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microRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene 
expression at the posttranscriptional level. They have crucial roles in organismal develop-
ment, homeostasis, and cellular responses to pathological stress. The lymphatic system 
is a large vascular network that actively regulates the immune response through antigen 
trafficking, cytokine secretion, and inducing peripheral tolerance. Here, we review the role 
of miRNAs in the lymphatic endothelium with a particular focus on their role in lymphatic 
endothelial cell (LEC) plasticity, inflammation, and regulatory function. We highlight the 
lineage plasticity of LECs during inflammation and the importance of understanding the 
regulatory role of miRNAs in these processes. We propose that targeting miRNA expres-
sion in lymphatic endothelium can be a novel strategy in treating human pathologies 
associated with lymphatic dysfunction.
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inTRODUCTiOn

The lymphatic system is a transport network that regulates tissue fluid homeostasis, the absorption of 
macromolecules, and the trafficking of immune cells (1). Lymphatic vessels are made up of a single 
layer of partly overlapping lymphatic endothelial cells (LECs). Embryonic studies on development 
of lymphatic vasculature have identified key transcription factors required for development and 
maintenance of the lymphatic system. The same transcription factors regulate lymphangiogenesis, 
the process of new lymphatic vessel growth from pre-existing vessels, which has crucial roles in 
wound healing, inflammation, infection, and cancer. In addition to transcriptional regulation, post-
transcriptional mechanisms play a key role in LEC responses to inflammation. In particular, several 
microRNAs (miRNAs) have emerged as key determinants of LEC differentiation and inflammatory 
responses. This review will discuss our current understanding of the role of individual miRNAs and 
components of the miRNA biogenesis machinery in LEC immune function.

miRnA-MeDiATeD SiLenCinG

microRNAs are a class of highly conserved, small non-coding RNA (~20–24 nt) that regulate gene 
expression at the posttranscriptional level of all biological pathways including cell development, dif-
ferentiation, and function (2). In mammals, the canonical process of miRNA biogenesis encompasses 
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the generation of primary miRNA (pri-miRNA) transcripts that 
are transcribed by RNA polymerase II in the nucleus. Stem-loop 
structures of pri-miRNA transcripts are processed by the RNAse 
III endonuclease, Drosha, to form hairpin-shaped precursor 
miRNA (pre-miRNA) (3, 4). Following this, pre-miRNA is 
exported into the cytoplasm where it is further processed by 
another RNAse III endonuclease, Dicer, which cleaves off the 
hairpin structure. The resultant double-stranded miRNA is sepa-
rated into two strands with the mature miRNA strand packaged 
onto the miRNA-induced silencing complex that includes an 
Argonaute (AGO) effector protein. The miRNA guides RISC to 
specific target sites, primarily the 3′ untranslated region (UTR) of 
target mRNAs, leading to repression of target gene expression (5). 
Binding sites are generally 8mers or canonical sites that enable 
high miRNA regulation of mRNA expression (6). Due to this 
short target sequence, miRNAs can have multiple targets, and it 
is predicted that 30% of all protein-coding genes is under miRNA 
regulation in mammals (7).

eMBRYOniC DeveLOPMenT AnD 
SPeCiFiCATiOn OF THe LYMPHATiC 
vASCULATURe

Sabin hypothesized the venous origin of the lymphatic system 
(8), which became increasingly supported by developmental 
studies around the beginning of the twenty-first century (9). 
Specific genes for lymphatic differentiation and identity were 
identified, and these included vascular endothelial growth factor 
receptor-3 (VEGFR-3), lymphatic vessel hyaluronan receptor-1 
(LYVE-1), podoplanin, and prospero-related homeodomain 
protein 1 (PROX1) (10). VEGFR-3 is a receptor tyrosine kinase 
for lymphatic-specific VEGF-C and VEGF-D (11). LYVE-1 
is a widely used lymphatic-specific marker, implicated in cel-
lular trafficking and a homolog of the CD44 glycoprotein (12, 
13). Both VEGFR-3 and LYVE-1 are expressed during early 
endothelial cell development and become restricted to LECs at 
later stages. Genetic deletion of VEGFR-3 or VEGF-C in mice 
leads to defective lymphatic vascular development (14, 15). In 
contrast, LYVE-1 gene-deficient mice develop normal lymphatic 
vasculature (16).

