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microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that 
regulate a wide range of biological processes by post-transcriptionally regulating gene 
expression. Thousands of these molecules have been discovered to date, and multiple 
miRNAs have been shown to coordinately fine-tune cellular processes key to organismal 
development, homeostasis, neurobiology, immunobiology, and control of infection. The 
fundamental regulatory role of miRNAs in a variety of biological processes suggests 
that differential expression of these transcripts may be exploited as a novel source of 
molecular biomarkers for many different disease pathologies or abnormalities. This has 
been emphasized by the recent discovery of remarkably stable miRNAs in mammalian 
biofluids, which may originate from intracellular processes elsewhere in the body. The 
potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated 
for various types of cancer. More recently, however, attention has focused on the use 
of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for 
example, human tuberculosis caused by infection with Mycobacterium tuberculosis, 
sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these 
developments and discuss prospects and challenges for translating circulating miRNA 
into novel diagnostics for infectious disease.
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wHAT MAKeS A GOOD BiOMARKeR?

According to the working group of the National Institutes of Health Director’s Initiative on Biomarkers 
and Surrogate Endpoints, a biomarker is “a characteristic that is objectively measured and evaluated 
as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses 
to a therapeutic intervention” (1). A simpler but broader definition of biomarkers as objective, 
quantifiable characteristics of biological processes has also been emphasized by Strimbu and Tavel 
(2). The ideal biomarker has high specificity and sensitivity, is detectable by minimally invasive 
sampling procedures, and its concentration should be indicative of a disease state (1–5). Diagnostic 
biomarkers can be used to evaluate disease status, prognostic biomarkers are informative of disease 
outcome, and predictive biomarkers help determine treatment efficacy when experimental groups 
are compared to controls (4, 6).

In recent years, high-throughput sequencing (HTS) technologies have enabled simultaneous 
screening of thousands of potential transcriptional biomarkers, which facilitates both discovery of 
specific host disease expression biosignatures (7–9) and new insight on host–pathogen interaction 
and immunobiology (10–12). Host biomarkers may also help evaluate vaccine efficacy in both humans 
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and domestic animals (13, 14), as well as provide information on 
the molecular mechanisms underlying latent infections (15) and 
drug resistance in pathogens (16).

CANONiCAL BiOGeNeSiS AND 
iMMUNOLOGiCAL FUNCTiONS OF 
microRNAs (miRNAs)

The role of miRNAs in post-transcriptional regulation of gene 
expression was discovered in 1993 through analyses of the 
lin-4 locus in the roundworm Caenorhabditis elegans. Two 
contemporaneous studies showed that an RNA transcript from 
lin-4 repressed translation of the lin-14 messenger RNA (mRNA), 
thereby exerting temporal developmental control on a diverse 
range of cell lineages (17, 18). Since then, it has been demon-
strated that eukaryotic organisms contain hundreds to thousands 
of these small non-coding regulatory RNA molecules (19). Many 
miRNAs are evolutionarily conserved across divergent metazoan 
taxa (20, 21), highlighting the extensive roles that these small 
RNAs play in the regulatory networks and pathways governing 
complex biological processes such as cell fate specification, and 
innate and adaptive immunity (22–24).

Canonical biogenesis of miRNA in mammalian cells starts 
with transcription of a long RNA molecule called the primary-
miRNA (pri-miRNA) by RNA polymerase II (25). Within the 
nucleus, pri-miRNA undergoes cleavage by the microprocessor 
complex, which consists of a Drosha ribonuclease III and the 
RNA-binding DGCR8 microprocessor complex subunit protein 
(26, 27). The intermediate product is a precursor-miRNA (pre-
miRNA) hairpin of ~70 nucleotides in length that is transported 
to the cytoplasm by the exportin-5 protein (28). An additional 
cleavage occurs near the pre-miRNA terminal loop through the 
action of endoribonuclease Dicer (29). The final product is an 
18–25 nucleotide double-stranded RNA with short 3′ overhangs 
that binds to argonaute (AGO) proteins and is loaded into the 
RNA-induced silencing complex (RISC) by the RISC-loading 
complex (RLC), which is formed by endoribonuclease Dicer, RLC 
subunit TARBP2, and AGO1–4 proteins (30). One strand of the 
RNA duplex, the mature miRNA, remains within the RLC and is 
used as a guide by the RISC for complementary nucleotide base 
pairing with a target mRNA (31). The second strand is known as 
miRNA* (or passenger strand) and is normally degraded after its 
release from the RLC. Further details on canonical biogenesis (32) 
and the processes driving mature miRNA strand selection (33, 
34) have been extensively reviewed elsewhere. The development 
of HTS technologies has facilitated high-resolution miRNA-
sequencing (miRNA-seq), revealing the existence of multiple 
functional mature variants that are termed isomiRs (35–37). In 
addition, non-canonical pathways have been identified as alter-
native mechanisms of miRNA biogenesis (38, 39).

Dysregulation of intracellular miRNAs during disease was first 
reported in 2002, with evidence that miR-15 and miR-16 were 
tumor suppressors for chronic lymphocyte leukemia (40). Shortly 
afterward, it was shown that higher let-7 expression levels were 
associated with a better prognosis for lung cancer survival (41). 
Notably, the cancer research literature has highlighted miRNAs as 

powerful classifiers for disease onset and patient survival (42–45), 
as well as tumor driver mutations (46–48). These, and several 
other studies that followed, laid the groundwork for research that 
focuses on exploring the potential of miRNAs as biomarkers and 
therapeutic gene targets.

