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Arginine metabolism has been a key catabolic and anabolic process throughout the evo-
lution of the immune response. Accruing evidence indicates that arginine-catabolizing 
enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the 
control of immune response under physiological and pathological conditions. Myeloid 
cells are major players that exploit the regulators of arginine metabolism to mediate 
diverse, although often opposing, immunological and functional consequences. In this 
article, we focus on the importance of arginine catabolism by myeloid cells in regulating 
innate and adaptive immunity. Revisiting this matter could result in novel therapeutic 
approaches by which the immunoregulatory nodes instructed by arginine metabolism 
can be targeted.

Keywords: arginine, nitric oxide synthase, arginase, immune response, M1 and M2, macrophage, dendritic cell, 
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iNTRODUCTiON

Arginine (R) is considered a non-essential amino acid for healthy adult humans since it is endogenously 
synthesized from the amino acid citrulline as an immediate precursor in virtually all cell types. The 
small intestine is the major source of citrulline for arginine synthesis by the proximal tubules of the 
kidneys, known as the intestinal–renal axis for arginine synthesis (1, 2). The normal range of arginine 
in serum fluctuates between 50 and 150 µM (3, 4). However, arginine is generally classified as a semi 
or conditionally essential amino acid owing to the fact that arginine must be supplied in the diet 
in some pathological conditions, including sepsis, trauma, and cancer (5, 6). Arginine metabolism 
is regulated both through the expression of the y+ system of cationic amino acid transporters (7) 
and through the enzymes responsible for its catabolism. Arginine is metabolized intracellularly by 
nitric oxide synthase (NOS), arginase, arginine:glycine amidinotransferase (AGAT), and arginine 
decarboxylase (ADC). These enzymes are expressed in a tissue-specific manner, and some of them 
are induced under particular inflammatory settings.

Arginine metabolism has emerged as a critical regulator of innate and adaptive immune responses. 
The major arginine-catabolizing enzymes involved in inflammatory immune responses are the iso-
forms of NOS (NOS1–3) and arginase (arginase 1 and 2). It is becoming increasingly clear that cells 
of the myeloid lineage can augment or diminish the immune response via the differential regulation 
of these enzymes. These processes are fundamentally driven by a multitude of inflammatory cues 
within tissue microenvironments. Importantly, targeting arginine metabolism can modulate key 
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FiGURe 1 | Schematic of arginine metabolism. For the sake of simplicity, the major arginine-catabolizing enzymes involved in inflammatory immune responses, 
NOS2 and arginase 1, are depicted. The expression of these enzymes is tightly regulated by microenvironmental inflammatory signals. This diagram, however, does 
not suggest that these enzymes are concurrently induced in a given cell type. NOS2, nitric oxide synthase 2; ASS1, argininosuccinate synthase 1; ASL, 
argininosuccinate lyase; ODC, ornithine decarboxylase; OAT, ornithine aminotransferase.
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aspects of these critical cells, resulting in a better disease control. 
As such, this review will discuss how arginine catabolic pathways 
can lead to heterogeneous, but often opposing, functional con-
sequences and how these mechanisms can be harnessed for the 
treatment of multiple pathological conditions.

ARGiNiNe MeTABOLiSM: NOS

Three NOS isozymes, encoded by distinct genes, have been iden-
tified: NOS1 (known as neuronal NOS, nNOS), NOS2 (known as 
inducible NOS, iNOS, found in several myeloid cell populations 
and some T cell subsets), and NOS3 (known as endothelial NOS, 
eNOS) (2, 8, 9). All NOS enzymes metabolize arginine to produce 
nitric oxide, which crucially participates in processes associated 
with vasodilatation and cytotoxic mechanisms (9–11), in addition 
to citrulline generated as a byproduct. Both NOS1 and NOS3 are 
constitutively expressed in various types of cells, with their activi-
ties being dependent on calcium-calmodulin. On the contrary, 
NOS2 is controlled through inducible transcription in response 
to pro-inflammatory cytokines such as interferon γ (IFNγ), tumor 
necrosis factor α (TNFα), and IL-1β and bacterial lipopolysac-
charide (Figure 1). Once stimulated, NOS2 is constantly activated 
and not controlled by calcium levels (8, 12, 13). Induction of 
NOS2 has been described primarily in macrophages (14) but also 
in other cells, including colon (15) and lung (16) epithelial cells 
and CD4+ T cells (17). NOS-derived nitric oxide can stimulate 
multiple enzymes and proteins inside the target cell. Among these 
pathways, activation of soluble guanylyl cyclase by nitric oxide to 
generate cyclic guanosine monophosphate is thought to be the 
most important (12). NOS is inhibited endogenously by asym-
metric dimethylarginine (aDMA), an arginine analog and natu-
rally occurring product of metabolism, or pharmacologically by 
arginine analogs such as l-NG-monomethylarginine (l-NMMA) 
among several others (18).

