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Human regulatory T cells (Treg) are important in immune regulation, but can also show 
plasticity in specific settings. CD161 is a lectin-like receptor and its expression identifies 
an effector-like Treg population. Here, we determined how CD161+ Treg relate to CD161+ 
conventional T cells (Tconv). Transcriptional profiling identified a shared transcriptional 
signature between CD161+ Tconv and CD161+ Treg, which is associated with T helper 
(Th)1 and Th17 cells, and tissue homing, including high expression of gut-homing recep-
tors. Upon retinoic acid (RA) exposure, CD161+ T cells were more enriched for CCR9+ 
and integrin α4+β7+ cells than CD161− T cells. In addition, CD161+ Tconv and CD161+ 
Treg were enriched at the inflamed site in autoimmune arthritis, and both CD161+ and 
CD161− Treg from the inflamed site were suppressive in vitro. CD161+ T cells from the 
site of autoimmune arthritis showed a diminished gut-homing phenotype and blunted 
response to RA suggesting prior imprinting by RA in the gut or at peripheral sites rather 
than during synovial inflammation. TCRβ repertoires of CD161+ and CD161− Tconv 
and Treg from blood showed limited overlap whereas there was clear overlap between 
CD161+ and CD161− Tconv, and CD161+ and CD161− Treg from the inflamed site sug-
gesting that the inflamed environment may alter CD161 levels, potentially contributing to 
disease pathogenesis.

Keywords: cD161, conventional T cells (Tconv), regulatory T cells (Treg), transcriptome, juvenile idiopathic arthritis 
(Jia), tissue homing, T cell receptor (Tcr), retinoic acid

inTrODUcTiOn

Human regulatory T cells (Treg) expressing high levels of CD25 (1), low levels of CD127 (2, 3), and 
the master transcription factor Foxp3 (4–6) are key to immune regulation. The importance of Treg 
is clearly illustrated by the onset of severe multi-organ autoimmune diseases in absence of functional 
Treg (7, 8). Treg are generally considered to lack the ability to produce pro-inflammatory cytokines 
(6). However, recent ex vivo and in vitro studies have demonstrated that a proportion of Treg from 
healthy individuals is able to produce pro-inflammatory cytokines associated with T helper (Th) 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00103&domain=pdf&date_stamp=2017-03-06
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00103
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:c.duurland@ucl.ac.uk
https://doi.org/10.3389/fimmu.2017.00103
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00103/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00103/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00103/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00103/abstract
http://loop.frontiersin.org/people/381841
http://loop.frontiersin.org/people/382869


2

Duurland et al. Canonical CD161+ T Cell Biology

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 103

lineages such as interferon (IFN)-γ and interleukin (IL)-17 (9–15). 
Analysis of cytokine-producing Treg in autoimmune diseases 
indicated an enrichment of IFNγ+Foxp3+ Treg in patients with 
type 1 diabetes (16) or multiple sclerosis (17), IL17+Foxp3+CD4+ 
T cells in patients with ulcerative colitis (18), Crohn’s disease 
(19) or psoriasis (20), and IFNγ- and IL-17-producing Treg in  
patients with autoimmune hepatitis (21) compared to healthy 
individuals. This suggests that at sites of inflammation, cytokine-
producing Treg might actively promote inflammation instead of 
dampening it.

These effector-like characteristics of Treg raise questions about 
the role of these cells in health and disease. We have recently iden-
tified CD161 as a marker to identify a Treg population capable 
of producing pro-inflammatory cytokines. CD161+ Treg are sup-
pressive in in vitro suppression assays and have a predominantly 
demethylated Treg-specific demethylated region (TSDR) (14). 
CD161, the human ortholog of murine natural killer receptor 
protein 1A (NKRP1A), is a lectin-like receptor initially identified 
as a marker for NK (T) cells (22, 23), but is also expressed on 
CD8+ T cells (24, 25), Th17 cells (26, 27), and innate lymphoid 
cells (ILC) (28). In addition, Th17 cells expressing CD161 can 
convert to Th1 cells under pro-inflammatory conditions and 
thereby retain CD161 expression (29, 30) suggesting that CD161 
may mark cells capable of T cell plasticity in inflammatory condi-
tions. Despite the effector-like phenotype of CD161+ Treg, it is 
unknown how these cells relate to CD161+ T effector cells.

In this study, we aimed to define the transcriptional and pro-
tein signatures, and TCRβ repertoire of CD161+ Treg and CD161+ 
conventional T cells (Tconv). CD161+ Treg and CD161+ Tconv 
shared transcriptional and protein signatures and expressed 
high levels of cell surface proteins associated with gut homing. 
However, the TCRβ repertoire of these cells showed limited 
overlap. Intriguingly, at the site of inflammation in patients 
with autoimmune arthritis, the TCRβ repertoire of CD161+ and 
CD161− Tconv, and CD161+  and CD161− Treg showed a consid-
erable amount of overlap suggesting that CD161 expression can 
be altered in autoimmune conditions.

MaTerials anD MeThODs

human samples
Peripheral blood (PB) samples from healthy adult and child 
volunteers or patients with juvenile idiopathic arthritis (JIA) 
and synovial fluid (SF) samples from JIA patients were obtained 
with full written informed consent and age appropriate assent 
as approved by the London—Bloomsbury Research Ethics 
Committee (ref 95RU04) in accordance with the Declaration of 
Helsinki. JIA patients were diagnosed according to internation-
ally agreed criteria (31). PB and SF mononuclear cells (PBMC and 
SFMC) were prepared by density gradient centrifugation. Before 
processing, SF samples were treated with Hyaluronidase (10 U/
ml; Sigma-Aldrich) for 30 min at 37°C.

cell culture
Cells were cultured in RPMI1640-containing l-glutamine sup-
plemented with penicillin (100 U/ml), streptomycin (100 µg/ml),  

and 10% FCS (all Thermo Fisher Scientific) at 37°C and 5% 
CO2. To assess cytokine production, cells were cultured with 
Phorbol Myristate Acetate (PMA) (50  ng/ml), Ionomycin 
(500  ng/ml) and Brefeldin A (5  µg/ml) (all Sigma-Aldrich) 
for 4  h, or recombinant human IL-12 (50  ng/ml; Pepro-Tech 
EC Ltd.), IL-18 (50 ng/ml; Bio-Techne) and Brefeldin A (5 µg/
ml; last 4 h only) for 24 h. Cell cycle profile was analyzed after 
4 days of culture in presence of plate-bound αCD3 (1 µg/ml; 
clone UCHT1, R&D Systems) and αCD28 (5  µg/ml; clone 
CD28.2, BD Pharmingen) antibodies. For cultures with all-
trans retinoic acid (ATRA; Sigma-Aldrich), cells were cultured 
in serum free medium (Thermo Fisher Scientific) in absence 
or presence of plate-bound αCD3 (1 µg/ml) and αCD28 (5 µg/
ml), and ATRA at concentrations indicated for 4 days (ATRA 
alone), or 48 h and then rested for 48 h (ATRA + TCR signal) 
before analysis.