In silico analyses suggest that at least two-thirds of mamma-
lian mRNAs are regulated by miRNAs (22, 23, 49); therefore, it 
is perhaps unsurprising that these non-coding transcripts have 
emerged as important molecular fine-tuners of the host immune 
response during infection (50–54). For example, multiple 
miRNAs are known to regulate the toll-like receptor 4 (TLR-4) 
pathway in the host innate immune response (23, 55, 56) and 
are also essential for optimal T cell activation and differentiation 
(57–62). More specifically, mice lacking miR-155 show dimin-
ished immune responses against infections with Citrobacter 
rodentium (63), Salmonella typhimurium (64), and Listeria 
monocytogenes (65). miR-155 has also been found to be increased 
in peripheral monocytes of chronic hepatitis C (CHC)-infected 
patients following in  vitro stimulation with lipopolysaccharide 
(LPS) (66), and in murine bone marrow-derived macrophages 
stimulated with LPS plus interferon-γ (IFN-γ) (67). miR-146 is 
another important miRNA that exhibits increased expression in 
immune cells following TLR activation by bacterial pathogens 
(68). Moreover, members of the miR-146 family were found to 
form distinct expression profiles in human monocyte-derived 
macrophage cells infected with Mycobacterium tuberculosis (69) 
and M. bovis-infected bovine alveolar macrophages (70). The 
immunoregulatory roles of miRNAs in different cells involved 
with the host response to bacterial infections has been compre-
hensively reviewed (71, 72).

Collectively, these studies highlight the importance of 
post-transcriptional regulation of gene expression mediated by 
intracellular miRNAs in mammalian infection and immunity 
processes. A growing number of public databases provide infor-
mation on miRNA–disease relationships (73), and informative 
reviews on this topic have been published (22, 23, 49, 52, 74).

Circulating miRNAs
So far, we have shown examples of intracellular miRNAs with 
immunological roles; however, there is a growing consensus that 
immune and non-immune cells routinely and actively release 
miRNAs into extracellular environments (75–77). Commonly 
associated with RNA-binding proteins, high-density lipoprotein 
particles or enclosed within lipid vesicles (Figure  1), miRNAs 
have been found to be extremely stable in extracellular fluids of 
mammals, such as blood plasma, serum, urine, saliva, and semen 
(78–80). miRNAs released by a human THP-1 monocyte cell 
line may be taken up by recipient cells in an alternative means 
of cell-to-cell communication (81). Wang and colleagues have 
shown that nucleophosmin, an RNA-binding protein involved 
with nuclear export of ribosomes, mediates export and protection 
of circulating miRNAs against degradation in several human cell 
lines (HepG2, A549, T98, and BSEA2B) immediately after serum 
deprivation, which is suggestive of an active response to stress 
(82). Active release of extracellular circulating miRNAs supports 
the hypothesis that they may act as “hormones” in cell-to-cell 
communication (82, 83).
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FiGURe 1 | A tuberculosis lung granuloma demonstrates how specific circulating microRNAs (miRNAs) may arise during an infection process. 
Mycobacterial pathogen-associated molecular patterns are recognized by toll-like receptors (TLRs) and other pattern recognition receptors, which result in the 
upregulation of primary-miRNAs in macrophages. These transcripts are subsequently cleaved in the nucleus and cytoplasm by Drosha and Dicer, respectively, 
resulting in 21–25 nucleotide mature miRNAs that act to fine-tune intracellular immune processes. Specific pathways and components of the immune response may 
be regulated by different miRNA subsets. Concurrently, the surrounding T lymphocytes involved in granuloma formation/maintenance upregulate T cell subset-
specific miRNAs as a means of modulating the type of adaptive immune response. Mature miRNAs generated in macrophages and T cells may also be released into 
the extracellular environment within exosomes, heterogeneous microvesicles, or in association with high-density lipoprotein, LDL, or other protein complexes. 
Subsequently, by means not yet fully understood, these extracellular miRNAs move from local sites of infection to the circulatory system. This process can therefore 
give rise to infection-specific circulating miRNA expression signatures that can readily be accessed from multiple biological fluids (e.g., serum, plasma, or sputum).
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Further work is required to fully understand how the release of 
extracellular miRNAs and uptake by target cell populations influ-
ences biomolecular signaling networks. Regardless of their precise 
functions, the main utility of miRNAs in the field of diagnostics 
and prognostics is based on the premise that different miRNA 
expression signatures are linked to different pathological states 
(Figure 1). With this in mind, it is noteworthy that a number of 
infectious diseases have been the focus of recent studies to assess 
circulating miRNAs as biomarkers.

CHALLeNGeS FOR ACCURATe 
DeTeCTiON OF CiRCULATiNG  
miRNAs iN BiOFLUiDS

The observation that extracellular nucleic acids (both DNA and 
RNA) are present in vertebrate bodily fluids was first recorded 
almost 70  years ago (84), but their potential as biomarkers for 

disease states was not fully realized until the 1990s (85). In turn, 
detection of extracellular miRNAs was first reported in 2008 
when placental miRNAs were observed in maternal plasma (86). 
In the same year, circulating miRNAs were also described in 
blood serum (87, 88) and plasma samples collected from cancer 
patients (88). In this regard, the potential of circulating miRNAs 
as non-invasive diagnostic and prognostic biomarkers of disease 
status in biological fluids was first realized in the field of cancer 
biology, particularly because techniques for cancer diagnosis and 
prognosis still primarily rely on invasive tissue biopsies (89–91), 
and the establishment of new circulating protein biomarkers 
has not been able to meet the demand (92). The marked stabil-
ity of circulating miRNAs in body fluids, which are still viable 
after repeated cycles of freeze–thawing and long-term storage 
of frozen samples (88, 93–95), makes them attractive biomarker 
candidates for diagnosis or prognosis of complex diseases. 
However, the main challenges for profiling circulating miRNAs 
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are biases introduced during pre-analytical and analytical steps 
that are described below.