The murine lymphatic system begins to form in a subpopulation 
of venous endothelial cells, LEC precursors, at embryonic day (E) 
8.5 that express PROX1, LYVE-1, and VEGFR-3 (14). At E9.75, 
a lymphatic bias signal upregulates PROX1, LEC budding, and 
formation of primary lymph sacs (10). PROX1-deficient embryos 
lack lymphatic vasculature, VEGFR-3, or LYVE-1 expression and 
are embryonic lethal at E14.5 (10). Two upstream transcriptional 
regulators of PROX1, SOX18 (17), and COUP-TFII promote the 
lymphatic bias signal until E13.5 (18, 19). PROX1 and VEGFR-3 
continue to be expressed only in postnatal and adult lymphatic 
vasculature (20). Constant levels of PROX1 are required to 
maintain LEC lineage, which is supported by VEGF-C/VEGFR-3 
signaling (21). Postnatal LECs have lower PROX1 expression 
compared with embryonic lymphatic endothelium, suggesting 
low expression of PROX1 is sufficient to maintain LEC identity 
(22). Additional transcription factors and regulators of lymphatic 

development have been reported, including neuropilin 2 (23, 24), 
FOXC2 (25, 26), integrin-9α (27, 28), NOTCH (29, 30), C-MAF 
(31), and GATA2 (32).

miRnAs AnD enDOTHeLiAL CeLL 
DeveLOPMenT

microRNA biogenesis is essential for vertebrate development, 
and tissue-specificity of miRNAs has been demonstrated in 
angiogenesis (33–36). Loss of Dicer in mice leads to poor vascular 
formation and embryonic lethality (33). The highest expressed 
miRNA in endothelial cells, miR-126 mediates angiogenesis and 
maintenance of vascular integrity (37–40). Deletion of miR-126 
results in vascular leakage, hemorrhaging, and embryonic lethality 
in a subset of mice (38). Surviving mice lived to adulthood with-
out noticeable abnormalities, suggesting additional regulatory 
factors after birth. Accordingly, miR-126 targets sprout-related 
protein-1 (SPRED-1), phosphoinositol-3 kinase regulatory subu-
nit 2 (PIK3R2 also known as P85β), and VCAM-1 in human and 
murine cells (37–39). By targeting VCAM-1, miR-126 can inhibit 
leukocyte adherence and potentially regulate vascular inflamma-
tion (37). SPRED-1 is an intracellular inhibitor of angiogenic and 
MAP kinase signaling, and its repression by miR-126 correlated 
with the increase of pro-angiogenic genes VEGF and fibroblast 
growth factor in mice (38). Additionally, VEGF can induce miR-
132 and promote angiogenesis by suppressing p120RasGAP in 
human vascular endothelial cells (41).

ReGULATiOn OF THe miRnA 
BiOGeneSiS MACHineRY in LeCs

In addition to individual miRNAs, the miRNA biogenesis 
machinery is regulated during activation of LECs. AGO2 levels 
are controlled by miR-132 in human LECs (42). Inhibition of 
miR-132 in activated LECs results in increased AGO2 and the 
anti-angiogenic miR-221, providing further support for the 
function of miR-132 in endothelium. Furthermore, activation 
of TIE-2 by angiopoietin-1 (ANG-1) results in phosphorylation 
of TRBP (43), a DICER co-factor, which facilitates miRNA 
processing (44). Through this mechanism, ANG-1 treatment 
increases levels of miRNAs, including miR-126 and miR-21, 
which could contribute to the antiapoptotic function of ANG-1 
(45, 46) in LECs.

LeC PLASTiCiTY

Altering the levels of PROX1 expression during embryonic, post-
natal, or adult stages can reprogram LEC phenotype into blood 
endothelial cell (BEC) (28, 47, 48). PROX1 deletion results in the 
upregulation of BEC-specific markers in human and murine LECs 
(47). Conversely, BECs can be transcriptionally reprogramed 
by overexpression of PROX1 in vitro, resulting in upregulation 
of VEGFR-3 and podoplanin and suppression of BEC-specific 
transcripts, such as the transcription factor STAT6 (48, 49). These 
studies represent that endothelial cell differentiation is reversible 
and highlight the plasticity of LECs.
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miRnAs AnD LeC LineAGe 
COMMiTMenT

