disease (IBD), and asthma (18–22). The manifestations of these 
diseases are correlated mainly by the disturbances in the con-
formation of chromatin that is facilitated by the nuclear matrix 
proteins (20, 23, 24). Perturbation in the chromatin conformation 
causes disturbances in the specificity of gene expressions. These 
abnormal gene expressions are the major cause of imbalance of 
CD4+ T cell response (25, 26). The exact mechanism by which the 
nuclear matrix proteins contribute to this lineage-specific gene 
expression in CD4+ T cells is not widely acknowledged. Thus, 
unraveling the nature and functions of these proteins assumes 
great importance in the current scenario of understanding the T 
cell biology and disease manifestations.

Here, we present a comprehensive study of nuclear matrix-
binding protein SMAR1. SMAR1 through its DNA-binding ability 
acts as transcription regulator and chromatin modifier. It interacts 
with several key transcription factors like p53, NF-κB, and other 
chromatin regulatory factors that are involved in the regulation of 
many genes. Our recent findings suggest that SMAR1 is critical in 
regulating the fate of CD4+ T cell. It plays an important role in T 
cell development, differentiation, and proliferation by regulating 
plethora of genes. The essential role of SMAR1 in thymocyte devel-
opment was established by studies using SMAR1 transgenic mice 
(27). SMAR1 transgenic mice display splenomegaly and enlarged 
lymph nodes with altered proportion of double negative (DN) 
thymocytes (27). Recently, our lab has suggested an essential role 
of SMAR1 in maintaining specific CD4+ T cell lineage fate during 
allergic and auto-inflammatory disorders. SMAR1 is essential for 
maintaining the lineage commitment between regulatory T (Treg) 
cells and other effector Th cells (Th1, Th2, and Th17 cells). T cell 
specific deletion of SMAR1 leads to altered immune response in 
allergic and auto-inflammatory diseases like asthma and colitis. 
Loss of SMAR1 in Treg cells promotes re-differentiation of Treg 
to other inflammatory Th cell lineage, which strongly suggests 
SMAR1 is involved in maintaining plasticity of Treg cells. In this 
review, we focused SMAR1-mediated epigenetic regulation of Treg 
and other effector T cell differentiation and their implications in 
modulating adaptive immune response during allergic and auto-
inflammatory diseases.

NUCLeAR MATRiX-BiNDiNG PROTeiN 
SMAR1: eSSeNTiAL ReGULATOR OF  
T CeLL DeveLOPMeNT AND 
DiFFeReNTiATiON

Nuclear matrix proteins are integral part of the nucleus, which 
have a crucial role in the maintenance and stability of chromatin 

conformation that is necessary for the functionality of a particular 
cell (3). All the cellular processes in a cell are highly coordinated, 
which demand a correct orientation of chromatin domains (4, 
28). Such an orderly arrangement is facilitated by the anchorage 
of specific sequences of the DNA to the nuclear matrix. This sig-
nature sequences known as SMARs serve as boundary elements 
that restrict the topology of chromatin to specific functional 
domains. Hence, proteins that have the ability to bind to these 
regions become important as they can govern the accessibility of 
activation/repression factors to the chromatin (29, 30). Abnormal 
levels of these proteins are observed in many disease conditions 
where extensive deregulation of gene expression occurs that sig-
nifies the role of these proteins in the regulation of genes. During 
the T cell development and differentiation, dramatic changes 
are happening at the chromatin, which involve major participa-
tion by the nuclear matrix proteins (31, 32). They are the major 
candidates for the chromosomal looping and interactions, which 
causes both intra- and interchromosomal interactions. The gene 
encoding for SMAR1 was identified from mouse T cell library 
and was initially considered to be thymus specific (Figure  1) 
(33). Further work into the functionality of SMAR1 highlighted 
considerable relevance in specific gene regulation (34, 35). Apart 
from its ability to anchor the chromatin to the nuclear matrix, 
SMAR1 can recruit chromatin modifying complexes such as 
HDAC1/SIN3, SMRT, and HDAC6 and regulate target gene 
expressions (34–37).