Biological Fluids and RNA extraction
Analysis of circulating miRNAs is normally performed on 
peripheral blood plasma or serum, and to a lesser extent on 
sputum, urine, breast milk, saliva, semen, and cerebrospinal fluid 
(CSF). The choice of starting material can significantly impact the 
expression profiles that are generated; in particular, because each 
biofluid can be enriched for a distinct set of miRNAs (78, 96, 97).

The miRNA fraction in biological fluids typically represents 
a very low proportion of total RNA. Investigations using serum 
and plasma samples have demonstrated that different protocols 
for pre- and post-storage sample processing can impact the 
quality of subsequent RNA extraction (96, 98, 99). For example, 
collection of peripheral blood in heparin-coated tubes can inhibit 
downstream laboratory steps that are based on polymerase chain 
reaction (PCR) protocols (100, 101). In addition, special atten-
tion is required to avoid contamination with intracellular miR-
NAs originating from blood components such as platelets and 
erythrocytes, which can introduce significant bias in circulating 
miRNA expression profiles (96, 98, 99, 102). It is also important 
that circulating miRNAs with low GC content are not lost when 
performing phenol-based RNA isolation, a problem that can be 
overcome by using small RNA extraction kits customized for 
specific biofluids (103).

expression Profiling Methods for 
Circulating miRNAs
The biochemistry and molecular structure of miRNAs can cause 
difficulties for accurate transcriptional profiling and quantifica-
tion (104, 105). Consequently, various established techniques 
for mRNA detection have been modified to improve miRNA 
detection, irrespective of tissue type (106–108).

Reverse transcription quantitative real-time PCR (RT-qPCR) 
is currently the most widely used method for miRNA profiling: 
it provides excellent sensitivity, high sample throughput, and the 
capacity for moderate multiplexing of targets (109). A number 
of strategies can be used with miRNA RT-qPCR, including (1) 
reverse transcription using stem loop primers as implemented in 
TaqMan™ MicroRNA Assays (110); (2) incorporation of locked 
nucleic acids (LNAs) (111) in primer sequences to reduce melt-
ing temperature (Tm) differences in primer–target duplexes, as 
used for miRCURY LNA™ Universal RT microRNA PCR; and 
(3) approaches that enzymatically incorporate a poly(A) tail to 
miRNAs prior to the reverse transcription step, which facilitates 
hybridization with a poly(T) sequence linked to a universal 
reverse primer (109). Regardless of these technical develop-
ments, RT-qPCR-based methods cannot identify novel miRNAs 
and, importantly, special attention is required for the design of 
standardized internal controls (104, 112–114).

Hybridization-based methods normally rely on DNA capture 
probes that are immobilized on a microarray platform such 
that fluorescent signal intensities can be quantified to estimate 
expression of individual miRNAs. Commercially available and 
cost-effective microarray assays include miRCURY LNA™ 

microRNA Arrays (Exiqon), GeneChip® miRNA Arrays 
(Affymetrix), and SurePrint miRNA Microarrays (Agilent) 
(115). However, due to lower specificity and reduced dynamic 
range compared to other methods, microarrays often require 
additional validation via RT-qPCR (116, 117). A relatively 
new hybridization-based method that does not require a PCR 
amplification step or direct labeling of target miRNAs is the 
nCounter® miRNA Expression Assay developed by NanoString 
Technologies (118). This approach has comparable sensitivity to 
RT-qPCR, is high-throughput, and also facilitates multiplexing 
of up to 800 distinct miRNA variant targets in the same assay. 
miRNA profiling in serum (119), peripheral blood (120), and 
aortic tissue (121) provide examples of studies that have used 
this technology. However, like RT-qPCR, it is again important to 
note that hybridization-based profiling methods cannot be used 
to identify novel miRNA variants.

Unlike the methods discussed above, HTS technologies 
in the form of miRNA-seq can be used for discovery-focused 
global expression profiling of the whole miRNA transcriptome 
(miRNome) from a particular biological sample (122). In addi-
tion, miRNA-seq approaches can identify with high accuracy, 
novel mature miRNAs, sequence variants (specific isomiRs or 
particular miRNA family members), and also pre-miRNAs (37, 
123, 124). The rapid adoption of HTS for miRNA profiling has 
been driven by significant increases in sample throughput, a wide 
range of laboratory methods for different applications, and a 
thriving ecosystem of open-source software for data analysis and 
interpretation (9, 125, 126). However, it is important to note that 
technical biases inherent to different sequencing technologies 
(e.g., Illumina®, ABI SOLiD®, and Ion Torrent™) may generate 
reads that are not bona fide miRNAs (5, 127, 128).

Finally, in addition to established methods described here, 
emerging biosensor approaches for miRNA profiling have been 
reviewed in detail elsewhere and are beyond the scope this review 
(129).

Data Normalization
Transcriptomics experiments are characteristically “noisy,” there-
fore, appropriate normalization is critical to minimize technical 
variation that may compromise interpretation of results. A range 
of methods have been successfully used for this purpose in 
mRNA and intracellular miRNA transcriptomics. Manufacturers’ 
instructions for data normalization vary greatly depending on the 
platform used, and a consensus on how circulating miRNA data 
should be normalized is yet to emerge (114, 130).