The 3′-UTR of PROX1 is remarkably long (5.4 kb) and conserved 
among vertebrates (50), which suggests PROX1 expression may 
be posttranscriptionally regulated by miRNAs. In contrast, the 
3′ UTR length of SOX18 (585 bp) is short and likely to have less 
miRNA regulation. Profiling of miRNAs in human LECs and 
BECs led to the discovery that lymphatic development can be 
regulated by BEC miRNA signatures (40). Overexpression of 
miR-31 was shown to repress FOXC2 and several other LEC-
signature genes (40). Both miR-31 and miR-181a can target 
PROX1 and as a result repress LEC-specific genes, including 
VEGFR-3, and vascular development in embryonic LECs (22, 
40). Furthermore, signaling from bone morphogenetic protein 
(BMP) 2, a member of the TGF-β family, inhibited Prox-1 
expression and lymphatic differentiation during zebrafish and 
murine development (51). Interestingly, BMP2 signaling upreg-
ulated miRNAs: miR-194, miR-186, miR-99a, miR-92a and also 
miR-31, and miR-181a (51). Knockdown of SMAD4 by siRNA 
downregulated the expression of miR-31 and miR-181a indicat-
ing a possible involvement of BMP2 as a negative regulator of 
LEC identity (51). Recently, miR-466 was shown to suppress 
PROX1 expression and tube formation in human dermal LECs, 
and both miR-466 and miR-181a induced inhibition of corneal 
lymphangiogenesis in rats (52).

LeCs in inFLAMMATiOn AnD 
LYMPHAnGiOGeneSiS

The lymphatic vessels serve as a conduit for transport of leuko-
cytes and antigen-presenting cells to lymph nodes (LNs), which 
orchestrate initiation of adaptive immune response (11). LECs 
express the chemokine ligand, CCL21 that attracts and guides 
the interactions of CCR7-positive T, B, and dendritic cells 
(DCs) to LNs via the afferent lymphatics (53). Not all LECs are 
equal, reportedly, LN–LECs express different levels of CCL21 
forming chemokine gradients that facilitate directional migra-
tion into the LNs through an atypical chemokine receptor, 
CCRL1 (54). The role of LECs in immune regulation has been 
demonstrated in a series of papers showing LECs contributing 
to the induction of peripheral tolerance of DC and T cells. In 
human LECs, tumor necrosis factor alpha (TNFα) induces 
vascular and intercellular cell adhesion molecule 1 (VCAM-1, 
ICAM-1) and E-selectin, facilitating adherence of DCs to the 
endothelium (55). TNFα-stimulated lymphatic endothelium 
can interact with DCs via cell-to-cell contact to suppress 
human DC maturation and function by an ICAM-1–Mac-1 
(CD11b) interaction (56). Notably, murine LECs lack expres-
sion of co-stimulatory ligands but can express the inhibitory 
checkpoint ligand, programed cell death ligand-1 (PD-L1) 
to negatively regulate CD8+ T cells (57–60). LECs can also 
express MHC II in  vivo and may induce tolerance of CD4+ 
and CD8+ T cells either by acting as an antigen reservoir for 
DCs or through cross-presentation of antigens (60–64). The 
mechanism of antigen transfer from LEC to DCs and whether 

LECs can induce similar levels of tolerance as DCs remains to 
be further understood.

During inflammation, the lymphatic system becomes activated 
and lymphatic remodeling is induced in both peripheral tissues 
and the draining LN (65). The increase in lymphangiogenesis may 
aid in the resolution of inflammation. Inflammation-induced 
lymphangiogenesis is commonly regulated by pathways involv-
ing VEGF-C/VEGFR-3 and VEGF-A/VEGFR-2 signaling (11). 
Studies in mice demonstrated that lymphangiogenesis is driven 
by increased VEGF-C, VEGF-D, and VEGF-A from macrophages 
during acute skin inflammation and chronic airway infection, 
reported to promote antigen clearance and prevent lymphedema 
(66, 67). Lymphatic vessels are impaired during chronic skin 
inflammation, which can be alleviated by the overexpression 
of VEGF-C (68). Interestingly, VEGF-C stimulation in skin 
inflammation instigated LECs to produce anti-inflammatory 
prostaglandin synthase, which led to higher levels of IL-10 on 
DCs leading to suppressed DC maturation (69). B cells can 
enhance the growth of LN lymphatic vasculature through VEGF 
secretion and increase DC migration to the LN (70). However, 
interferon-gamma (IFN-γ) secretion from T cells suppressed 
growth of LN-lymphatic vasculature in vivo and downregulated 
the expression of PROX1, LYVE-1, and podoplanin in  vitro in 
a JAK/STAT-dependent mechanism (71). IFN-γ knockout mice 
express a higher baseline of lymphatic vasculature in the LN. 
Expression of PROX1, VEGFR-3, and LYVE-1 are also downreg-
ulated during acute skin inflammation (72, 73). In human dermal 
LECs, transforming growth factor-β (TGF-β) or TNFα stimula-
tion results in loss of PROX1 and LYVE-1 expression (74, 75). 
In contrast, studies in mice suggest that NF-κB induces PROX1 
and VEGFR-3 in a lipopolysaccharide (LPS)-induced peritonitis 
model, increasing sensitivity of pre-existing lymphatic vessels to 
VEGF-C and VEGF-D-expressing leukocytes (76). Additionally, 
IL-3 in LECs can induce PROX1 and podoplanin expression and 
maintain the differentiated LEC phenotype in  vitro (77). LECs 
are also a major source of IL-7 in  vivo which is required for 
remodeling and homeostasis of the LN microenvironment (78).