Scaffold matrix attachment region-binding protein 1 was iden-
tified in double positive thymocytes and described to have occu-
pied in a MAR site within the TCRβ locus. Binding of this protein 
regulates the V(D)J recombination and hence was assumed to be 
general regulator of gene transcription (38) (Figure  1). In the 
TCRβ gene, Dnase hypersensitive sites (HS) were observed to be 
open in the DP stage of thymocyte development where SMAR1 
was initially shown to attach with the DNA through the MAR 
regions (27). The binding of SMAR1 to the HS1 site near the Eβ 
enhancer was observed to reduce the TCRβ rearrangement sig-
nificantly. Overexpression of SMAR1 in the thymocytes exhibited 
reduced rearrangement of TCRβ gene with elevated number of 
early DN thymocytes (27). Mice with overexpressed SMAR1 have 
perturbed immune responses, which confirm the immunomodu-
latory function of the protein. The T cells from SMAR1 transgenic 
mice exhibited a mild perturbation in the early DN stage. These 
mice also expressed altered frequency of T cells expressing com-
monly used Vβs (27). These findings indicate the importance of 
SMAR1 in T cell development. T cell development in the thymus 
and its differentiation to various subsets coincide with chromatin 
changes. Studies on any cell intrinsic factors that regulate the fate 
of T cells thus have tremendous value in the medical research 
on different diseases. Thus, factors modulating the chromatin 
changes like nuclear matrix proteins assume to be of a significant 
importance in the development and differentiation of T cells.

SMAR1 is Critical for the establishment  
of Th2 Phenotype
CD4+ T cell differentiation is a tightly controlled process 
requiring cytokine signaling pathways, which activates distinct 
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FiGURe 1 | Schematic representations of organization of the vβ loci of the mouse double positive thymocytes. The 11 hypersensitive sites (HS) are 
shown in light pink squared regions, and the dark squared region is the enhancer region where SMAR1 was found to bind to the Eβ.
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transcription factors. During the course of this differentiation, 
several coordinated changes happen at the chromatin level lead-
ing to differential expression of genes specific to the functional 
aspects of the effector cells (39). Lineage-specific transcriptional 
factors and other chromatin proximal proteins interplay and 
mediate the activation of cytokine subsets marking a particular 
lineage commitment while repressing others (1, 40). Our lab 
provided the evidence that the expression of Th1-specific lineage 
commitment transcriptional factor T-bet could be regulated by 
SMAR1 and enhanced expression of SMAR1 caused defective 
Th1 response with a reciprocal increase in Th2 cell commitment 
(41). This inverse correlation of Th1/Th2 axis has been substanti-
ated by many previous reports describing the differential function 
of proteins involved in the lineage specifications of T cell develop-
ment (42, 43).

A large group of evidence has provided a clear insight into 
the involvement of chromatin changes associated with the 
naïve T cell differentiation into effector cells (44). IFN-γ and 
Th2 cytokine locus (IL-4, IL-5, and IL-13) undergo substantial 
changes in the chromatin conformation during Th1 and Th2 
differentiation, respectively, orchestrated by interchromosomal 
and intrachromosomal interactions (45–47). These long range 
interactions and chromatin loop formations are consequence of 
temporal binding between the cis elements and many associated 
nuclear proteins (48–50). Many MAR-binding proteins are well 
characterized and described including CDP/Cux, SATB1, PARP, 
SAFs, and ARBP (30). Recently, a thymus-enriched MARBP, 
SATB1, has been shown to play a crucial role in the lineage 
determination and maintenance of Th2 (51, 52) and Treg cells 
(53), respectively.