There is significant debate concerning the optimal strategy 
for normalization of circulating miRNAs with RT-qPCR assays. 
Methods currently used include (1) normalization to small 
nucleolar RNAs as reference genes, (2) normalization to an 
external spike-in synthetic oligonucleotide, (3) normalization to 
specific miRNAs, and (4) the global mean normalization method 
(131). Most studies report the use of small nucleolar RNA genes 
as reference genes, such as the small nucleolar RNA, C/D box 
44 gene (SNORD44), the small nucleolar RNA, C/D box 48 gene 
(SNORD48), and the RNA, U6 small nuclear 6, pseudogene 
(RNU6-6P). However, there is growing evidence that these genes 
may be unsuitable due to significant variability in expression 
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among individual serum samples (130, 132, 133). Use of a synthetic 
RNA spike-in as a reference gene has also been criticized because 
this method only accounts for specific components of technical 
variation introduced, for example, during RNA extraction or 
reverse transcription (134). When identifying circulating miR-
NAs to serve as reference genes, normally those that do not vary 
significantly among biological replicates are selected. Marabita 
et al. (114) advise caution when selecting endogenous reference 
controls and recommend the use of data-driven approaches 
for this purpose. The global mean normalization method does 
not require a reference gene and appears to be the most robust 
option but should only be applied when simultaneously profiling 
hundreds of miRNAs (131).

Conflicting reports on the efficiency of methods for statistical 
normalization are also problematic for miRNA-seq data. Tam and 
collaborators evaluated a range of available methods and recom-
mended the use of trimmed mean of M-values (TMM) (135) and 
upper quartile scaling (136) for count normalization in compre-
hensive miRNA profiling studies (137). Conversely, Garmire and 
Subramaniam (138) did not support the use of TMM but strongly 
recommended the application of locally weighted regression (139, 
140) or quantile normalization (QN) (141) instead. However, a 
parallel benchmarking study published soon afterward came to 
the opposite conclusion, recommending TMM over QN (142). 
Finally, a rebuttal to Garmire and Subramaniam highlighted 
several drawbacks with their data analysis and evaluation of the 
TMM method (143).

In summary, it is imperative that rigorous independent 
benchmarking studies are performed to systematically evaluate 
normalization methods proposed for miRNA profiling. With 
these challenges in mind, in the next section we review studies 
that have assessed the usefulness of circulating miRNAs as bio-
markers for selected bacterial and viral infections.

DiFFeReNTiAL eXPReSSiON OF 
CiRCULATiNG miRNAs iN SPeCiFiC 
iNFeCTiOUS DiSeASeS

Human Tuberculosis (TB)
Human TB, caused by M. tuberculosis, continues to be a significant 
global health problem with 9.6 million new cases and 1.5 million 
deaths in 2014 (144). Classical methods for TB diagnostics in 
clinical settings include smear microscopy and mycobacterial 
culture. The former is the most used test in middle- and low-
income countries, but its sensitivity is highly variable (20–60%), 
and the latter can take up to 8 weeks to yield results (145).

Diagnostic tests based on molecular methods represent a 
significant improvement in turnaround time and accuracy. 
Nonetheless, most molecular-based platform assays in use today 
are costly and have not been designed to be used in lower tiers of 
the health-care system (145, 146). According to Pai and Schito, 
one of the highest priorities for TB diagnostics is the development 
of a point-of-care non-sputum-based test capable of detecting all 
forms of TB, including extra pulmonary TB. Improved methods 
for distinction between active and latent TB are also urgently 
required (146).

Human TB was one of the first infectious diseases to be targeted 
for development of new diagnostics based on circulating serum 
or plasma miRNAs. Using a human miRNA microarray platform 
(Exiqon miRCURY™ LNA), Fu and colleagues were able to 
detect 92 differentially expressed miRNAs in serum from patients 
with active pulmonary TB compared to healthy individuals (147). 
However, it is important to note that an appropriate correction 
procedure for multiple statistical tests was not used in this study. 
Notwithstanding this, RT-qPCR validation demonstrated that 
circulating miR-93* and miR-29a were significantly upregulated 
in serum from the TB cases. In addition, miR-29a was also shown 
to be differentially expressed in sputum samples from TB patients 
compared to healthy controls (HC). A follow-up study using the 
same miRNA expression microarray, but with sputum samples 
from active pulmonary TB cases and HC, also found that miR-
29a was upregulated in sputum from TB patients (148). However, 
inconsistencies were observed between the results obtained for 
circulating serum miRNAs by Fu and coworkers and those 
obtained by Yi and colleagues for sputum miRNAs. In particular, 
the 2 sets of 10 miRNAs that showed the most increased or 
decreased expression in TB patients were different for each body 
fluid (147, 148).

Parallel work using a different miRNA expression platform 
(Applied Biosystems TaqMan® Low Density Array Human 
MicroRNA Panel) and a comparable statistical approach iden-
tified a total of 97 differentially expressed miRNAs in serum 
samples from active pulmonary TB patients compared to HC 
(149). Following RT-qPCR validation and receiver operating 
characteristic (ROC) curve analysis, a panel of three miRNAs 
(miR-361-5p, miR-889, and miR-576-3p) was shown to dif-
ferentiate TB patients from HC with moderate sensitivity and 
specificity. Further evaluation of the specificity of this panel of 
miRNAs for diagnosis of pulmonary TB was performed using 
RT-qPCR analysis of serum from pediatric patients infected with 
enterovirus, varicella-zoster virus, or Bordetella pertussis. All 
three miRNAs exhibited significant differences between the TB 
patient group and the other microbial infection groups, leading 
Qi and colleagues to propose this set of miRNAs as the starting 
point for a biosignature of human TB (149).