Flow cytometry
Flow cytometry was performed by standard methods using 
directly conjugated monoclonal antibodies (Table S1 in 
Supplementary Material) against specific human cell surface or 
intracellular proteins. Dead cells were excluded by staining with 
a live/dead dye. Intracellular proteins were stained using Foxp3 
staining kit (eBioscience). Cell cycle profile was analyzed using 
FxCycle Violet (Thermo Fisher Scientific). Data were acquired 
on LSRII flow cytometer (BD Biosciences) and analyzed using 
FlowJo software version 10.1 (Tree Star Inc.).

cell sorting
PBMC from adult healthy controls or JIA patients, or SFMC 
from JIA patients were enriched for CD4+ T cells using EasySep 
Human CD4+ T Cell Enrichment kit (Stemcell Technologies) 
and stained for CD4, CD127, CD25, and CD161 using the mono-
clonal antibodies defined in Table S1 in Supplementary Material, 
before adding a live/dead dye. Cells were sorted on FACS Aria 
III (BD Biosciences) for the following live cell populations: 
CD161+ Tconv: CD4+CD127+CD25−CD161+, CD161− Tconv: 
CD4+CD127+CD25−CD161−, CD161+ Treg: CD4+CD127low 
CD25hiCD161+, CD161− Treg: CD4+CD127lowCD25hiCD161−. 
A  small aliquot of each sorted cell populations  was stained 
for Foxp3 to assess sort purity.

Treg suppression assay
CD161+ and CD161− Treg and total Tconv were sorted from 
JIA SF. To assess suppression of proliferation, sorted Tconv were 
labeled with CellTrace Violet (Thermo Fisher Scientific) accord-
ing to manufacturer’s instructions. Labeled Tconv were cultured 
at a constant number of 5 × 104 cells per well, either alone (1:0) 
or with sorted CD161+ or CD161− Treg at a 1:1 and, where cell 
numbers permitted, 2:1 ratio. Cells were cultured on a 96 well 
V-bottom plate pre-coated with plate-bound αCD3 (1 µg/ml) and 
αCD28 (5 µg/ml) antibodies. Final cell concentration was kept at 
1 × 106 cells per ml. Cells were cultured for 4 or 5 days at 37°C 
and 5% CO2 before analysis by flow cytometry. To determine 
suppression of proliferation, the % divided function in FlowJo 
version 7.6.5 (Tree Star Inc.) was used and % divided for Tconv 
alone was set at 0% suppression.
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rna extraction and rnaseq
RNA was extracted from sorted populations using Picopure kit 
(Thermo Fisher Scientific), and the cDNA library was prepared 
using TruSeq RNA sample preparation kit (Illumina). Samples 
were run on HiSeq 2500 (Illumina), rapid run mode 50PE with 
average read depth of 30 million reads. After sequencing, reads 
were mapped to the human genome (human NCBI genome build 
37.2) and read count data for each transcript were obtained using 
the scripts provided by the Dexseq package. FPKM values were 
created using the normalization tools included in the Deseq2 
package followed by subsequent analysis using GeneSpring 13.0 
(Agilent Technologies) to determine differentially expressed 
(DE) genes using P  <  0.05 (determined using unpaired t-test 
without correction for multiple testing) and fold change ≥1.5. 
One CD161+ Treg sample was excluded from analysis, because 
of low cDNA yield. Transcriptome data have been deposited in 
GEO under accession number GSE86452. Principal component 
analysis (PCA) of the dataset was performed using FactoMineR 
(32) in RStudio (version 3.2.2). Heatmaps were generated using 
GENE-E.1 Pathway analysis was performed using QIAGEN’s 
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City2).

TcrB sequencing and analysis
Genomic DNA (gDNA) was extracted as described (33) from 
purified CD161+ and CD161− Tconv and Treg. 100–400 ng gDNA 
was processed by Adaptive Biotechnologies (Seattle, WA, USA) 
using the ImmunoSEQ human TCRB platform combining mul-
tiplex PCR with high throughput sequencing and a sophisticated 
bioinformatics pipeline for TCRB CDR3 analysis (34, 35). Data 
were analyzed using ImmunoSEQ Analyser (version 3.0) using 
only productive rearrangements at nucleotide level.

statistical analysis
Statistical analysis of flow cytometry data was performed using 
Prism 5.03 for Windows (Graphpad). Where used, black lines 
or bars in summary graphs represent median and where used 
error bars represent interquartile range. Wilcoxon matched-pairs 
signed test was used to analyze differences between CD161− and 
CD161+ cell populations. Kruskal–Wallis test with Dunn’s mul-
tiple comparison tests were used to analyze differences between 
three or more groups. P-values below 0.05 were considered 
significant and are shown in graphs as *P < 0.05, **P < 0.01, and 
***P < 0.001.

resUlTs

cD161+ Treg Produce Pro-inflammatory 
cytokines, despite classical Treg 
Phenotype
Analysis of Tconv and Treg expressing CD161 for cytokine pro-
duction confirmed that CD161+ Tconv and CD161+ Treg from 
peripheral blood produced significantly higher levels of IFNγ 
and IL-17 compared to CD161− counterparts (Figures  1A,B; 

1 https://software.broadinstitute.org/GENE-E/index.html.
2 www.qiagen.com/ingenuity.