High throughput technologies including full genomic micro-
array has assisted the investigation and identification of many 
novel factors that are crucial for the differentiation of T cells 
(54, 55). Lineage-specific transcriptional factor T-bet induces 
the expression of IFN-γ through the chromatin remodeling 
of its gene along with CTCF and establishes a Th1 phenotype 
(56). Similarly, GATA3 induces chromatin changes at the Th2 
locus and repressive changes at the IFN-γ locus (57). Thus, the 
function of lineage-specific factors and master regulators is to 
establish a particular lineage by inducing specific genes and at 
the same time repressing others (44). Many nuclear proteins such 
as IRF4 (58, 59), Gfi-1 (60, 61), Ikaros (62), and Dec 2 (9) have 
been documented to be selectively expressed in Th2 differenti-
ated cells, and these proteins function either by upregulating the 
genes involved in the Th2 lineage commitment or by repressing 
the genes involved in the establishment of other cell lineages. 

We observed the role of SMAR1 particularly in the Th2 cells 
when its expression is selectively induced. In this condition, the 
expression of GATA3 is induced that results in activation of Th2 
cytokine genes along with suppression of gene subsets that are 
committed to other lineages (63). Previous reports also suggested 
a reciprocal regulation of genes involved in the effector T cells 
differentiation (40), and we observed T-bet as a target of SMAR1 
in Th2 differentiated cells. Our lab demonstrated an inverse cor-
relation of T-bet expression in T cells from SMAR1 transgenic 
and SMAR1−/− mice, showing the regulation of SMAR1 at the 
T-bet axis (41).

T-bet is important for the differentiation of Th1 cells (64). 
Therefore, regulation of T-bet gene expression is important to 
establish Th1 and maintain Th1/Th2 axis as evidenced by the 
abnormal disease conditions correlated with the deregulation of 
T-bet (65). Previous studies on the regulation of T-bet promoter 
revealed an indispensable function of Notch in the transactiva-
tion of T-bet (66). Many putative cleaved activated Notch (CSL)-
binding sites were characterized on the T-bet promoter crucial 
for the activation of T-bet in a Th1 specific condition. These 
binding sites function not only as enhancer elements but also as 
a regulatory region by an interplay of differential protein binding 
(67, 68). Notch1 activation is required for both Th1 (66) and Th2 
cell lineage differentiation (68, 69), but SMAR1 is induced in 
Th2 differentiated cells. We noticed that GATA box-binding ele-
ments on SMAR1 promoter bind GATA3 and positively activate 
SMAR1 in Th2 differentiated condition. Furthermore, SMRT/
HDAC complex has been demonstrated to mediate effective 
regulation at Notch target sites by functioning as corepressor 
(70). In agreement with these reports, we observed SMAR1-
mediated downregulation of T-bet expression by directly 
interacting to the distal CSL-binding site on the T-bet promoter 
(41). In addition, the binding of SMAR1 to this region recruits 
the SMRT/HDAC corepressor complex on its promoter, and this 
corepressor complex competes with the Notch-mediated trans-
activation of T-bet in Th2 cells even at induced levels of Notch 
signaling (Figure 2). Moreover, the recruitment of corepressor 
complex modifies the chromatin at this region into a silencer 
mark by reduced histone acetylation and increased methylation. 
Thus, SMAR1 functions as an “adaptor molecule” crucial for the 
regulation of T-bet in Th2 cells at the chromatin level through 
differential binding to MAR sequences that mediates chromatin 
looping associated with necessary repressive modifications (41) 
(Figure 2).