ARGiNiNe MeTABOLiSM: ARGiNASe

Arginine is alternatively metabolized by arginases to produce 
ornithine and urea. Ornithine is the precursor for the production 
of polyamines via the ornithine decarboxylase (ODC) pathway 
as well as for the production of proline via the enzyme ornithine 
aminotransferase (OAT). While polyamines essentially regulate 
cell proliferation and differentiation, proline is critical for the 
synthesis of collagen, a primary protein in wound healing (2, 
19, 20). Additionally, urea represents an important mechanism 
for detoxification of protein degradation. Arginase exists in two 
isoforms, arginase 1 and arginase 2, that induce the same reaction 
but are encoded by separate genes and differ in tissue distribution 
and intracellular localization. Arginase 1 is found in the cytosol 
of hepatocytes, macrophages, and other myeloid cells and in the 
granular compartment of human granulocytes. Recently, arginase 
1 has been shown to be expressed by mouse and human innate 
lymphoid cells group 2 (21). Arginase 2, on the other hand, is a 
mitochondrial enzyme that is expressed in tissues such as kidneys, 
small intestine, and brain, in addition to most cells in the body 
(22, 23). The expression of arginase 1 is induced in myeloid cells 
by the T helper 2 (Th2) cytokines IL-4 and IL-13 (Figure 1). These 
cytokines activate the signal transducer and activator of tran-
scription 6 (STAT6) that, with other transcription factors such as 
STAT3 and CCAAT/enhancer binding protein β (C/EBPβ), binds 
to an enhancer in the arginase 1 locus (24–26). Multiple other fac-
tors also induce the expression of arginase 1, including IL-10 (27), 
granulocyte-macrophage colony-stimulating factor (GM-CSF) 
(28), transforming growth factor β (TGFβ) (29), prostaglandin 
E2 (PGE2) (30), cyclic adenosine monophosphate (cAMP) (31), 
and toll-like receptor (TLR) agonists (32). Arginase 1 expression 
is also controlled by peroxisome proliferator-activated receptor 
transcription factors (33, 34). Conversely, arginase 2 is constitu-
tively expressed. Given that the role of myeloid cell arginase 2 in 
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FiGURe 2 | Arginine metabolism instructs myeloid cells to control immune responses. Myeloid cells differentially express NOS2 and arginase 1, thereby 
driving diverse, although seeming contradictory, immune and functional consequences in multiple disease settings. Tip-DCs, tumor necrosis factor α and inducible 
NOS-producing dendritic cells; MDSCs, myeloid-derived suppressor cells.
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shaping immune responses is not as clearly defined as arginase 1, 
we will only discuss the latter herein. However, recent evidence 
indicates that arginase 2 induced in other cell types like asthmatic 
airway epithelium (35) and activated T cells (36) regulates argi-
nine flux, thereby redirecting the immune response and disease 
manifestation. This suggests that further investigation of arginase 
2 in myeloid cells is warranted.

NOS AND ARGiNASe: COMPeTiTORS 
FOR ARGiNiNe

Before we discuss the functional consequences of the regulated 
arginine metabolism in myeloid cells (Figure 2), it is important 
to emphasize the competition between NOS and arginase for 
the available intracellular arginine as a major mechanism that 
dictates the ultimate immune response outcome, as detailed 
below. The intracellular levels of arginine are in the range of 
100–800  µM. The arginine Km of NOS is 3  µM, whereas that 
of arginase is close to 2 mM (2). Therefore, under physiological 
conditions, NOS should have a higher access to arginine than 
arginase. However, the Vmax of NOS is almost 1,000 times less than 
that of arginase, which equilibrates their capabilities to metabo-
lize arginine (2, 37). As a proof of the balanced access of NOS 
and arginase to arginine is the fact that, despite the higher affinity 
of NOS to arginine, the production of nitric oxide depends of 
the extracellular levels of arginine (termed as arginine paradox) 
(38, 39). A potential explanation for this effect is the subcellular 
compartmentalization of arginine. However, studies that have 

regulated the localization of NOS and arginase have failed to con-
firm this concept (40). An additional level of complexity in the 
interaction between NOS and arginase is the uncoupling of NOS 
by arginase (41, 42). The uncoupled NOS produces less nitric 
oxide and uses more molecular oxygen to generate superoxide, 
thereby leading to the formation of peroxynitrite (PNT). Thus, 
the coexpression of arginase and NOS and the subsequent pro-
duction of PNT in subsets of myeloid cells like myeloid-derived 
suppressor cells (MDSCs) could be the result of an uncoupled 
NOS. Moreover, increased arginase expression can limit NOS2 
expression in immune cells by decreasing the arginine needed 
for NOS2 translation (43).