Figure S1 in Supplementary Material: gating strategy). Despite 
the significantly increased proportions of memory cells (defined 
as CD45RA−CD45RO+ cells) in both CD161+ Tconv and CD161+ 
Treg (Figure  1C), comparison of cytokine production within 
memory CD161+ Tconv and Treg revealed a non-significant trend 
towards more IFNγ and IL-17 production by memory CD161+ 
Tconv and memory CD161+ Treg compared to their CD161− 
counterparts within the four samples analyzed (Figure  1D). 
These data suggest that differences in cytokine production 
between CD161+ and CD161− cells might not solely be attributed 
to differences in memory phenotype.

Despite the pro-inflammatory phenotype typically associated 
with effector T cells, CD161+ Treg from healthy controls also 
exhibited a classical Treg phenotype. CD161+ Treg expressed 
significantly higher levels of CTLA4, GITR, and PD1 compared 
to CD161− Treg in blood of healthy adults (Figure 1E; Figures 
S2A–C in Supplementary Material). Within blood of healthy 
children, only CTLA4 protein expression was significantly higher 
within CD161+ Treg compared to CD161− Treg. We observed no 
significant difference in protein expression of TIGIT (Figure 1E; 
Figure S2D in Supplementary Material), a marker identifying a 
suppressive Treg population that also shares features with effec-
tor T cells (36, 37). Interestingly, CD161+ Tconv also expressed 
higher levels of CTLA4, GITR, PD1, and TIGIT compared to 
CD161− Tconv (Figures S2A–D in Supplementary Material). 
Given that there is evidence that Helioslow/− Treg have the capacity 
to make cytokines (38, 39), we analyzed Helios expression within 
CD161+ and CD161− Treg. Although CD161+ and Helioslow/− 
cells were not entirely overlapping populations, we observed 
significantly fewer Helios+ cells within CD161+ Treg compared 
to CD161− Treg within blood of healthy adults (Figure 1F). This is 
in accordance with the described cytokine-producing phenotype 
of Helioslow/− Treg and CD161+ Treg.

Transcriptome analysis reveals a shared 
Transcriptional signature between cD161+ 
Tconv and cD161+ Treg
To investigate the effector-like phenotype of CD161+ T cells, 
CD161+ and CD161− Tconv and Treg were sorted (Figures S3A,B 
in Supplementary Material) and their transcriptome was analyzed. 
PCA revealed that CD161+ and CD161− T cells represent distinct 
populations within Tconv or Treg lineages. In addition, samples 
clustered by cell population before applying filters to examine 
DE genes (Figure  2A). Analysis of CD161+ and CD161− Tconv 
indicated 1626 DE genes (CD161+ Tconv signature; Table S2 in 
Supplementary Material), and analysis of CD161+ and CD161− 
Treg indicated 826 DE genes (CD161+ Treg signature; Table S3 
in Supplementary Material) (Figure 2B). Comparison of CD161+ 
Tconv and CD161+ Treg signatures revealed a shared transcrip-
tional profile between CD161+ T cells (Figure  2C). Pathway 
analysis of CD161+ Tconv and CD161+ Treg signatures (Tables 
S4 and S5 in Supplementary Material, respectively) showed that 
similar pathways were altered in both signatures (Figure  2D). 
Among the over-represented pathways were the T helper differ-
entiation pathway and pathways associated with cell migration, 
including epithelial adherens juction, actin cytoskeleton signaling, 
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FigUre 1 | continued 
cD161+ regulatory T cells (Treg) produce pro-inflammatory cytokines and express markers typically associated with a Treg phenotype. 
CD127+CD25− conventional T cells (Tconv) and CD127lowCD25hiFoxp3+ (Treg) (gated as in Figure S1 in Supplementary Material) from healthy control 
peripheral blood were analyzed by flow cytometry. (a) Left plots show gating of CD161+ and CD161− Tconv and Treg. Representative plots depicting 
interferon (IFN)-γ+ and interleukin (IL)-17+ cells within CD161− and CD161+ Tconv and Treg populations. (B) Summary graphs showing percentage IFNγ+ and 
IL-17+ within CD161− (○) and CD161+ (●) Tconv and Treg from healthy adults (n = 17–22) and children (n = 7). (c) Representative plots and summary 
graphs showing percentage memory cells, defined as CD45RA−CD45RO+ cells, within CD161− (○) and CD161+ (●) Tconv and Treg in healthy adults 
(n = 18) and children (n = 8). (D) Summary graphs showing percentage IFNγ+ and IL-17+ within CD45RA−CD45RO+ CD161− (○) and CD161+ (●) Tconv and 
Treg from healthy adults (n = 4). (e) Protein expression of CTLA4, GITR, PD1, and TIGIT within CD161− (○) and CD161+ (●) Treg from healthy adults 
(n = 12–13) and children (n = 4–8). (F) Co-staining of CD161 and Helios, and Helios+ cells within CD161− and CD161+ Treg. Summary graph showing 
percentage Helios+ within CD161− (○) and CD161+ (●) Treg from healthy adults (n = 12) and children (n = 5). Statistical significance: *P < 0.05, **P < 0.01, 
***P < 0.001.
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FigUre 2 | continued 
shared canonical signature between cD161+ conventional T cells (Tconv) and cD161+ regulatory T cells (Treg) reveals a T helper (Th) phenotype of 
cD161+ T cells. Healthy adult peripheral blood mononuclear cells (PBMC) (n = 4) were sorted into CD4+CD127+CD25−CD161+ (CD161+ Tconv) or CD161− 
(CD161− Tconv), and CD4+CD127lowCD25hiCD161+ (CD161+ Treg) or CD161− (CD161− Treg) for RNAseq analysis. (a) Principal component analysis (PCA) of data 
from all samples before applying filters to assess differentially expressed (DE) genes. One CD161+  Treg sample was excluded from analysis due to low cDNA yield. 
(B) Heat maps of DE genes comparing CD161+ and CD161− Tconv (CD161+ Tconv signature) (1626 DE genes, left), and CD161+ and CD161− Treg (CD161+ Treg 
signature) (826 DE genes, right). (c) Venn diagram representing overlap in transcriptional signatures of CD161+ Tconv and CD161+ Treg. (D) Canonical pathways 
altered in both CD161+ Tconv (blue bars) and CD161+ Treg (red bars) signatures identified using ingenuity pathway analysis with −log P-value >2 (equals P-value 
<0.01). (e) DE genes associated with Th1 and Th17 in CD161+ Tconv and CD161+ Treg compared to CD161− counterparts. (F) Analysis of CCR5 expression; 
normalized expression values (left, from RNAseq) and percentage CCR5+ cells (right, flow cytometry) within CD161− (○) and CD161+ (●) Tconv and Treg in healthy 
adult (n = 10) and child (n = 4) PBMC. (g,h) Analysis of CXCR3 (g) and IL18R (h) expression; normalized expression values (left, from RNAseq) and protein 
expression (right, flow cytometry) within CD161− (○) and CD161+ (●) Tconv and Treg in healthy adult (n = 9–15) and child (n = 4–5) PBMC. (i,J) PBMC (i) or sorted 
CD161+ and CD161− Tconv (J) from healthy adults were cultured in the presence of 50 ng/ml IL-18 and IL-12 for 24 h with Brefeldin A for last 4 h of culture. (i) 
Representative plots and summary graphs showing percentage IFNγ+ within CD161− (○) and CD161+ (●) Tconv and Treg (n = 8). (J) Representative plots showing 
IFNγ+ cells within sorted CD161+ and CD161− Tconv from 2 healthy adult controls. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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integrin signaling, and rho signaling, suggesting that CD161+ 
T cells might be more migratory than their CD161− counterparts.