T-bet expression drives aggressive and inflammatory pro-
cesses by regulating such responses, which are essential for the 
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FiGURe 2 | Scaffold matrix attachment region-binding protein 1 (SMAR1) deficiency causes defective Th2 response both in vitro and in vivo. SMAR1 
directly binds and forms a corepressor complex along with HDAC1/SMRT/RBP-Jκ and occupies CSL-binding consensus site on Tbx21 promoter in turn preventing 
Notch1 (NICD) recruitment followed by T-bet transactivation. Enrichment of SMAR1 on Tbx21 promoter changes the epigenetic signature of the target gene into a 
repressive mark with reduced acetylation and increased methylation of histones. This regulation of T-bet is crucial for the differential commitment of T cells to various 
lineages. Binding of SMAR1 on the Tbx21 promoter decreases the transactivation of T-bet downstream IFN-γ. SMAR1 induction in Th2 cells is GATA3 dependent, 
and GATA3 directly binds and activates SMAR1 transcription. Here, we show that SMAR1 is a critical molecule in establishing the Th2 differentiation by controlling 
the transcription of Th1-specific factors like T-bet. Furthermore, we noticed in SMAR1−/− mice under experimental induction of airway allergy, a defective Th2 
response and reduced hyperresponsiveness.
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prevention of organ specific autoimmunity (65). T-bet deficiency 
is correlated with increased hypersensitivity to allergen in 
airway (71). Tbx21−/− CD4+ T cells showed Th2 biasness with 
signature hyper-acetylation of IL-4 promoter reflecting the sup-
pressive effect of T-bet on the IL-4 locus (57). Moreover, T-bet 
over expression attenuates airway hypersensitivity by shifting 
the cytokine balance to Th1 response (65, 72). SMAR1−/− mice 
showed a significantly reduced hypersensitivity response with 
lower frequency of IL-4-producing Th2 cells and eosinophilia 
in the BAL fluid. SMAR1−/− mice were resistant to ovalbumin 
induced allergic airway inflammation. Since naïve CD4+ T cells 
from SMAR1−/− mice have impaired Th2 differentiation in the 
lung, allergic inflammation leads to aberrant expression of genes 
that are responsible for Th1 and Th17 commitment, which in 
turn suppresses Th2 response in vivo. This observation is in line 
with the previous reports suggesting the elevated T-bet expres-
sion in SMAR1−/− mice after chronic allergic antigen exposure 
(41, 71, 73). It shows SMAR1 is a novel and essential factor for 

the establishment of Th2 cells by functioning as a Th1-specific 
transcriptional gene repressor.

SMAR1 Maintains of Treg Phenotype and 
Controls of inflammation
Regulatory T cells are central to controlling immune tolerance 
and maintaining immune homeostasis. Foxp3 is recognized as 
a single gene determinant essential for Treg cell function (74). 
Alteration in Foxp3 expression, even the slightest, often leads 
to impaired Treg cell function and is associated with various 
autoimmune and inflammatory disorders (75, 76). Many factors 
including Runx–CBFβ complexes, NF-κB, FOXO1, and FOXO3 
are known to be important for Foxp3 expression (77). Deletion 
of either of these genes causes abrogation of Foxp3 expression. 
Other transcription factors have recently been shown to regulate 
Foxp3 expression including Bcl11b and TCF3 that bind to the 
Foxp3 promoter and induce its expression in response to TGF-β. 
TCF3 requires ID3 for GATA3-mediated repressive activity upon 
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Foxp3 expression (78). Recent studies have revealed involve-
ment of mTOR signaling pathways in the process of T cell fate 
determination, including the differentiation of naïve T cells into 
effector or Treg cells. When activated, an mTOR-deficient T cell 
becomes Foxp3+ Treg cells (79, 80). The main role of mTOR in 
regulating Foxp3+ Treg cell responsiveness or stability has been 
implicated by studies using mTOR inhibitor, rapamycin (79). 
More recent studies of Rheb- or Rictor-deficient mice suggest that 
distinct mTORC1 or mTORC2 activities selectively regulate each 
subset of effector T cells, but inhibition of both is required for 
the spontaneous generation on Foxp3+ Treg cells (81). Regarding 
the mechanism underlying the repression of Foxp3 in developing 
Treg cells, IL-6- or IL-23-mediated activation of STAT3 has been 
shown to play a central role. STAT3 binds to CNS2 region of 
Foxp3 promoter and represses its expression (82). With regards 
to downstream pathways of STAT3, several genes including Rora, 
Rorc, Batf, Irf4, and HIF-1α have been demonstrated to be acti-
vated by STAT3 and are implicated in the Th17 cells differentiation 
(83, 84). Recent reports show a degree of plasticity through the 
acquisition of specific transcription factors in Treg cell, which is 
required for controlling a defined polarized condition. In extreme 
inflammatory condition or in defined compartments, Treg cells 
can also express effector cytokines (85, 86). For instance addition 
of RORγt in Treg cell can produce IL-17A (85–87), indicating sus-
tained expression of Foxp3 in Treg cell is essential for maintaining 
its regulatory function.