ARGiNiNe MeTABOLiSM iN 
MACROPHAGeS

The concept of basing macrophage activation into M1 and M2 
subsets with distinct functional consequences on the usage of 
arginine via NOS or arginase has been described several decades 
ago. M1 and M2 macrophages induce Th1 and Th2-like inflamma-
tory responses that further intensify M1- and M2-type responses, 
respectively (44, 45). Stimulation of bone marrow-derived 
or peritoneal inflammatory macrophages with TLR agonists 
activates transcription factors such as nuclear factor kappa-light-
chain-enhancer (NF-κB) that induce pro-inflammatory cytokines 
like IFNγ resulting in NOS2-expressing M1 macrophages, while 
cytokines like IL-4 and IL-13 activate STAT6 and lead to arginase 
1-expressing M2 macrophages (46–49). Arginase 2, however, is 
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not significantly modulated by Th1 or Th2 cytokines (4). Due to 
the fact that the in vitro culture systems do not precisely represent 
the multiple potential factors that affect macrophages in vivo as 
well as the discrepancies in the mouse and human results, the 
phenotypic and functional aspects of macrophage polarization 
remain to be tackled (50–52).

Arginine Metabolism in Classically 
Activated Macrophages
M1 macrophages, via NOS2, metabolize arginine to nitric 
oxide and citrulline (8, 14). Besides its multiple signaling path-
ways (9, 12), the cytotoxic properties of nitric oxide make M1 
macrophages well suited to function as key effector cells for the 
elimination of intracellular pathogens and tumor cells. When 
induced, M1 macrophages likely use all imported arginine, and 
NOS2 generates nitric oxide in large quantities, also indicating the 
importance of arginine availability and uptake as a rate-limiting 
step for nitric oxide synthesis (53). To more efficiently produce 
nitric oxide, or when arginine is limited, citrulline is reused to 
synthesize nitric oxide via the so-called citrulline–nitric oxide 
cycle. These reactions involve two enzymes: argininosuccinate 
synthase (ASS1) and argininosuccinate lyase (ASL) (Figure 1). 
While ASS1 can be induced by TLR agonists and IFNγ, M1 mac-
rophages constitutively express ASL (54, 55). In fact, mice lacking 
ASS1 fail to control mycobacteria infection, therefore confirming 
the importance of citrulline recycling via ASS1 and ASL in nitric 
oxide production by M1 macrophages (56).

Excessive nitric oxide synthesis can lead to unwanted host 
cytotoxicities and imbalanced immune responses. Upregulation 
of arginase 1, however, is a means by which macrophages limit 
the availability of arginine and regulate nitric oxide produc-
tion (57). Besides the fact that the availability of arginine may 
control the translation of NOS2 mRNA (43), polyamines, 
which restrict the immune effector function of macrophages 
in response to TLR agonists (58, 59), also inhibit the cationic 
amino acid transporter 2B (CAT-2B) arginine transporter and 
nitric oxide synthesis in macrophages (60). Consistent with this, 
polyamines diminish Helicobacter pylori-induced NOS2 protein 
levels and nitric oxide production in macrophages through a 
post- transcriptional effect on NOS2 translation, whereas ODC 
inhibition enhances NOS2 protein expression and macrophage 
nitric oxide-dependent killing of bacteria (61). Another 
mechanism underlying the upregulation of arginase 1 in M1 
macrophages involves a TLR-myeloid differentiation primary 
response 88 (MyD88)-dependent pathway. TLR signaling in 
mycobacteria-infected macrophages stimulates the production 
of cytokines like IL-6, IL-10, and granulocyte colony-stimu-
lating factor (G-CSF) that provoke arginase 1 expression in an 
autocrine–paracrine fashion, involving the transcription factors 
STAT3 and C/EBPβ (62).