cD161+ Tconv and cD161+ Treg exhibit a  
T helper Phenotype and can respond in a 
Tcr-independent Manner
Many differentially expressed genes were part of the T helper dif-
ferentiation pathway including those specifically associated with 

Th1 and Th17 cells. CD161+ Tconv showed significantly higher 
expression of TBX21 and IRF5 (Th1 transcription factors), and 
RORC and RORA (Th17 transcription factors) were significantly 
higher in both CD161+ Tconv and CD161+ Treg compared to their 
CD161− counterparts. AHR expression was only significantly 
higher in CD161+ Tconv compared to CD161− Tconv (Figure 2E; 
Figure S4A in Supplementary Material). Interestingly, GATA3 
expression was also higher in CD161+ Tconv and CD161+ Treg, 
and BCL6 was higher in CD161+ Tconv, but not CD161+ Treg, 
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FigUre 3 | cD161+ T cells have a proliferative phenotype. (a) Healthy adult peripheral blood mononuclear cells (PBMC) were stimulated with 1 µg/ml 
αCD3 + 5 µg/ml αCD28 for 4 days and analyzed for cell cycle profile by flow cytometry using FxCycle Violet. Representative histograms and summary graphs 
indicating percentage of cells in S and G2M phase within CD161− (○) and CD161+ (●) CD3+CD4+ T cells and Treg (n = 4). (B) PBMC from healthy adults and 
children were analyzed ex vivo for expression of Ki67. Representative plots and summary graphs showing percentage Ki67+ cells within CD161− (○) and CD161+ (●) 
Tconv and Treg from healthy adults (n = 16) and children (n = 4). (c) Percentage Ki67+ within memory cells, defined as CD45RA−CD45RO+ cells, gated on 
CD161− (○) and CD161+ (●) Tconv and Treg in healthy adults (n = 14) and children (n = 4). Statistical significance: *P < 0.05, ***P < 0.001.
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compared to CD161− populations (Figure S4A in Supplementary 
Material). CD161+ Tconv showed significantly higher expression 
of IFNG compared to CD161− Tconv (Figure 2E; Figure S4B in 
Supplementary Material), but expression levels of other cytokine 
transcripts, including IL4, IL10, IL13, IL21, and IL22, showed 
no significant differences in expression between CD161+ and 
CD161− populations (data not shown).

Furthermore, expression of chemokine receptors associated 
with migration of Th cells, including CCR6 (Th17) (Figure 2E; 
Figure S6A in Supplementary Material), CCR5, and CXCR3 
(both Th1), was higher in CD161+ Tconv and CD161+ Treg 
(Figures  2E–G). We and others have previously demonstrated 
high levels of CCR6, RORC, and T-bet in CD161+ T populations 
(14, 26, 29). Here, we report an increase in percentage CCR5+ 

cells in both CD161+ Tconv and CD161+ Treg (Figure 2F) and 
higher protein expression of CXCR3 (Figure  2G) in CD161+ 
Tconv compared to CD161− counterparts.

CD161+ Tconv and CD161+ Treg also expressed higher levels 
of IL12RB1, IL18RAP, IL18R1, and IL-18Rα protein (Figures 2E 
and H). These receptors have been previously reported to be 
expressed on innate-like lymphocytes such as mucosal-associated 
invariant T (MAIT) cells (40) and ILC (28), and mediate rapid 
effector functions in response to IL-12 and IL-18. Therefore, we 
investigated the responsiveness of CD161+ Tconv and CD161+ 
Treg to IL-12 and IL-18 by culturing PBMC from healthy adults 
in presence of IL-12 and IL-18, but without a TCR signal, for 
24  h. Both CD161+ Tconv and CD161+ Treg produced more 
IFNγ in response to IL-12 and IL-18 compared to CD161− cells 
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FigUre 4 | continued  
cD161+ T cells express markers associated with gut homing and respond to all-trans retinoic acid (aTra). (a) Heat maps showing DE genes encoding 
chemokine receptors and integrins in CD161+ conventional T cells (Tconv) and CD161+ regulatory T cells (Treg) compared to their CD161− counterparts.  
(B) Normalized expression values for CCR9, ITGA4, and ITGB7 within CD161− (○) and CD161+ (●) Tconv and Treg from RNAseq. (c,D) Representative plots and 
summary graphs showing percentage CCR9+ (c) and integrin α4+β7+ (D) cells by flow cytometry within CD161− (○) and CD161+ (●) Tconv and Treg in healthy 
adults (n = 18) and children (n = 4–8). (e–g) Healthy adult peripheral blood mononuclear cells (PBMC) were cultured in medium, 1, 10, or 100 nM ATRA for 4 days 
as indicated and analyzed for expression of CCR9, integrin α4β7 and CD161 (n = 6). (e) Representative plots showing percentage CCR9+ and integrin α4+β7+ cells 
within CD161+ and CD161− CD3+CD4+ T cells at culture conditions indicated. (F) Summary graphs showing percentage CCR9+ and integrin α4+β7+ cells within 
CD161− (○) and CD161+ (●) CD3+CD4+ T cells at culture conditions indicated. (g) Percentage CD161+ cells within CD3+CD4+ cells at end of culture. (h,i) Purified 
CD161+ and CD161− Tconv from healthy adults were cultured with ATRA as described before (n = 3). (h) Summary graphs showing percentage CCR9+ and integrin 
α4+β7+ cells within sorted CD161− (○) and CD161+ (●) Tconv at culture conditions indicated. (i) Percentage CD161+ cells of CD3+CD4+ cells within sorted 
CD161− (○) and CD161+ (●) Tconv at end of culture. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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(Figure 2I). In addition, sorted CD161+ and CD161− Tconv were 
cultured alone in IL-12 and IL-18 in absence of a TCR signal. Only 
CD161+ Tconv produced IFNγ in response to IL-12 and IL-18 
(Figure 2J) suggesting that CD161+ T cells may have innate-like 
characteristics and can respond in a TCR-independent manner.