miRnAs in LeCs DURinG inFLAMMATiOn 
AnD inFeCTiOn

Studies have demonstrated miRNAs in the regulation of inflam-
mation including miR-146a/b, miR-155, and miR-132 in both 
immune and non-immune cell types (79–82). Several activities 
have been reported for miR-155 across the immune system, 
including Th1 differentiation of murine CD4+ T cells by inhibit-
ing IFN-γ signaling (83) and production of immunoglobulin 
class-switch differentiation of B cells by targeting transcription 
factor PU.1 (84). A wide range of inflammatory stimuli induce 
miR-155 expression including LPS, poly (I:C), IFN-β, and TNFα 
in human and murine macrophages, monocytes, and endothelial 
cells (79, 80, 85, 86). In addition, miR-155 regulates angiogenesis 
and inflammation by negatively regulating ETS-1, upstream of 
VCAM-1, and angiotensin II type 1 receptor (87).

microRNA profiling of rat mesenteric LECs treated with 
TNFα for 2, 24, and 96 h indicated a distinct miRNA signature at 
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FiGURe 1 | The effect of inflammation on the microRnAs (miRnA) landscape of lymphatic endothelial cells (LeCs). (A) Under homeostatic conditions, 
miRNAs, including miR-126, miR-21, and miR-132, contribute to normal LEC function. Lymphatic identity is maintained through suppression of the blood endothelial 
cell (BEC)-enriched miRNAs miR-31 and miR-181a, which can repress LEC-specific genes, including the master LEC fate regulator PROX1 and the receptor 
tyrosine kinase vascular endothelial growth factor receptor-3 (VEGFR-3). (B) During inflammation, a set of immunologically active miRNAs (miR-155, miR-132, 
miR-146a) are induced and shape LEC immune responses. In addition, LEC-specific genes are downregulated and miRNAs, including miR-9, miR-1236, and 
miR-K12-11, a viral ortholog of miR-155, contribute to the loss of LEC identity. It is likely that other miRNAs may modulate immune gene expression and lineage 
plasticity in LECs.
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various time points (88). Several miRNAs involved in angiogen-
esis, endothelial sprouting, and cell migration were upregulated, 
while miRNAs associated with cell survival and proliferation 
were downregulated at 24 and/or 96  h. Of those upregulated, 
miR-9 was shown to directly target NF-κB, downstream of TNFα 
signaling, and regulate TNFα-mediated inflammatory mecha-
nisms. In addition, overexpression of miR-9 increases VEGFR-3 
expression and tube formation, indicating a possible role in 

lymphangiogenesis. VEGFR-3 was also shown to be regulated 
by a mirtron miR-1236, arising from a spliced-out intron that 
is processed independently of Drosha, in human LECs (89). 
IL-1β can induce miR-1236 and downregulate VEGFR-3 protein 
which is similarly reported in inflammatory lymphangiogenesis. 
Although miR-1236 is lowly expressed in human LECs, it may be 
upregulated during inflammation-induced lymphangiogenesis to 
control the expression of VEGF-C/VEGFR-3 signaling.
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TABLe 1 | microRnAs (miRnAs) in the lymphatic endothelium.

miRnA Primary role Function and target Model system Reference

miR-126 Angiogenesis Highest expressed miRNA in endothelial cells, which regulates 
angiogenesis through SPRED1 and VCAM-1

Human primary ECs, murine ECs Wang et al. (38), 
Harris et al. (37), and 
Fish et al. (39)

Inflammation

miR-132 Angiogenesis Acts as an angiogenic switch by targeting p120RasGAP Human umbilical vein ECs Anand et al. (41)

Inflammation Regulates anti-viral immunity through EP300 Kaposi’s sarcoma herpesvirus 
(KSHV)-infected lymphatic 
endothelial cell (LECs)

Lagos et al. (82)

miR-9 Inflammation Regulates vascular endothelial growth factor receptor-3 (VEGFR-3), 
lymphangiogenesis, and NF-κB signaling