Given the complexity of inflammatory cues within dis-
eased tissue microenvironments, it is essential to consider 
the interrelated and dichotomous regulation of macrophage 
arginine metabolism in determining the type and outcome of 
immune response against pathogens. For instance, in a model 
of Leishmania major, TNFα mediates protection by restraining 

the development of arginase 1-expressing M2 macrophages and 
dendritic cells (DCs), while maintaining the production of nitric 
oxide in situ (63). Other disease models, however, show differ-
ent interactions between NOS2 and arginase 1. In tuberculosis 
granulomas, arginase 1-expressing M2 macrophages localize to 
the outer regions of granulomas, while NOS2-expressing M1 
macrophages can be found in the inner regions. This provides an 
organized microenvironment within granulomas that separates 
anti-microbial (M1, NOS2-mediated) and anti-inflammatory 
(M2, arginase 1-mediated) responses to constraint lung pathol-
ogy (64). In addition to its role in regulating NOS2 activity 
through arginine competition, arginase 1 also regulates T cell 
proliferation, thereby playing a significant role in the control of 
Mycobacterium tuberculosis growth and pathology independently 
of NOS2 suppression (65). Conversely, when M. tuberculosis-
infected mice are coinfected with Schistosoma mansoni, arginase 
1-expressing M2 macrophages expand and limit the microbicidal 
immune response, thus increasing the disease progression and 
severity (66). Such findings clearly point out to the significance 
of the signals within in vivo immune milieus that can instruct 
macrophages and can often not be uncovered through in vitro 
evaluation.

Arginine Metabolism in Alternatively 
Activated Macrophages
Arginase 1-expressing M2 macrophages play pivotal roles in 
multiple immunopathological settings. M2 macrophages regulate 
immune responses mostly through redirecting arginine away 
from NOS with arginase 1 or via ornithine production. Indeed, 
macrophages producing arginase 1 and ornithine have widely 
been considered critical for wound healing (67, 68). These results 
were recently confirmed using pharmacologic inhibition of 
arginase and, more importantly, macrophage-specific arginase 1 
knockout mice (69). The decrease in arginase 1 expression results 
in a heightened infiltration of NOS2-expressing cells, reduced 
matrix deposition, and delayed healing (69).

M2 macrophage-specific arginase 1 blocks inflammation 
and fibrosis post infection with S. mansoni. For instance, con-
ditional deletion of arginase 1 in macrophages is associated with 
accelerated mortality due to uncontrolled Th2 cytokine-induced 
pathology in the livers of infected mice (70). Although early stud-
ies of schistosomiasis pathology indicate that M2 macrophage 
arginase 1 might contribute to liver fibrosis via production of 
proline as a precursor of collagen (46), mice lacking arginase 1 in 
macrophages display increased liver fibrosis and collagen deposi-
tion (70). Likewise, macrophage-derived arginase 1 is protective 
against excessive injury of the intestinal tissue of infected mice 
(71). In addition to suppressing T cell proliferation, arginase 1 
enhances regulatory T (Treg) cell and limits Th17 cell pheno-
type; furthermore, arginase 1 deficiency in macrophages results 
in IL-12/IL-23p40-dependent neutrophil-linked gut pathology 
(71). On the contrary, macrophage-specific arginase 1 is not 
essential in multiple murine models of Th2 lung inflammation 
and asthma (72), suggesting that the regulatory outcomes of 
macrophage-derived arginase 1 are organ specific. Although 
not technically supported, it is hypothesized that the function 
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of arginase 1 varies according to the relative rate of perfusion, 
and hence ultimately arginine availability, in different organs 
(72). Nevertheless, other studies indicate that subsets of argin-
ase 1-producing M2 macrophages may serve a role in allergic 
immune responses (73), indicating that this still is an exciting 
area for future investigation.

Macrophage arginase 1 also directly controls parasite growth. 
In a murine model of Heligmosomoides polygyrus, memory CD4+ 
T cells produce IL-4, therefore recruiting M2 macrophages 
that block larval parasite health and mobility via an arginase 
1-dependent mechanism (74). Additionally, H. polygyrus-specific 
antibodies and helminth larvae induce arginase 1 expression in 
macrophages independent of IL-4Rα signaling, and the arginase 
1 product ornithine directly inhibits larval motility (74). With 
this result, antibodies represent a novel pathway of macrophage 
alternative activation throughout Th2 immune responses.

ARGiNiNe MeTABOLiSM iN DCs

Dendritic cells are the most professional antigen-presenting cells 
known as key mediators between innate and adaptive immune 
responses. They present pathogen-derived antigenic peptides 
and provide costimulatory molecules and cytokines crucial for T 
cell activation and differentiation (75, 76). As such, how properly 
DC function is regulated largely shapes T cell antigen-specific 
immunity in different disease scenarios. DCs are classified into 
several subpopulations with distinct phenotypes, functions, and 
locations. These include but are not limited to conventional DCs, 
monocyte-derived DCs, and plasmacytoid DCs (77, 78). The 
enzymes involved in arginine metabolism, NOS2 and arginase 
1, are implicated in the function of subsets of DCs that evolve in 
response to local environmental stimuli. Similar to macrophages, 
the differential expression of these enzymes results in dichoto-
mous functions within these critical immune cells.