Effector CD4+ T cells are responsible for the production 
of the pro-inflammatory cytokines that cause tissue damage. 
Conversely, Treg cells are responsible for maintaining peripheral 
tolerance of effector T cells and keeping these cells in check (88). 
Our lab for the first has shown that the role of a MAR-binding 
protein, SMAR1 in maintaining the balance between Th17 and Treg 
cells and its role in inflammatory diseases. In absence of SMAR1, 
Treg cells lose their suppressive activity that leads to increased 
production of pro-inflammatory cytokine through T cells in the 
colon. These T cells showed upregulation of gut homing markers, 
integrin α4β7, and CCR9 that help them to accumulate in the 
gut during colonic inflammation. This observation revealed an 
indispensable role of SMAR1 in regulating Treg cell function and 
immune tolerance that maintain the balance between Treg and 
Th17 cells. Deletion of SMAR1 in T cells enhances Th17 cells 
activity in experimental colitis, and the increased number of 
Th17 cells is thought to be the reason for the progression of the 
disease (89, 90). SMAR1-deficient Treg cells are not able to prevent 
IBD in Rag−/− mice, indicating that the suppressive function of 
Treg cell is severely compromised. However, SMAR1-deficient 
Treg cells showed reduced levels of IL-10 and upregulation of 
pro-inflammatory cytokines, including TNF-α, IL-17, and IFN-γ 
(89). Studies have shown that IL-10-deficient mice lack Treg cells 
and are not capable of controlling inflammatory responses in 
the intestine (91, 92). In the absence of SMAR1, Treg cells fail to 
suppress the reactive CD4+ T cells, as a result the whole balance 
among CD4+ T cells is severely damaged leading to the progres-
sion of the disease (89, 90, 93).

We found constitutive expression of SMAR1 in natural Treg cells 
as well as induced Treg (iTreg) cells. Data from our lab support the 
idea that IL-2 contributes to the expression of SMAR1 through 

Treg. Recent reports suggest that the Treg cell require acquisition 
of specific transcription factors to exhibit control in defined 
polarized situation (94, 95). Previous reports demonstrated that 
increased expression of RORγt in Treg can produce IL-17A (85) 
that leads to compromised Treg functions. We have shown that in 
the colon, expression of RORγt was influenced by SMAR1 in Treg 
and increased expression of IL-17A compared to WT (89, 93). 
The expression of Foxp3 is reduced by genetic alteration causing 
upregulation of RORγt, followed by increased levels of IL-17A 
production and generation of effector Th17 cells (86, 87, 96). 
Therefore, the loss of SMAR1 has severe loss on Foxp3 expression, 
leading to the induction of IL-17 conferring a Treg phenotype to 
Th17 phenotype (Figure 3).