Rat LECs and human primary LECs Chakraborty et al. (88)

miR-1236 Inflammation Induced by IL-1β and regulates VEGFR-3 and lymphangiogenesis Cultured human dermal LECs Jones et al. (89)

miR-181a Lineage 
commitment

Blood endothelial cell (BEC)-expressed miRNA, which inhibits PROX1 in 
LEC development

Murine LECs Kazenwadel et al. (22)

miR-31 Lineage 
commitment

BEC-expressed miRNA which inhibits PROX1 and FOXC2 in LEC 
development

Human primary LECs, xenopus, 
and zebrafish 

Pedrioli et al. (40)

miR-466 Lineage 
commitment

Inhibits PROX1 and tube formation HDLECs and corneal lymphatic 
vessels

Seo et al. (52)

miR-K12-6, 
miR-K12-11 
(ortholog of 
miR-155)

Lineage 
commitment

Viral miRNAs that target c-MAF contributing to virus-induced LEC 
reprograming

KSHV-infected LECs Hansen et al. (31) and 
Hong et al. (91)

miR-146a/b Inflammation Early-response miRNA involved in TLR4 signaling and innate immunity KSHV-infected LECs Lagos et al. (82)

miR-155 Inflammation Targets ETS-1 upstream of endothelial adhesion molecules such as 
VCAM-1

Human umbilical vein ECs Zhu et al. (87)

Angiogenesis

miR-221/
miR-222

Angiogenesis Targets transcription factors ETS-2 and ETS-1, respectively, regulating EC 
motility

Human primary LECs, KSHV-
infected LECs

Wu et al. (93)

LeSSOnS FROM KAPOSi’S SARCOMA 
HeRPeSviRUS (KSHv)

Our understanding of gene regulation in LECs has advanced 
significantly by studying infectious diseases that directly 
involve LECs. Kaposi’s sarcoma (KS) is a tumor from lymphatic 
endothelial origin and is the most common cancer in untreated 
HIV-positive patients (90). KSHV infects both LECs and BECs 
to induce transcriptional reprograming giving rise to mixed phe-
notypes of LECs and BECs (91, 92). Phenotypically, KS is most 
similar to LECs and occurs at sites rich in LECs such as skin, LN, 
and mucosa (92). KSHV infection of human LECs induces an 
early antiviral miRNA response from miR-132 and miR-146a and 
inhibition of these miRNAs suppressed viral gene expression (82). 
Overexpression of miR-132 negatively regulates inflammation by 
impairing the expression of IFN-β and interferon-stimulated gene 
15. Upon KSHV infection, miR-132 targets the transcriptional 
co-activator EP300 and downregulates the interferon response, 
increasing viral gene expression. In addition, KSHV can influ-
ence endothelial cell motility by downregulating the miR-221/
miR-222 cluster and upregulating miR-31 (93). Whether upregu-
lation of miR-31 can regulate PROX1 during KSHV infection is 
unknown. A KSHV latent gene, kaposin B was found to stabilize 
PROX1 mRNA and drive lymphatic reprograming of BECs (50). 
An additional target of KSHV infection is the transcription factor 
c-MAF, which represses BEC-specific identity in human LECs 

(31, 91). Downregulation of MAF occurs early and is maintained 
throughout viral infection. The miR-155 KSHV ortholog, miR-
K12-11 (94), was shown to regulate MAF in human LECs (31). 
Interestingly miR-155 has been shown to suppress MAF expres-
sion in murine CD4+ T cells (95).

COnCLUDinG ReMARKS  
AnD FUTURe DiReCTiOnS

Our understanding of miRNAs in LEC activation has greatly 
increased from recent reports but this area remains understudied 
(Figure 1; Table 1). LEC plasticity is under miRNA regulation 
that allows the rapid response of lymphatic endothelium to 
inflammatory and angiogenic stimuli. LECs display heterogene-
ity, and there are different types of lymphatic vessels and LECs 
that have organ-specific functions (96). Studying miRNAs in 
certain types of lymphatic vessels and niches, such as the skin, 
LN, or subpopulations within these contexts, can introduce new 
tools to understand the different functions that LECs regulate in 
these tissues.

Targeting miRNAs such as miR-126, miR-9, and miR-132 
(Table 1) presents a novel opportunity to deliver localized therapy 
for treating disease. This can be either to inhibit or mimic the 
function of the miRNA. Anti-miR-132 was shown to inhibit angi-
ogenesis and decrease tumor burden in a mouse model of human 
breast carcinoma (41). Antagonism of miR-122 to treat hepatitis 
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