A population of TNFα and iNOS-producing DCs (Tip-DCs) 
has recently been described (79, 80). These cells are characterized 
as CD11b+CD11c+Ly6C+MHC-II+. The initial reports indicate 
that Tip-DCs can mediate the resistance to pathogens such as 
Listeria (79), Brucella (81), and Leishmania (82). However, 
Tip-DCs can also contribute to the liver pathogenicity in 
Trypanosoma brucei-infected mice; in this context, TNFα and 
nitric oxide production is IFNγ and MyD88 signaling dependent 
(83). Moreover, Tip-DCs can interact with tumor-infiltrating 
antigen-specific CD8+ T cells to mediate tumor growth rejection 
(84). In this model, tumor antigen-reactive CD8+ T cells activate 
Tip-DCs that in turn present tumor-associated antigens, thereby 
enhancing T cell expansion and tumor killing via TNFα and 
nitric oxide production. While colony-stimulating factor 1 recep-
tor (CSF-1R) signaling is not required, CD40–CD40L signaling 
is a key pathway for nitric oxide production and the antitumor 
response (84). Thus, activated T cells carry the possibility to 
modulate the inflammatory tumor microenvironment despite the 
fact that they are also targets of the suppressive elements of the 
same milieu, suggesting the tight balance occurring in tumors.

Tumors, however, can educate DCs to acquire an immu-
nosuppressive phenotype, represented by low costimulatory 
molecule expression, poor antigen presentation, and high 

expression of regulatory receptors (85). Murine lung cancer-
derived TGFβ and PGE2 favor the generation of tolerogenic DCs 
(CD11bhighCD11clowMHC-IIlow) that inhibit the proliferation of 
CD4+ T cells in vitro and in vivo (86). Arginase 1, induced mainly 
by PGE2, plays a significant role in this effect (86). IL-6 also pro-
motes the expression and activity of arginase 1 that subsequently 
downregulates MHC-II in DCs and suppresses CD4+ T cell-
mediated antitumor immunity (87). Although murine spontane-
ous mammary tumors are infiltrated with phenotypically mature 
DCs (CD11b+CD11chighMHC-IIhigh), these DCs suppress CD8+ T 
cell function via arginase 1 production, thus leading to impaired 
T cell antitumor immunity (88).

ARGiNiNe MeTABOLiSM iN MDSCs

Myeloid-derived suppressor cells are associated with several 
immune regulatory aspects in conditions involving chronic 
inflammation, such as cancer (89, 90), infections (91–93), 
trauma (94), obesity (95, 96), graft versus host disease (97), 
and autoimmune diseases (98, 99). With a sustained status of 
abnormal myelopoiesis, MDSCs represent a heterogeneous 
population of myeloid progenitor cells distinct from mature 
myeloid cells like macrophages, DCs, and neutrophils. 
MDSCs potently suppress innate and adaptive immunity 
and comprise two major subsets, namely, monocytic MDSCs 
(M-MDSCs) and polymorphonuclear MDSCs (PMN-
MDSCs). In mice, M-MDSCs are CD11b+Ly6ChighLy6G−, 
while PMN-MDSCs are CD11b+Ly6ClowLy6G+. In humans, 
M-MDSCs are defined as CD33+CD14+CD15−HLA-DRlow, 
while PMN-MDSCs are CD33+CD14−CD15+HLA-DR−/low or 
CD33+CD14−CD66b+HLA-DR−/low (100).

Multiple tumor-associated factors drive MDSC accumulation 
and acquisition of immunosuppressive function. For instance, 
vascular endothelial growth factor is associated with an arrest 
in DC maturation, while concomitantly expanding MDSCs, 
through the inhibition of NF-κB signaling (101, 102). Whereas 
G-CSF plays a critical role in mobilizing and differentiating 
bone marrow granulocytic precursors within tumors (103), 
GM-CSF, depending on the stimulation magnitude and context, 
promotes MDSC accumulation in vitro and in vivo (104, 105). 
IL-1β is also a potent driver of MDSCs either directly or indi-
rectly through stimulating other mediators such as IL-6 (106, 
107). IL-4 and IL-13 evoke MDSC suppressive mechanisms via 
IL-4Rα-dependent STAT6 activation (108, 109). Other pro-
inflammatory danger signals secreted mostly by myeloid cells 
such as S100A8/A9 proteins and high-mobility group box 1 
can also enhance MDSC trafficking and function by signaling 
through cell membrane receptors like TLRs and the receptor for 
advanced glycation end-products (110, 111). Similarly, several 
transcription factors are critical for MDSCs. Among those, 
STAT1 activated by type 1 and 2 IFNs and IL-1β drives MDSC 
accumulation and regulatory mechanisms (NOS2 and arginase 
1) (112, 113). The induction of STAT3 and STAT5 via G-CSF 
and GM-CSF, respectively, downregulates IFN regulatory factor 
8 that essentially drives MDSC accumulation (114). STAT3 can 
also induce genes important for MDSC differentiation and pro-
liferation (c-myc, cyclin D1, and S100A8/A9) and suppressive 
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function (NADPH oxidase [NOX] subunits p47phox and gp91phox 
and C/EBPβ) (115–118). C/EBPβ-homologous protein (Chop) 
induced by tumor-derived reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) and regulated by activating-
transcription factor 4 promotes IL-6 production and activates 
C/EBPβ as well as STAT3, thereby mediating MDSC regulatory 
function (119).