Understanding of how SMAR1 regulates immune function 
is still unclear. Indeed, our work opens a new role of SMAR1 
in controlling Treg cell function. The predominant cell type that 
expresses Foxp3 is CD4+CD25+ T cell; the same population that 
has been reported to suppress proliferation and cytokine produc-
tion in conventional CD4+ T cells (97). Foxp3 appears to function 
through the transcriptional repression of many genes including 
the effector cytokines (98, 99). The factors that mediates the 
trans-activation or trans-repression are critical to delineate the 
molecular mechanisms involved in controlling regulation of 
Foxp3. Previous reports suggest that TGF-β mediates enrichment 
of SMAD2/3 at the Foxp3 promoter and the activation of Foxp3 
transcription (100, 101). On the other hand, STAT3 is reported 
to bind to silencer regions of Foxp3 promoter (100, 102) and 
suppresses its expression. Deficiency of SMAR1 in Treg cells leads 
to uncontrolled STAT3 production and results in the production 
of IL-17. Additionally, IL-6-mediated suppression of SMAR1 has 
a direct effect on the enrichment of STAT3 at Foxp3 promoter. 
Inhibition of SMAR1 restores STAT3 enrichment in Foxp3 
promoter in response to TGF-β1 in SMAR1−/− CD4+ T cells (89). 
Finally, IL-6 influences Foxp3 epigenetically by loosening the 
chromatin allowing the access of STAT3 to the Foxp3 promoter. 
These observations support the idea that over expression of 
STAT3 is a key factor in defective Foxp3 induction in SMAR1−/− 
CD4+ T cells. It is known from earlier studies that SMAR1 affect 
transcriptional activity mainly through DNA binding (34, 35). 
Presence of several MAR-binding regions at the promoter of 
STAT3 suggests that SMAR1 can potentially bind to these sites 
and influence the STAT3 expression. SMAR1 bound to regula-
tory regions of STAT3 locus could inhibit the activity of STAT3, a 
negative regulator for Foxp3 (103, 104) (Figure 3). In support of 
this idea, we observed lower expression of SMAR1 in Th17 cells 
(41) and was unable to bind to STAT3 locus. However, in Treg cells, 
SMAR1 binds at a position -660 to -840 associated with strong 
MAR and -229 to -478 associated with IL-6 response elements 
from the transcription start site of STAT3 locus (89). Our lab 
showed that in the WT cells treated with TGF-β1, SMAD2/3 bind 
to the Foxp3 promoter. At the same time, SMAR1 was found to 
bind STAT3 promoter suggesting a positive role for SMAR1 in the 
transcriptional regulation of STAT3. This activity was regulated 
through TGF-β signaling. This observation also suggests a role 
of SMAR1 in regulating Foxp3 expression in TGF-β1 iTreg cells 
and thus SMAR1 ultimately decides the plasticity of Treg cells 
(Figure 3).
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FiGURe 3 | Scaffold matrix attachment region-binding protein 1 (SMAR1) is required to maintain high Foxp3 expression and regulatory T (Treg) 
phenotype. TGF-β and IL-2 signaling upregulate the SMAR1 expression that induces Foxp3 expression, by promoting SMAD3/STAT5 binding to the Foxp3 
promoter to positively regulate transcription and by repressing the negative factor such as STAT3 and maintaining Treg phenotype. In presence of inflammatory 
cytokine IL-6, SMAR1 expression is downregulated and STAT3 expression is upregulated, consequently STAT3 bind to CNS2 region of Foxp3 promoter in CD4+ T 
cells and represses Foxp3 expression. This fate attributes to more IL-17 production by positive regulation of IL-17 via STAT3 and RORγt, a Th17 lineage-specific 
transcription factors. Thus, SMAR1 is required for the control of STAT3 production and consequent IL-17 expression in Foxp3+ Treg cells. The important activity that 
define the Th17 and Treg function are indicated by arrow, dotted arrow indicate upregulation whereas plain arrow indicate downregulation.
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Reports on plasticity of Treg cells in inflammatory response 
showed the control of Treg cells by specific transcription factors 
in polarized condition, and loss of this polarity leads to expres-
sion of effector cytokines (42, 87). We found that expression of 
SMAR1 in Treg cells is downregulated during colonic inflamma-
tion and SMAR1-deficient Treg cells produced large amount of 
pro-inflammatory cytokine IL-17 compared to WT. This clearly 
shows effector cytokine production by Treg cells occurred in a 
condition in which SMAR1 was either reduced or absent (93).

We also assessed the relative contribution of IL-10 in mediat-
ing Treg cell immunosuppressive function. Neutralization of IL-10 
in SMAR1−/− mice led to an interesting finding that compensa-
tion for Treg cell defects also depend on IL-10 signaling. Foxp3 
amount in SMAR1−/− mice is greatly diminished upon anti-IL-10 
treatment following DSS administration; we demonstrated that 
Treg cells are a major source of IL-10 in SMAR1−/− mice. It is 
proposed that IL-10-secreting Treg cells are a critical component 
of immune-mediated protection during increased intestinal 
inflammation in SMAR1−/− mice (93). In the context of Treg cell 
biology, the current study reveals a novel role of SMAR1 in con-
trolling Treg physiology during inflammation. Therefore, to study 

the factors that are modulating the regulation and function of 
Treg is an interesting target for immunotherapy in inflammatory 
disorders.