cD161+ T cells have a Proliferative 
Phenotype
Several functional pathways that were over-represented in CD161+ 
Treg were associated with cell cycle progression (Table S5 in Supple-
mentary Material). In vitro analysis of cell cycle profile showed a 
non-significant trend towards more CD161+ T cells in S and G2M 
phases compared to CD161− T cells (Figure 3A). Consistent with 
this observation, the percentage of Ki67+ cells within CD161+ 
Tconv and CD161+ Treg was significantly higher compared to 
CD161− cells within blood of healthy adults, but this trend did not 
reach statistical significance in the four healthy children analyzed 
(Figure 3B). Together, these data suggest that CD161+ T cells have 
a high proliferative turnover, which indicates that these cells may 
have recently encountered their cognate antigen.

The proliferative phenotype of CD161+ Treg could be con-
founded by the high proportion of memory cells within CD161+ 
Treg (Figure  1C) as CD45RO-expressing CD4+CD25hiFoxp3+ 
cells are highly proliferative (41, 42). Analysis of Ki67+ cells within 
memory cells still showed significantly more Ki67+ cells within 
memory CD161+ Treg, but not within memory CD161+ Tconv, 
compared to CD161− counterparts in healthy adults (Figure 3C) 
indicating that the high proliferative state of CD161+ Treg is not 
accounted for solely by its memory phenotype.

cD161+ T cells express Markers 
associated with Tissue homing
Pathway analysis suggested that CD161+ Tconv and CD161+ Treg 
might be more migratory than CD161− populations. Therefore, 

we considered their ability to migrate between different tissues. 
Interestingly, we observed that transcripts encoding the gut-
homing receptors CCR9 and ITGA4 (integrin α4β7 is associated 
with gut homing) (43, 44) were upregulated in CD161+ Tconv and 
CD161+ Treg (Figures 4A,B). Analysis of CCR9 and integrin α4β7 
showed significantly higher percentages of CCR9+ (Figure 4C) 
and integrin α4+β7+ (Figure 4D) cells within CD161+ Tconv and 
CD161+ Treg compared to CD161− populations in blood from 
healthy adults. In healthy children (n = 4-8), percentage CCR9+ 
cells was significantly higher within CD161+ Tconv and CD161+ 
Treg (Figure 4C) compared to CD161− cells, whereas the trend 
towards higher percentage integrin α4+β7+ cells within CD161+ 
Tconv and CD161+ Treg was not significant (Figure 4D).

Retinoic acid (RA), the active form of vitamin A, plays an 
important role in T cell-mediated immune responses and is 
known to induce gut homing of lymphocytes (45). Since both 
CCR9 and ITGA4 are direct targets of RA (46, 47), we hypoth-
esized that CD161+ T cells express higher levels of CCR9 and 
integrin α4β7 because they have been exposed to a RA signal dur-
ing T cell differentiation, whereas CD161− T cells have not been 
previously exposed. To determine whether CD161− T cells can 
upregulate CCR9 and integrin α4β7, PBMC from healthy adults 
were activated in presence of all-trans retinoic acid (ATRA), 
the predominant biological form of RA. Activation of PBMC in 
presence of ATRA and a TCR signal did not significantly alter 
percentage CCR9+ cells, whereas percentage integrin α4+β7+ 
cells was significantly higher within both CD161+ and CD161− 
CD3+CD4+ cells, but no difference was found between CD161+ 
and CD161− cells (Figures S5A,B in Supplementary Material). 
Previous reports suggested that ATRA-induced CCR9 expres-
sion on T cells requires an initial TCR signal (46). To address 
the requirement of a TCR signal, PBMC were exposed to ATRA 
alone. Both CD161+ and CD161− CD3+CD4+ cells significantly 
upregulated CCR9 and integrin α4β7, although CD161+ cells con-
tained significantly more CCR9+ and integrin α4+β7+ cells than 
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FigUre 5 | limited overlap in Tcrβ repertoire between cD161+ and cD161− conventional T cells (Tconv) and regulatory T cells (Treg) from peripheral 
blood. Sorted CD161+ and CD161− Tconv and Treg from two healthy adults were analyzed for TCRβ repertoire by TCRB CDR3 VDJ sequence analysis.  
(a) Pair-wise comparison plots showing average productive frequency of shared (purple) and unique clones (on x- or y-axis) at nucleotide level between the different 
cell populations as indicated. (B) Venn diagrams showing number of shared and unique TCR sequences between the cell populations as indicated. Frequencies 
indicate percentage of unique sequences shared between the two repertoires divided by total sequences for that cell population. (c) Summary graph depicting 
repertoire overlap between different cell populations and was calculated as followed: shared sequences by samples A and B divided by total sequences in samples 
A and B. (D) Summary graphs for clonality and entropy (Shannon entropy) of the sorted cell populations.
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FigUre 6 | cD161+ regulatory T cells (Treg) from the inflamed site are suppressive in an in vitro suppression assay. (a) Representative plots showing 
percentage CD161+ cells within conventional T cells (Tconv) and Treg from paired juvenile idiopathic arthritis (JIA) peripheral blood (PB) and synovial fluid (SF). 
Summary graphs showing percentage CD161+ cells within Tconv and Treg in healthy adults (n = 25) and children (n = 5), JIA PB (n = 13) and JIA SF (n = 27).  
(B) CD161+ and CD161− Treg were sorted from JIA synovial fluid mononuclear cells (SFMC) and cocultured with Tconv labeled with CellTrace Violet at Tconv:Treg 
ratio of 1:0, 1:1, and 2:1 in presence of plate-bound αCD3 (1 µg/ml) and αCD28 (5 µg/ml) for 4 or 5 days. Representative histograms showing CellTrace Violet 
dilution within CD4+ T cells in presence of CD161+ (●) or CD161− (○) at 1:1 ratio or Tconv alone (1:0). Summary graphs showing percentage suppression by 
CD161+  and CD161− Treg at 1:0 (n = 5), 1:1 (n = 5), and 2:1 ratio (n = 4). Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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CD161− cells (P < 0.05; significant difference between CD161+ 
and CD161− cells is not shown in Figure 4F) (Figures 4E,F). One 
explanation for the upregulation of CCR9 and integrin α4β7 on 
CD161− CD3+CD4+ cells after exposure to ATRA could be that 
ATRA alters CD161 protein expression itself. However, we did 
not observe significant changes in percentage CD161+ CD3+CD4+ 
cells in response to ATRA + TCR (Figure S5C in Supplementary 
Material) or ATRA alone (Figure 4G). To exclude any potential 
effects of other cell populations within PBMC, sorted CD161+ 
and CD161− Tconv from healthy adults were exposed to ATRA 
with or without TCR stimulation. We observed similar results for 
expression of CCR9 and integrin α4β7 when cells were exposed to 
ATRA + TCR (Figure S5D in Supplementary Material) or ATRA 
alone (Figure  4H) compared to PBMC cultures. In addition, 
exposure to ATRA did not alter CD161 protein expression within 
sorted cell populations (Figure S5E in Supplementary Material: 
ATRA + TCR; Figure 4I: ATRA alone).