Myeloid-derived suppressor cells promote immune dysfunc-
tion using different mechanisms, either directly via depriving T 
cells of essential metabolites such as arginine, tryptophan, and 
cysteine or interfering with T cell viability, migration, or activa-
tion or indirectly via inducing other immune regulatory cells 
such as Treg cells and tumor-associated macrophages (TAMs) 
(89, 90, 120). Depletion of arginine through arginase 1 is one 
of the first T cell suppressive mechanisms described in MDSCs. 
PMN-MDSCs, the major source of arginase 1 in tumor-bearing 
hosts, reduce extracellular arginine by arginine incorporation via 
CAT-2B or arginase 1 production (3, 121). Arginase 1 inhibitors 
such as Nω-hydroxy-nor-arginine (nor-NOHA) or Nω-hydroxy-
arginine (NOHA) block MDSC suppressive activity and result 
in an immune-mediated, dose-dependent T cell antitumor 
immunity (3, 90). Starving T cells of arginine downregulates the 
expression of CD3ζ, a hallmark of T cell dysfunction in cancer 
patients (122). However, arginine-starved T cells produce IL-2 
and upregulate the early activation markers CD25, CD69, and 
CD122, indicating that the effect induced by arginine deple-
tion is not due to a defect in T cell receptor (TCR) signaling 
(123). On the other hand, arginine-starved T cells are arrested 
in the G0–G1 phase of the cell cycle as a result of an impaired 
expression of cyclin D3 and cyclin-dependent kinase 4 (cdk4) 
in T cells through a decreased mRNA stability and diminished 
translational rate (124, 125). Interestingly, in  vivo deprivation 
of arginine impairs T cell responses due to a general control 
non-derepressible 2 (GCN2) kinase-dependent accumulation 
of MDSCs (126). More recently, arginine has been found to be 
critical for T cell metabolic fitness and survival, and therefore, 
increasing the intracellular arginine abundance in T cells prior to 
adoptive cellular therapy (ACT) enhances their persistence and 
antitumor responses (36). In addition to the high susceptibil-
ity to low extracellular arginine, T cells also fail to respond in 
environments that lack cysteine or in those having indoleamine 
2,3-dioxgenase (IDO)-mediated tryptophan deprivation (127, 
128). A potential role of the integrated stress responses has been 
suggested as a common mediator of the effects induced by amino 
acid deprivation (124, 129). Briefly, accumulation of empty 
aminoacyl-tRNAs caused by low amino acid content activates 
GCN2, which phosphorylates the eukaryotic translation initia-
tion factor 2α (eIF2α). The phosphorylated form of eIF2α binds 
with higher affinity to eIF2β, blocking its ability to exchange 
guanosine diphosphate (GDP) for guanosine triphosphate 
(GTP), which then inhibits the binding of the eIF2 complex to 
methionine aminoacyl-tRNA. This results in a decreased initia-
tion of global protein synthesis. Accordingly, culture of cells in 
the absence of arginine induces a significant phosphorylation of 
eIF2α and global decrease in protein synthesis (130). In addition, 
T cells from GCN2 knockout mice display a lower susceptibility 
to amino acid availability (129). Recent studies also point out 

to the essential role of rapamycin-insensitive companion of 
mammalian target of rapamycin (Rictor)/mTOR complex 2 in 
regulating the responses induced by limiting amino acids (131). 
As such, T cells lacking Rictor/mTOR are resistant to amino acid 
starvation-induced immunosuppression (132, 133), suggest-
ing the relevance of this pathway in the suppression of T cell 
responses by amino acid depletion.