THeRAPeUTiC APPLiCATiONS OF SMAR1

The implications of SMAR1 Nanotherapy 
for the Treatment of Auto-inflammatory 
Diseases
Scaffold matrix attachment region-binding protein 1 has 
emerged as important factor for gene expression by regulating 
epigenetic modifications. SMAR1 seems to coordinate cytokine-
dependent gene expression in CD4+ T cells. We have shown 
SMAR1 is downregulated under Th1 and Th17 differentiation, 
and we have observed IL-6, a major cytokine involved in genera-
tion of Th17 cells, downregulates SMAR1 expression (89). Our 
lab has also reported that SMAR1 regulates STAT3 gene expres-
sion by directly binding to STAT3 promoter and recruiting the 
repressor complex (89). In agreement with this, a deficiency 
of SMAR1 in T cells renders the mice susceptible to myelin 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 4 | Targeted scaffold matrix attachment region-binding protein 1 (SMAR1) nanotherapy might oppose disease driving inflammatory Th17 
cells. Conjugation of carbon nanospheres (CNPs) with SMAR1 provides a sustained delivery of SMAR1 over several days, allowing time for epigenetic stabilization 
of anti-inflammatory regulatory T (Treg) cells. Since Treg cells releases anti-inflammatory cytokines, the effect of CNP-SMAR1 will become sustained by endogenous as 
well as induced Treg cells that restrain myelin affecting Th17 cells. Thus, CNP–SMAR1 provides a distinct way to treat experimental autoimmune encephalomyelitis 
(EAE) by regulating two endogenous pathways, one suppressing pathogenic Th17 cells, the second allowing Treg cells generation those are protective and control 
the inflammation.

7

Mirlekar et al. Role of SMAR1 in CD4+ T Cell Differentiation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 72

oligodendrocyte glycoprotein peptide-driven EAE disease with 
higher pro-inflammatory IL-17-producing T cells (105). EAE is 
an animal model of human CNS demyelinating disease, includ-
ing multiple sclerosis (MS). Researches have shown that IL-17-
secreting Th17 cells are the causative mediator of the disease. 
Thus, EAE is considered to be Th17-driven auto-inflammatory 
disease (106). EAE disease progression can be controlled by 
signaling molecules or transcription factor that prevents Th17 
generation (106, 107). We have shown using a nanoparticle-
mediated delivery that SMAR1 controls the Th17 generation and 
EAE disease progression (105). The small size and high surface 
volumes of nanoparticles makes them a convenient route of 
drugs/proteins delivery inside the cell (108). Currently, diverse 
types of nanoparticle including carbon-based nanoparticles, 
metal-based nanoparticles, and dendrimers are used for protein 
delivery (109, 110). We used carbon nanospheres (CNPs) as 
a carrier for delivery of SMAR1 at the site of inflammation. 
We observed CNP-mediated delivery of SMAR1 represses the 
EAE disease progression by inhibiting the IL-17 expression 
from T cells (Figure 4). Recent study from our lab has shown 
that nanoparticle-mediated SMAR1 delivery could potentially 
be used to suppress auto-inflammatory diseases (105). As a 
treatment for MS, CNP-SMAR1 has three therapeutic values 
(i) opposition of Th17 differentiation, (ii) increment in the anti-
inflammatory IL-10 production by favoring Treg differentiation, 
and (iii) promotion of the self-tolerance to myelin. Controlling 
inflammation by treating inflammatory Th17 cells during EAE 

by CNP-SMAR1 provides a virus and drug free option to current 
strategies of MS treatments (Figure 4).