We also analyzed expression of chemokine receptors and inte-
grins, which mediate homing to other tissues within the RNAseq 
dataset. Indeed, both CD161+ Tconv and CD161+ Treg expressed 
significantly higher levels of CCR2, CCR4, CCR5, CCR6, and 
CXCR6 (Figures  2E,F and 4A; Figure S6A in Supplementary 
Material). Furthermore, CD161+ Tconv expressed significantly 

lower levels of CCR7, but significantly higher levels of CXCR3 
and CXCR5 (Figures 2E,G and 4A; Figure S6A in Supplementary 
Material). In addition, CD161+ Tconv expressed significantly 
higher levels of ITGA3, ITGA6, ITGAL, ITGAM, ITGB1, and 
ICAM, whereas CD161+ Treg only expressed significantly higher 
levels of ITGAM (Figure S6B in Supplementary Material). 
Expression of CCR4, CCR5, CXCR3, CXCR6, and integrin α4β1 
has previously been associated with T cell homing to specific 
tissues including lung, skin, liver, and heart (48, 49).

limited Overlap in Tcrβ repertoire 
between cD161+ and cD161− Tconv  
and Treg
Because of the shared transcriptional signatures between CD161+ 
Tconv and CD161+ Treg, we investigated whether CD161+ Tconv 
and CD161+ Treg originated from the same precursor cell. 
Analysis of TCRβ repertoire showed very little overlap between 
CD161+ and CD161− Tconv, and CD161+ and CD161− Treg. In 
addition, there was limited overlap between CD161+ Tconv and 
CD161+ Treg indicating that these populations most likely do not 
originate from the same precursor cell (Figures 5A–C). Clonality 
of CD161+ Tconv, CD161+ Treg, and CD161− Treg was similar 
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to the median clonality (0.075) of the adult TCR repertoire in 
blood, whereas clonality for CD161− Tconv was much lower. The 
Shannon entropy score (normalized measure of diversity of the 
rearrangements) was similar for all populations (Figure 5D).

enrichment of cD161+ T cells at the 
inflamed site, but cD161+ T cells from 
the inflamed site show lower expression 
of gut-homing Markers
Given the pro-inflammatory phenotype of CD161+ T cells, we 
sought to address the relevance of these cells in inflammation. 
We analyzed the frequency of CD161+ Tconv and CD161+ 
Treg in childhood autoimmune arthritis, JIA, and found that 
CD161+ Tconv and CD161+ Treg were significantly enriched in 
JIA SF compared to JIA and HC PB (Figure 6A). The cytokine-
producing phenotype of CD161+ T cells was also maintained 
in JIA PB and SF (Figures S7A,B in Supplementary Material). 
Functionally, both CD161+ and CD161− Treg from JIA SF were 
able to suppress proliferation of Tconv cells in an in vitro sup-
pression assay. There was no significant difference in suppressive 
capacity between the CD161+ and CD161− Treg populations 
(Figure 6B).

Given the observed expression of CCR9 and α4β7 on CD161+ 
Tconv and CD161+ Treg in blood, and the suggested link between 
arthritis and gut inflammation (50–57), we next examined the 
expression of these receptors on CD161+ Tconv and CD161+ 
Treg from patients with autoimmune arthritis. Ex vivo analysis 
showed significantly higher percentages of CCR9+ and integrin 
α4+β7+ cells within CD161+ Tconv (Figure  7A) and CD161+ 
Treg (Figure  7B) compared to their CD161− counterparts in 
blood of JIA patients. However, in SF, CD161+ Tconv contained 
significantly fewer CCR9+ cells compared to CD161− Tconv, and 
percentage CCR9+ cells within both CD161+ Tconv and CD161+ 
Treg was reduced in JIA SF compared to JIA PB (Figures 7A,B). 
The proportion of integrin α4+β7+ cells in CD161+ Tconv and 
CD161+ Treg compared to CD161− populations was still signifi-
cantly higher in JIA SF (Figures 7A,B), although, the proportions 
of integrin α4+β7+ cells within both CD161+ Tconv (Figure 7A) 
and CD161+ Treg (Figure 7B) were also lower in JIA SF compared 
to JIA PB. To determine whether cells from SF can upregulate 
expression of CCR9 and integrin α4β7, SFMC from JIA patients 
were exposed to ATRA in presence or absence of a TCR signal. We 
observed no change in percentage CCR9+ cells within CD161+ and 
CD161− CD3+CD4+ cells upon activation of SFMC in presence 
of ATRA plus a TCR signal, whereas percentage integrin α4+β7+ 
was increased within both CD161+ and CD161− CD3+CD4+ cells 
(Figure S5F in Supplementary Material). Percentage CD161+ 
CD3+CD4+ cells did not significantly change in response to 
ATRA + TCR (Figure S5G in Supplementary Material). Exposure 
to ATRA alone also did not increase percentage CCR9+ cells 
within CD161+ and CD161− CD3+CD4+ cells. Percentage inte grin 
α4+β7+ cells within CD161+ CD3+CD4+ cells might be slightly 
increased with addition of ATRA, whereas there was no change 
in percentage integrin α4+β7+ cells within CD161− CD3+CD4+ 
cells (Figure 7C). There was no significant change in percentage 
CD161+ CD3+CD4+ cells during ATRA treatment (Figure 7D). 