Myeloid-derived suppressor cells also exert their immuno-
suppressive effect through nitric oxide production by NOS2 
in M-MDSCs and NOS3 in PMN-MDSCs (134). In addition 
to its direct apoptotic effects, nitric oxide negatively regulates 
T cells by impairing the IL-2R signaling pathways Jak-3, 
STAT5, ERK, and AKT (135, 136). Furthermore, MDSCs via 
the NOX subunits p22phox, p47phox, and gp91phox produce ROS 
such as superoxide and hydrogen peroxide that inhibit T cell 
CD3ζ expression and cytokine production (116). Nitric oxide 
can then react with superoxide to produce more detrimental 
RNS such as PNT generated by PMN-MDSCs depending on 
the expression of gp91phox and NOS3 (134). PNT can induce 
T cell apoptosis via the nitration of tyrosine residues, thereby 
blocking protein tyrosine phosphorylation (137). PNT also 
disrupts the conformational flexibility of the TCR-MHC/
peptide binding by nitrating/nitrosylating the TCR and MHC, 
thus limiting T cell antitumor immunity (138, 139). Moreover, 
PNT hinders the infiltration of T cells, while facilitating the 
trafficking of MDSCs, into tumors mostly through the nitration 
of chemokines such as CCL2 and CCL5 or chemokine receptors 
such as CXCR4 (140, 141).

ARGiNiNe MeTHYLATiON iN 
iNFLAMMATiON

Posttranslational methylation of arginine residues in proteins 
through the protein arginine methyltransferases (PRMTs) 
regulates multiple cellular signaling pathways related to cell dif-
ferentiation, proliferation, and function. Arginine methylation 
by PRMTs activates or inhibits multiple transcription factors and 
other proteins, thereby regulating chromatin remodeling, RNA 
splicing, DNA damage repair, and protein–protein interactions. 
These events occur through the formation of aDMA, made by 
type I PRMTs, symmetric dimethylarginine (sDMA), made by 
type II PRMTs, or monomethylarginine (MMA), made by type 
III PRMTs. The major PRMTs associated with the regulation 
of immunity include the coactivator associated arginine meth-
yltransferase 1 (CARM1 or PRMT4), PRMT1, PRMT5, and 
PRMT6. CARM1 targets proteins regulating chromatin remod-
eling and RNA-binding proteins (142). In addition, CARM1 is 
a major coactivator of NF-κB (143). Similarly, PRMT1 has been 
recognized as a major regulator of inflammation through its 
ability to methylate multiple proteins, including NF-κB (144), 
CITED2, STAT5 (145), and NFAT (146). Furthermore, PRMT5 
and PRMT6 have been shown to increase the activity of NF-κB, 
thereby regulating the expression of IL-1α and IL-6 (147, 148). 
Although the capacity of arginine methylation to modulate 
multiple inflammatory signaling pathways has been described, its 
role in several pathologies and especially in patient populations 
remains to be investigated.
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THeRAPeUTiC iMPLiCATiONS AND 
CONCLUDiNG ReMARKS

Arginine deprivation is a novel therapeutic modality for several 
ASS1-deficient, arginine-auxotrophic solid and hematological 
malignancies. To this end, arginine-metabolizing enzymes, 
mycoplasma-derived arginine deiminase (ADI) and recombi-
nant human arginase 1, have been pegylated for enhanced in vivo 
pharmacokinetics and pharmacodynamics (149, 150). Pegylated 
ADI (peg-ADI) controls tumor growth in multiple xenograft 
models, including melanoma, hepatocellular carcinoma, and 
lung cancer (151, 152). Promoting apoptosis and blocking 
angiogenesis and de novo protein synthesis are endorsed anti-
tumor mechanisms for peg-ADI treatment (149, 150). Clinical 
investigations of peg-ADI have followed in melanoma and 
hepatocellular carcinoma, with response rates of 25 and 47%, 
respectively (153, 154). Several other phase II and phase III 
clinical trials are underway testing peg-ADI in patients with 
metastatic melanoma, advanced hepatocellular carcinoma, and 
small-cell lung cancer. With the clinical evidence for developing 
anti-peg-ADI neutralizing antibodies (155, 156), recombinant 
human arginase 1 represents an alternative arginine deprivation 
therapy. Pegylation extends the half-life of arginase 1 without 
altering its activity (157). Pegylated arginase 1 (peg-arginase 1) is 
effective against several cancers, such as melanoma, hepatocellu-
lar carcinoma, and leukemia (130, 157, 158). The antitumor effect 
of peg-arginase 1 is mediated via the induction of autophagy, 
apoptosis, and cell cycle arrest in malignant cells (130, 150, 
159). Peg-arginase 1 is currently undergoing clinical investiga-
tion in patients with advanced hepatocellular carcinoma. The 
initial clinical evidence indicates that peg-arginase 1 is safe and 
results in prolonged arginine depletion (160). Interestingly, 
peg-arginase 1 also induces immune suppression by reducing 
the availability of arginine to primary T cells and through the 
induction of MDSCs (126). As such, peg-arginase 1 extends 
the survival of mice undergoing bone marrow transplantation 
and delays the appearance of graft versus host diseases, whereas 
enhancing the growth of Listeria (97, 161). Additionally, peg-
arginase 1 exerts a potent anti-herpetic activity, blocking herpes 
simplex virus replication and virus-derived cytopathic effects 
in vitro (162). Arginine-catabolizing enzymes have a preclinical 
additive and/or synergistic effects with other treatments such 
as chemotherapy, radiotherapy, PI3K inhibitors, and autophagy 
regulators (149), and the clinical efficacy of these combinatorial 
approaches remains to be determined.