A comparative study of the diagnostic potential of a small 
panel of circulating serum miRNAs for pulmonary TB, lung 
cancer, and pneumonia was undertaken by Abd-El-Fattah et al. 
(150). Using RT-qPCR, these workers examined expression of 
four miRNAs (miR-21, miR-155, miR-182, and miR-197) in 
serum from pulmonary TB, lung cancer, and pneumonia patient 
groups compared to a HC group. They observed that all four 
miRNAs were significantly differentially expressed between 
lung cancer patients and HC, three miRNAs (miR-21, miR-155, 
and miR-197) distinguished pneumonia patients from controls, 
but only one miRNA (miR-197) was significantly differentially 
expressed between the pulmonary TB group and the control 
group.

Two independent miRNA-seq studies of circulating serum 
miRNAs for diagnosis of active pulmonary TB revealed distinct 
panels of miRNAs as potential expression biomarkers of disease. 
The first study (151) showed that six circulating serum miR-
NAs (miR-378, miR-483-5p, miR-22, miR-29c, miR-101, and 
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TABLe 1 | Circulating microRNAs (miRNAs) profiled in selected human tuberculosis studies.

Platform/assay Biological 
fluid

Notable miRNAs detected (arrows 
indicate direction of expression)

Data normalization Reference

miRCURY LNA array (Exiqon) Serum and 
sputum

miR-93*↑, miR-29a↑ Median normalization Fu et al. (147)
Gene Amp PCR system 9700 (Applied Biosystems) U6 snRNA

miRCURY LNA array (Exiqon) Sputum miR-3179↑, miR-147↑, miR-19b-2*↓, 
miR-29a↑

Median normalization Yi et al. (148)
GeneAmp PCR System 9700 (Applied Biosystems) U6 snRNA

TaqMan Low Density array (Applied Biosystems) Serum miR-361-5p↑, miR-889↑, 
miR-576-3p↑

cel-miR-238 Qi et al. (149)
TaqMan RT-qPCR (Applied Biosystems) miR-16

7500 Real-Time PCR system (Applied Biosystems) Serum miR-197↑ SNORD68 Abd-El-Fattah et al. 
(150)

Solexa Small RNA-seq (Illumina) Serum miR-378↑, miR-483-5p↑, miR-22↑, 
miR-29c↑, miR-101↓, miR-320b↓

No information provided concerning 
miRNA-sequencing normalization 
method

Zhang et al. (151)

SYBR green RT-qPCR assay miR-16

Solexa Small RNA-seq (Illumina) Serum miR-516b↑, miR-486-5p↓, miR-
196b↑, miR-376c↑

Total copy number of each sample 
was normalized to 100,000

Zhang et al. (152)

TaqMan RT-qPCR (Applied Biosystems) cel-miR-238

SYBR green RT-qPCR assay Serum miR-155↓ U6 snRNA Zhang et al. (154)
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miR-320b) could serve as a distinct biosignature of pulmonary 
TB compared to HC, and importantly, groups of pneumonia, 
lung cancer, and chronic obstructive pulmonary disease patients. 
Furthermore, ROC curve analysis demonstrated that a six-
miRNA biosignature could discriminate pulmonary TB patients 
from HC with a sensitivity of 95.0% and a specificity of 91.8% 
(151). In the second study (152), miRNA-seq was used to identify 
a total of 30 circulating serum miRNAs that were differentially 
expressed (24 increased and 6 decreased) in active pulmonary 
TB patients compared to 3 different control groups (latent TB 
infection, BCG-vaccinated, and HC). However, only 1 of these 
30 circulating serum miRNAs (miR-22) was also detected in the 
earlier study by Zhang et al. (151).

Natural killer (NK) cells are effector lymphocytes that represent 
an important component of the innate immune system; they are 
able to rapidly target and kill virus-infected and tumorigenic cells 
in the absence of antibodies (153). Zhang et al. (154) observed 
decreased expression of circulating serum miR-155 in TB patients 
when compared to HC. From a functional perspective, levels of 
miRNA-155 were also inversely associated with cytotoxicity of 
NK cells isolated from the TB patients, which suggested that 
miR-155 may be used as an indicator of NK cell activity in TB 
patients (154).

The human TB studies described in this review have used 
serum and sputum as a source of circulating miRNAs and 
multiple transcriptomics technologies (miRNA-seq, microarray, 
and RT-qPCR) and data normalization methods, which together 
may contribute to the discordance among the results obtained by 
different researchers. Table 1 provides summary information on 
circulating miRNA biomarker studies for diagnosis and progno-
sis of human TB.

Sepsis
Sepsis is a subtype of systemic inflammatory response syndrome 
(SIRS), which is caused by an immune response triggered 
by various microbial infections. The causative agent is most 

commonly a bacterial pathogen, but it can also be triggered by 
infections involving fungi, viruses, or parasites (155). Sepsis is a 
major burden on health-care systems and of greatest concern in 
intensive care units (ICUs), where delayed diagnosis is a major 
cause of mortality. Consequently, in recent years there has been 
a concerted effort to develop circulating miRNA biomarkers for 
sepsis diagnosis and prognosis (156, 157).

Plasma levels of miR-150 have been shown to correlate with 
those of TNF-α, IL-10, and IL-18, which are important immune 
response markers. More specifically, the ratio of miR-150/IL-18 
has been suggested as a useful indicator of sepsis (158). miR-150 
was also shown to exhibit increased expression in plasma from 
septic shock patients and was an independent predictor of mor-
tality (159). Contrary to these results, circulating serum miR-150 
levels could not be used to differentiate between critical illness 
patients and healthy individuals. However, although circulating 
miR-150 had no association with common markers of inflamma-
tion, it was independently correlated with unfavorable prognosis 
for patients (160).