RA can be synthesized in response to inflammation (58–61), but 
the lower levels of CCR9+ and integrin α4+β7+ cells in JIA SF sug-
gest prior imprinting by RA in the gut or at peripheral sites rather 
than during synovial inflammation.

Overlap in Tcrβ repertoire between 
cD161+ and cD161− Tconv and Treg from 
the inflamed site
To determine whether CD161+ and CD161− Tconv and Treg 
from the site of inflammation in JIA patients also represent 
distinct cell populations as observed in blood, we analyzed their 
TCRβ repertoire. Interestingly, there was considerable overlap 
in TCRβ repertoire between both CD161+ and CD161− Tconv, 
and CD161+ and CD161− Treg from JIA SF. In addition, there 
was some degree of overlap (~20%) between CD161+ Tconv and 
CD161+ Treg from JIA SF (Figures 8A–C). PB TCRβ repertoire 
analysis of CD161+ and CD161− Tconv from one JIA patient 
showed very limited overlap (Figures 8B,C). Furthermore, we 
observed limited overlap in TCRβ repertoire between CD161+ 
Tconv or CD161− Tconv between paired PB and SF (Figure 8C). 
However, it should be noted that the number of sequences 
obtained for CD161+ and CD161− Tconv from JIA PB was much 
lower compared to JIA SF. Cell populations from JIA SF had a 
higher clonality score compared to cell populations from JIA PB, 
whereas Shannon entropy scores were similar (Figure 8D). The 
overlap in TCRβ repertoire between CD161+ and CD161− Tconv 
and Treg from the site of inflammation contradicts the limited 
overlap observed in blood from controls and suggests that in an 
inflamed environment CD161 expression might be more labile.

DiscUssiOn

In this study, we identified a shared transcriptional signature 
between CD161+ Tconv and CD161+ Treg from blood despite 
limited overlap in TCRβ repertoire. In addition, we reported 
that CD161+ T cells showed higher expression of tissue-homing 
receptors, including the gut-homing markers CCR9 and inte-
grin α4β7; whereas expression of these markers was lower on 
CD161+ Tconv and CD161+ Treg from the site of inflamma-
tion in autoimmune arthritis. Furthermore, we demonstrated 
increased overlap in TCRβ repertoire between CD161+ and 
CD161− Tconv, and CD161+ and CD161− Treg from the inflamed 
site indicating that CD161 expression might be labile in inflam-
matory conditions.

Both CD161+ Tconv and CD161+ Treg produced cytokines and 
expressed higher levels of transcription factors and chemokine 
receptors associated with Th1 and Th17 cells compared to 
CD161− cells. Furthermore, only CD161+ Tconv and CD161+ 
Treg produced IFNγ in response to IL-12 and IL-18. This might 
have implications for JIA as higher levels of IL-12 (only modest 
increase) and IL-18 were reported in SF from JIA patients with 
active disease compared to patients in remission (62). In addition, 
CD161+ Th17 cells can convert to Th1 cells and thereby remain 
CD161+ (29, 30) explaining both IL-17 and IFNγ production by 
CD161+ T cells and suggesting that CD161 expression may mark 
T cell plasticity.
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FigUre 7 | cD161+ conventional T cells (Tconv) and cD161+ regulatory T cells (Treg) from the inflamed site show lower expression of gut-homing 
receptors. (a,B) Representative plots and summary graphs showing percentage CCR9+ and integrin α4+β7+ cells within CD161− (○) and CD161+ (●) Tconv (a) 
and Treg (B) in juvenile idiopathic arthritis (JIA) peripheral blood (PB) (n = 10) and JIA synovial fluid (SF) (n = 18). (c,D) Synovial fluid mononuclear cells (SFMC) were 
cultured in presence of ATRA as described before (n = 3). (c) Representative plots and summary graphs showing percentage CCR9+ and integrin α4+β7+ cells 
within CD161− (○) and CD161+ (●) CD3+CD4+ T cells at culture conditions indicated. (D) Percentage CD161+ cells within CD3+CD4+ T cells at end of culture. 
Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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FigUre 8 | cD161+ and cD161− conventional T cells (Tconv) and regulatory T cells (Treg) from the inflamed site show sharing of Tcrβ repertoires. 
Purified CD161+ and CD161− Tconv and Treg from juvenile idiopathic arthritis (JIA) synovial fluid (SF) (n = 2) and CD161+ and CD161− Tconv from JIA peripheral 
blood (PB) (n = 1) were analyzed for TCRβ repertoire. Sample JIA PB/SF 1 is a paired sample whereas JIA SF 2 is not. (a) Pair-wise comparison plots showing 
average productive frequency of shared (purple) and unique clones (on x- or y-axis) between the different cell populations from JIA SF as indicated. (B) Venn 
diagrams showing number of shared and unique TCR sequences between the cell populations from JIA PB/SF as indicated. Frequencies indicate percentage of 
unique sequences shared between the two repertoires divided by total sequences for that cell population. (c) Summary graphs depicting repertoire overlap 
(calculated as followed: shared sequences by samples A and B divided by total sequences in samples A and B) between indicated cell populations from JIA SF only 
(left, n = 2), and CD161− and CD161+ Tconv from paired JIA PB/SF 1 (right, n = 1). (D) Summary graphs for clonality and entropy (Shannon entropy) for cell 
populations from JIA SF (black bars, n = 2) and JIA PB (gray bars, n = 1).
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The shared transcriptional signature of CD161+ Tconv and 
CD161+ Treg is in accordance with recent evidence demonstrat-
ing that expression of CD161 defines a common transcriptional 
signature between CD4+ and CD8+ T cells, γδ+ T cells and 
MAIT cells independent of classical T cell lineages (40). These 
data together with the transcriptional signatures reported here 
suggested that CD161+ lymphocytes might originate from 
a common early precursor cell. However, TCRβ repertoire 
analysis of CD161+ and CD161− Tconv and Treg from blood of 
healthy controls demonstrated limited overlap in TCRβ reper-
toire between CD161+ Tconv and CD161+ Treg indicating that 
commitment to CD161 expression is either a very early thymic 
event or can occur in several cell lineages during thymocyte 
development.