As outlined above, the arginine-metabolizing enzymes argin-
ase 1 and NOS2 are key suppressive mechanisms by which immu-
noregulatory myeloid cells restrain T cell antitumor immunity 
(Figure 2), thus indeed paving the way for developing strategies 
to target these pathways. The arginase 1 inhibitor nor-NOHA 
and the ODC inhibitor α-difluoromethylornithine (DFMO) 
downregulate arginase 1 expression in tumor- associated MDSC 
and restore T cell antitumor immunity (3, 163). Since arginase 
1 expression can be driven by cyclooxygenase 2 (COX2)/PGE2 
axis, celecoxib, a selective COX2 inhibitor, also blocks arginase 
1 expression, reduces MDSC accumulation, and elicits CD4+ 
and CD8+ antitumor immune responses (30). Moreover, dietary 
celecoxib synergizes with DC-based vaccination to extend the 

survival of mesothelioma-bearing mice (164). While these stud-
ies have examined the role of MDSCs, it is conceivable that these 
agents could also modulate other arginase 1-expressing myeloid 
cells like TAMs and tolerogenic DCs (85, 165). On the other hand, 
N(6)-(1-iminoethyl)-l-lysine-dihydrochloride (l-nil), a NOS2 
selective inhibitor, constraints melanoma growth and improves 
the survival of tumor-bearing mice, and a combination of l-nil 
and cisplatin is better than either agent alone (166). Reports, 
however, recommend targeting both arginase 1 and NOS2 to 
augment the therapeutic effect. In a model of human prostatic 
adenocarcinomas, only concomitant inhibition of arginase 1 and 
NOS2 reduces PNT production and recovers tumor-infiltrating 
lymphocyte antitumor responsiveness (167). Phosphodiesterase-5 
(PDE5) inhibitors (sildenafil, tadalafil, and vardenafil) decrease 
the expression of arginase 1 and NOS2, thereby blocking MDSC 
regulatory activity (168). Accordingly, PDE5 inhibitors promote 
intratumoral infiltration of activated T cells, control tumor 
growth, and enhance the efficacy of ACT (168). Likewise, nitric 
oxide-releasing aspirin (a typical aspirin linked to a nitric oxide 
donor) reduces arginase 1, NOS2, and PNT, while increasing the 
frequency and function of tumor-specific T cells, thus boosting 
the antitumor effect of cancer vaccination (169). Another small 
molecule that prevents PNT production in vivo, namely, 3-[(ami-
nocarbonyl)furoxan-4-yl]methyl salicylate (AT38), also drives 
the infiltration of tumor antigen-specific T cells into tumors 
and synergizes with ACT (141). The fact that agents like PDE5 
inhibitors and nitric oxide-releasing aspirin have been proven 
safe in patients provides a rationale to use these treatments in 
combination with other immunotherapeutic approaches such as 
ACT and checkpoint blockade. Additionally, as discussed above, 
NOS2-expressing Tip-DCs are critical for tumor rejection in the 
context of ACT in mice (84). Of interest, this antitumor response 
does not require lymphodepletion preconditioning prior to ACT. 
Therefore, this development could reprogram the immunosup-
pressive tumor microenvironment and, more importantly, obvi-
ate the need for other potentially toxic regimens.

Overall, arginine metabolism has evolved as a key player in the 
center of our immune system. At this point, it is very clear that the 
regulators of arginine metabolism can elicit dichotomous innate 
and adaptive immune responses for instance in controlled versus 
uncontrolled infection, autoimmunity versus self-tolerance, and 
antitumor immunity versus tumor-induced immune suppression. 
As such, a better understanding of arginine metabolic pathways 
within the complicated inflammatory microenvironments in vivo 
and in the human as opposed to the mouse system will facilitate 
the development of targeted therapeutic interventions in different 
diseases.
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