It has previously been proposed that decreased expression 
of circulating miR-146a serves as an indicator of sepsis in both 
serum (161) and plasma (162). In addition, miR-223, which also 
exhibits decreased expression in plasma during sepsis, has been 
shown to display a greater capacity to distinguish sepsis from 
non-infectious SIRS than miR-146a (161). However, using more 
stringent statistical methods, a recent study demonstrated that 
miR-146a and miR-223 neither exhibited differential expression 
in plasma samples of sepsis and septic shock patients nor were 
they correlated with markers of inflammation, disease progres-
sion, or mortality (159). In addition, a comprehensive animal 
and clinical study has demonstrated that miR-223 serum levels 
do not correspond to the presence of sepsis in murine models 
or in a large cohort of ICU patients and do not reflect clinical 
outcome for critically ill patients (163). Taken together, these 
results constitute good evidence that circulating serum miR-223 
cannot be used as a biomarker for sepsis.
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TABLe 2 | Circulating microRNAs (miRNAs) profiled in selected sepsis studies.

Platform/assay Biological 
fluid

Notable miRNAs detected (arrows 
indicate direction of expression)

Data normalization Reference

miRNA microarray (Agilent Technologies) Plasma miR-486↑, miR-182↑, miR-150↓, 
miR-342-5p↓

Median normalization Vasilescu et al. (158)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) U6B snRNA

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Plasma miR-150↑, miR-146a NS, miR-223 NS cel-miR-39 Puskarich et al. (159)

RT-qPCR miScript system (Qiagen) Serum miR-146a↓, miR-223↓ mmu-miR-295 Wang et al. (161)

RT-qPCR miScript system (Qiagen) Serum miR-133a↑ SV40 Tacke et al. (164)

RT-qPCR miScript system (Qiagen) Serum miR-122↑ SV40 Roderburg et al. (165)

GeneChip miRNA 1.0 arrays (Affymetrix) Serum miR-297↑, miR-574-5p↓ 5S rRNA Wang et al. (166)

RT-qPCR miRcute (Tiangen Biotech Company)

Solexa Small RNA-seq (Illumina) Serum miR-193b*↑, miR-15↑, miR-122↑, miR-
483-5p↑, miR-16↓, miR-223↓

U6 snRNA Wang et al. (167)
RT-qPCR TaqMan MicroRNA assays (Applied Biosystems)
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In a murine model of polymicrobial sepsis, circulating 
serum miR-133a, miR-155, miR-150, and miR-193b* displayed 
increased expression compared to baseline measurements (164). 
When extended to humans using large cohorts of ICU patients 
and HC, serum miR-133a also exhibited increased expression and 
displayed an increasing trend with disease severity. In addition, 
miR-133a was correlated not only with markers of inflammation 
and bacterial infection but also with renal and hepatic damage, 
cholestasis, and liver biosynthetic capacity. This work therefore 
supports further evaluation of miR-133a as a useful marker for the 
clinical state of critically ill patients (164). Another recent study 
using a murine model that was extended to human patients also 
revealed that miR-122 displayed increased expression independ-
ent of the presence of infection or sepsis in human ICU patients 
(165).

It has been shown that circulating serum miR-297 is upregu-
lated in non-surviving sepsis patients when compared to sur-
vivors, whereas miR-574-5p is downregulated. In addition, the 
combination of sepsis stage, sequential organ failure assessment 
(SOFA) score and miR-574-5p expression was identified as an 
excellent predictor for patient survival from sepsis (166). Finally, 
another comprehensive study investigated aberrantly expressed 
serum miRNAs, demonstrating that a combination of four miR-
NAs (miR-15a, miR-16, miR-193b*, and miR483-5p) and three 
clinical indicators (SOFA score, acute physiology and chronic 
health evaluation score, and sepsis stage) can be used as a good 
predictor for mortality by sepsis (167).

Table  2 provides a summary of methodologies and notable 
miRNAs profiled for the sepsis studies discussed in this section.

viral Hepatitis
Hepatitis B
According to the WHO, an estimated 240 million people are 
chronically infected with hepatitis B virus (HBV), and more 
than 686,000 people die every year due to complications of HBV 
infection (168). This viral infection attacks the liver and presents 
as acute or chronic disease. In comparison to other regions of the 
world, sub-Saharan Africa and East Asia show high endemicity 
of HBV infection (169). Additionally, chronic hepatitis B (CHB) 

infection is a major cause of liver cirrhosis and hepatocellular 
carcinoma (HCC), and reliable indicators of disease progression 
are urgently needed.

It has been shown that the occurrence of specific circulating 
miRNAs in blood serum of HBV-infected individuals increases 
with disease severity: 37 miRNAs in HC, 77 in chronic asymp-
tomatic carriers, 101 in CHB, and 135 in HBV-associated acute-
on-chronic liver failure (170). Circulating serum miR-210 (171) 
and miR-124 (172) are among the miRNAs implicated as being 
increased in conjunction with disease severity. Markers for liver 
fibrosis in HBV-infected patients have also been examined, with 
miR-345-3p, miR-371a-5p, and miR-2861 reported as positive 
indicators of fibrosis, whereas miR-486-3p and miR-497-5p 
exhibited lower expression at all stages of fibrosis when compared 
to non-fibrosis CHB patients (173).