SMAR1 in Diagnosis and Treatment of 
inflammatory Diseases like iBD
Abnormal inflammatory responses cause many adverse effects 
to the body as observed in many disease conditions. Pro-
inflammatory Th1 and Th17 cells are attributed to many of 
these disease conditions and targeting the pro-inflammatory 
cells is now assumed to be a pivotal option. Most therapies in 
autoimmune and inflammatory disorders are aimed at general 
supersession of the inflammatory responses (111, 112). Since 
autoimmune and inflammatory disorders are the result of an 
imbalance in immune regulation, a different approach that 
modulates Treg population could potentially be a target (113, 114). 
The main strategy in treating IBD is to halt the ongoing inflam-
mation and prevent permanent tissue damage. Treg cells play a key 
role in regulation of IBD, and recently, the number of studies has 
described the presence and function of Treg cells in patients with 
IBD (115, 116). In the colon, a target organ of IBD, Treg cells, was 
shown to be decreased by 40–50% compared to peripheral blood 
from IBD patients (117, 118). Therefore, regulating the func-
tions of Treg is an interesting target for immunotherapy in IBD. 
We elaborate the role of MARs and SMAR1 in CD4+ T cell gene 
regulation by altering the local chromatin structure that governs 
the Foxp3+ Treg-mediated immune response. Therefore, not only 
T cell-modulating cytokine but also MARs and MAR-binding 
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proteins such as SMAR1 could be an interesting target to reduce 
pro-inflammatory IFN-γ- and IL-17-producing Th1 and Th17 
cells. We have shown that SMAR1 regulates some essential genes 
that dictate the CD4+ T cell phenotype and that the SMAR1 
aberrant expression leads to dysregulated T cell polarization. 
SMAR1 level gradually decreases during the development of 
auto-inflammatory disorders (90, 93), it can be therefore used 
as a marker for diagnosis of T cell-mediated auto-inflammatory 
disorders. Identifying the epigenetic modifications of SMAR1-
targeting pro-inflammatory cytokine genes in Treg cells leads to 
its role as a potential candidate for the use as anti-inflammatory 
drugs. Though the studies so far have elucidated the role of 
SMAR1 with respect to tumor suppressor, our recent studies 
initiated to establish the anti-inflammatory function of SMAR1 
in autoimmune disorders like EAE and IBD.

CONCLUSiON

Various MAR-binding nuclear proteins are involved in crosstalk 
between genetic and epigenetic factors during differentiation 
of naïve T cells through chromatin changes. Studying “adaptor 
proteins” that bind to chromatin and define chromatin confor-
mation provides us with cues to understand the mechanism of T 
cell differentiation. In this review, we described the indispensable 
role of one such MAR-binding protein, SMAR1, in regulat-
ing distinct subsets of gene during T cell differentiation and 
perturbed immune responses correlated with deregulation of 
SMAR1. We also addressed the possible molecular mechanism 
involved in the gene transcription in the context of chromatin 
changes during CD4+ T cell differentiation. Further investiga-
tion into the possibilities of identifying novel molecular targets 
will be beneficial in modulating therapeutic interventions and 
immune responses.

FUTURe PeRSPeCTiveS

The function of SMAR1 in T helper cell differentiation is crucial 
as described in this review. However, the role of SMAR1 in 
memory T cell differentiation and maturation are not studied in 
detail and require further investigation. Since SMAR1 regulates 
genes that are essential for specific T cell lineage commitment, 
it is also important to examine whether SMAR1 plays a role in 
differentiation of Th9 or Th22 cells, a novel CD4+ T cells subsets. 
Findings from recent studies have emphasized the requirement 
of SMAR1 in controlling the expression of STAT3 during Treg 
differentiation. It would be interesting to study the regulation 
of SMAR1 in Treg cells that could be regulated by an IL-6:STAT3 
or IL-2:STAT5 dependent mechanism as STAT3 and STAT5 
are essential transcription factors required for Th17 and Treg 
differentiation, respectively. It would be also exciting to investi-
gate whether SMAR1 play a role in the T follicular helper cell 
differentiation. Studies illuminating the role of lincRNAs in the 
regulation of SMAR1 in CD4+ T cell subtypes could also elucidate 
the signaling pathways and molecular mechanisms that regulate 
the lineage commitment of various subtypes of CD4+ T cells.
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