Pathway analysis revealed that CD161+ T cells have a migra-
tory phenotype and CD161+ Tconv and CD161+ Treg expressed 
chemokine receptors and integrins associated with tissue hom-
ing. In concurrence with this finding, studies have previously 
reported that CD161 expression by CD4+ and γδ+ T cells is 
involved in trans-endothelial migration. Resting CD4+CD161+ 
T cells, but not CD4+CD161− T cells, were able to adhere and 
migrate through a monolayer of vascular endothelial cells using 
a Transwell chamber system. The trans-endothelial migration of 
CD4+CD161+ T cells was reduced when cells were pre-treated 
with anti-CD161 mAb (63–65). In addition, CD161+ CD4+ T cells 
have previously been detected in gut (26, 66, 67), skin (26), lung 
(68), and synovial tissue (69). These data indicate that CD161+ 
T cells might be more prone to migrate into tissues compared to 
CD161− T cells. Our demonstration of high expression of tissue-
homing receptors supports this concept.

Transcriptome and protein data showed higher expression of 
CCR9 and integrin α4β7, markers associated with gut homing 
(43, 44), on CD161+ T cells from blood. In contrast, CD161+ T 
cells from the inflamed site contained fewer CCR9+ and integrin 
α4+β7+ cells compared to blood and exposure to RA failed to alter 
expression of CCR9, whereas there was a trend toward increased 
integrin α4β7 levels within CD161+ T cells. RA synthesis occurs in 
the gut under homeostatic conditions, but can also be induced at 
systemic sites in response to inflammation (58–61). Upregulation 
of RA synthesis at peripheral sites has been shown to induce 
expression of CCR9 and α4β7 on lymphocytes with subsequent 
gut homing (59, 61). The increased expression of CCR9 and α4β7 
on CD161+ T cells from blood as well as the ability of these cells 
to respond to RA to a greater degree than CD161− T cells sug-
gests that these cells may have received a RA signal during T cell 
priming, either in the gut or the periphery, which resulted in gut 
homing. The enrichment of CD161+ T cells in SF suggests that 
these cells might then migrate towards the synovial joint where 
they contribute to disease pathogenesis. We believe that these 
findings highlight a potential gut–joint axis. Future studies to 
demonstrate whether CD161+ T cells are trafficking from the gut 
to the joint, for example by analyzing overlap in TCRβ repertoire 
from CD161+ T cells from gut tissue and SF of the same patient, 
would be of interest.

In order to retain CD161+ T cells in the joint, our data suggest 
that cells lose their gut-homing phenotype and their ability to 
respond to RA. Possible mechanisms include downregulation 

caused by signals present in SF or following interaction with 
ligands in  vivo. Alternatively, a high antigen dose has been 
reported to limit ATRA-induced CCR9 expression on activated 
CD8+ cells (70). It is very likely that cells are exposed to high 
antigen levels at the inflamed site and this could possibly over-
come the RA-induced expression of gut-homing markers. In 
addition, high expression of integrin β1 was found to prevent 
binding of integrin α4 and β7 (47). High levels of integrin α4β1 
have been observed on SF T cells in rheumatoid arthritis (71), 
which could explain the low expression of integrin α4β7 in 
JIA SF. Interestingly,  CD161+ and CD161− Tconv and Treg are 
highly enriched for integrin α4+β1+ cells in the synovial joint 
(C.L.D. unpublished data).

The maintained cytokine-producing phenotype of both 
CD161+ Tconv and CD161+ Treg in JIA SF is in accordance with 
previously published studies reporting that CD161+ T cells from 
JIA (29, 30, 72) and rheumatoid arthritis (69) patients produce 
multiple pro-inflammatory cytokines. In addition, CD161+ 
Treg from JIA SF showed equal suppressive capacity to CD161− 
Treg indicating that these cells are functionally suppressive. 
Despite the limited overlap in TCRβ repertoire of CD161+ and 
CD161− Tconv and Treg from healthy individuals, we observed 
considerable overlap between CD161+ and CD161− cell popula-
tions from the inflamed site. In addition, CD161+ Tconv and 
CD161+ Treg showed overlap (~20%) in TCRβ repertoire 
suggesting that a small proportion of CD161+ Treg might 
convert to CD161+ Tconv or the other way around within the 
inflammatory environment. In a previous study, we observed 
limited overlap (<10%) between TCR clones of Tconv and Treg 
from JIA SF (33). However, in this study, Tconv and Treg were 
not divided into CD161+ and CD161− cells, potentially explain-
ing the different results. The shared TCRβ repertoire between 
CD161+ and CD161− Tconv, and CD161+ and CD161− Treg 
suggests that the inflamed site might create an environment 
that alters CD161 expression causing a switch between non- 
and pro-inflammatory phenotypes and thereby contributes to 
disease pathogenesis.

Potential limitations of this study are that TCRβ repertoire was 
only analyzed in a limited number of samples, which was partially 
due to the limited availability of paired PB and SF samples from 
JIA patients with sufficient cell numbers for cell sorting of all 
four populations. Therefore, the number of sequences obtained 
for CD161+ and CD161− Tconv from JIA PB was much lower 
compared to JIA SF, and the TCRβ repertoire of CD161+ and 
CD161− Treg from JIA PB was not analyzed due the small vol-
umes of blood obtained from JIA patients and thus insufficient 
number of cells for sorting.

Data reported here suggests that trafficking of CD161+ T cells 
through the gut might be a necessary process in order to shape 
the course of immune responses in for example the synovial joint. 
The functional relevance of this process remains elusive, but the 
gut–joint axis could provide a novel therapeutic target as for 
example maybe a simple change in diet might help restore the 
balance in the gut and impact upon or even resolve symptoms. 
Analysis of TCRβ repertoire suggested that CD161 expression is 
regulated differently in health and disease. Therefore, it will be 
important to define mechanisms controlling CD161 expression. 
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