Many published studies have suggested groups of circulating 
miRNAs that could distinguish CHB patients at early stages of 
HCC from those without the presence of cancer, such as plasma 
miR-122, miR-223, miR-26a, miR-27a, miR-192, miR-21, and 
miR-801 (174); plasma miR-28-5p, miR-30a-5p, miR-30e-3p, 
miR-378a-3p, miR-574-3p, and let-7c (175); serum miR-222, 
miR-223, and mir-21 (176); serum miR-206, miR-141-3p, miR-
433-3p, miR-1228-5p, miR-199a-5p, miR-122-5p, miR-192-5p, 
and miR-26a-5p (177); and exosomal serum miR-221, miR-222, 
miR-224, and miR-18a (178). Furthermore, miR-150 (179) and 
miR-18a (180) have been independently profiled in serum of 
HBV-HCC patients and found to exhibit significantly higher 
expression in these groups when compared to CHB samples.

An miRNA consistently reported in hepatitis infection 
studies is miR-122. Significant higher levels of this miRNA 
in plasma (181, 182) and serum (170, 183–185) samples of 
HBV-infected patients have been observed, and hence miR-
122 abundance has been suggested as a potential disease 
signature. miR-122 abundance was also positively correlated 
with current markers of viral activity in HBV-infected 
patients (170, 185, 186), but conflicting reports have been 
published regarding its correlation to degree of liver injury 
(170, 181, 186). It is also important to note that miR-122 was 
significantly upregulated in a murine model for alcohol- and 
chemical-induced liver diseases (181) and non-alcoholic 
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TABLe 3 | Circulating microRNAs (miRNAs) profiled in selected hepatitis B studies.

Platform/assay Biological 
fluid

Notable miRNAs detected 
(arrows indicate direction of 
expression)

Data normalization Reference

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑, miR-16↑, miR-223↑, 
miR-19b↑, miR-20a↑, miR-92a↑, 
miR-106a↑, let-7b↑, miR-194↑

U6 snRNA Ji et al. (170)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-210↑ cel-miR-39 Song et al. (171)

RT-qPCR miRcute (Tiangen Biotech Company) Serum miR-124↑ 5S rRNA Wang et al. (172)

miRNA microarray (Agilent Technologies) Plasma miR-4695-5p↑, miR-486-3p↓, 
miR-497-5p↓

Quantile normalization Zhang et al. (173)

SYBR Green I-based RT-qPCR with individual miRNA-specific 
primers (Applied Biosystems)

Plasma miR-122↑ U6 snRNA Zhang et al. (181)

Thunderbird SYBR qPCR mix (Toyobo, Japan) Plasma miR-122↑ No information provided Zhang et al. (182)

SYBR Green PCR Master Mixture (Takara) Serum miR-122↑ miR-181a Xu et al. (183)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑ No information provided Waidmann et al. (186)

RT-qPCR miRNA arrays and individual assays (Exiqon) Plasma miR-122-5p↑, miR-122-3p↑,  
miR-99a-5p↑, miR-125b-5p↑

Global mean normalization, 
U6, and geometric mean 
normalization

Winther et al. (187)

TaqMan probe-based RT-qPCR (Applied Biosystems) Serum miR-122↑, miR-let7c↑, miR-23b↑, 
miR-150↑

Plant MIR-168 Chen et al. (189)

Solexa Small RNA-seq (Illumina) Serum miR-375↑, miR-10a↑, miR-223↑, 
miR-423↑

Plant MIR-168 Li et al. (190)
TaqMan probe-based RT-qPCR (Applied Biosystems)
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steatohepatitis (184), which might implicate it as an unreli-
able biomarker.
miR-122 was also investigated as a component of miRNA panels 
that aim to offer a more robust biosignature of hepatitis B. For 
example, an assessment of CHB and healthy children during a 
period of 6  years revealed that miR-122-5p, miR-122-3p, miR-
99a-5p, and miR-125b-5p could be used to monitor pathological 
status (187, 188). Furthermore, the combination of miR-122, 
miR-let7c, miR-23b, and miR-150 was able to distinguish either 
HBV or occult HBV-infected patients from HC (189).

Other miRNAs have also been reported as potential biomark-
ers for HBV-infected patients: miR-375, miR-10a, miR-223, and 
miR-423 distinguished HBV-infected patients from HC, and the 
combination of miR-920 and miR-423 was able to differentiate 
between HBV- and hepatitis C virus (HCV)-infected individuals 
(190).

Table  3 provides a summary of methodologies and notable 
miRNAs profiled for the HBV infection studies discussed in this 
section.

Hepatitis C
Similar to HBV, the HCV can also give rise to both acute and 
chronic infection, possibly leading to progressive liver disease, 
cirrhosis, and hepatocellular cancer. Considering that miR-122 is 
a liver-specific miRNA (191), it is therefore not surprising that the 
majority of circulating miRNA studies have focused on miR-122 
as a potential biomarker for hepatic pathologies. As previously 
observed in HBV studies, expression of circulating miR-122 has 
been found to be significantly higher in chronic HCV patients 
when compared to healthy cohorts (192–195). Panels of miRNAs 
that contained miR-122 also resulted in positive indicators for the 

presence of either CHC (66) or HCV (196). Positive correlation 
with current markers of HCV infection has been seen for miR-122 
(66, 192) and miR-122-5p (196). However, miR-122 levels were 
also elevated in non-alcoholic fatty liver disease patients (193), 
and decreased levels were observed in one study with advanced 
stage fibrosis CHC patients (197).

Interestingly, high levels of serum miR-122 may predict favora-
ble virological responses to therapy in pretreatment pegylated IFN 
alpha/ribavirin (pegIFN/RBV) patients of Asian ethnicity (198), 
but not for those of African and Caucasian ethnicities (199).

In a longitudinal study using plasma samples from non-
HCV-infected injection drug users who eventually acquired 
the infection, miR-122 and miR-885-5p were increased in 
abundance during acute infection, whereas miR-494 and miR-
411 were decreased in expression. Also, in an independent 
cohort of individuals, all but miR-411 were validated (200). 
Furthermore, miR-122 and miR-885-5p levels remained elevated 
during viremia and returned to preinfection levels after infection 
resolution (200).

Considering other miRNA species, miR-571 has been 
associated with HCV-related cirrhosis progression (201); miR-
20a and miR-92a serum levels were elevated in HCV-infected 
fibrosis patients, and miR–92a expression was significantly 
reduced after infection resolution (202); circulating serum 
miR-320c, miR-134, and miR-483-5p were shown to be signifi-
cantly increased in expression for HCV-infected patients when 
compared to HC (203).

Early detection of HCC is also a major concern for HCV 
patients. Several published studies have investigated the use-
fulness of circulating miRNAs as a less-invasive diagnostic 
method. Serum levels of miR–16 were lower in HCC patients 
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TABLe 4 | Circulating microRNAs (miRNAs) profiled in selected hepatitis C studies.

Platform/assay Biological 
fluid

Notable miRNAs detected 
(arrows indicate direction of 
expression)

Data normalization Reference

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑ No information provided Bihrer et al. (192)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑, miR-34a↑, miR-16↑ cel-miR-238 Cermelli et al. (193)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑, miR-192↑ Normalized for initial serum 
input

van der Meer et al. (194)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑ cel-miR-39 Wang et al. (195)

RT-qPCR TaqMan MicroRNA assays (Applied Biosystems) Serum miR-122↑, miR-155↑ cel-miR-39 Bala et al. (66)

miRNA PCR arrays Serum miR-122↑, miR-134↑, miR-424-
3p↑, miR-629-5p↑

U6 snRNA Zhang et al. (196)

Individual RT-qPCR assays

RT-qPCR TaqMan MicroRNA assays Serum miR-122↑ cel-miR-39 Su et al. (198)

TaqMan RT-qPCR OpenArray chips Plasma miR-122↑, miR-885-5p↑, 
miR-494↓

Quantile normalization El-Diwany et al. (200)

Individual TaqMan RT-qPCR assays ath-miR-159a

miScript miRNA PCR array Serum and 
plasma

miR-20a↑, miR-92a↑ cel-miR-39 Shrivastava et al. (202)

Individual TaqMan RT-qPCR assays

miRNA microarray (Agilent) Serum miR-134↑, miR-320c↑, 
miR-483-5p↑

Percentile shift normalization Shwetha et al. (203)
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when compared to either HCV (204) or chronic liver diseases 
(CLD) groups (205). miR-21 serum levels were elevated in CHC 
and CHC-associated HCC patients, in comparison with HC 
(206). In plasma samples, miR-21 levels were also significantly 
higher for HCC patients when compared to chronic hepatitis 
(B or C types) and healthy groups (207). Lastly, miR-199a 
exhibited moderate power to distinguish HCC patients from 
CLD groups (205).

Although there are many published studies describing the use 
of circulating miRNAs as biomarkers of hepatitis B (Table 3) or 
hepatitis C (Table 4), specificity and lack of independent valida-
tion remain significant problems hindering adoption of circulat-
ing miRNAs as useful biomarkers for hepatitis.

Other infectious Diseases
Pertussis
Pertussis, also known as whooping cough, is a respiratory infec-
tion caused by B. pertussis. A panel of five circulating miRNAs 
was observed to be upregulated in serum samples from infected 
patients (miR-202, miR-342-5p, miR-206, miR-487b, and 
miR-576-5p), showing high sensitivity and specificity for dif-
ferentiation of pertussis patients and HC. In addition, analysis 
of this miRNA panel in samples from patients with a range of 
other microbial infections (M. tuberculosis, enterovirus, varicella-
zoster virus, mumps virus, and measles virus) demonstrated that 
the expression signature for pertussis disease was distinct and 
unambiguous (208).

Human Immunodeficiency Virus (HIV)-Associated 
Neurological Disorders (HAND)
Cognitive, motor, and behavioral impairments that affect individ-
uals infected with the HIV are collectively referred to as HAND 
(209, 210). An miRNA pairwise approach has demonstrated the 
potential use of two pairs of plasma miRNAs as biomarkers for 

cognitive-impaired HIV-positive individuals: miR-495-3p in 
combination with let-7b-5p, miR-151a-5p, or miR-744-5p; and 
miR-376a-3p/miR-16-5p (211).

It is recognized that early detection of HAND would facilitate 
better treatment choices and fewer sequelae caused by neuronal 
damage. However, this phenomenon has been difficult to inves-
tigate in patient cohorts; therefore, it has required the use of 
animal models such as the macaque (Macaca nemestrina) simian 
immunodeficiency virus (SIV) model of HIV (212). A combi-
nation of six circulating plasma miRNAs (miR-125b, miR-34a, 
miR-21, miR-1233, miR-130b, and miR-146a) could be used to 
predict the development of central nervous system disease in a 
macaque/SIV model, when animal samples from pre- and post-
infection were compared to HC (212). Expression of circulating 
miRNAs in CSF of HIV-encephalitis (HIVE) patients has been 
compared to HIV-positive patients without signs of HAND, and 
also to HIV-negative individuals. Overall, decreased expression of 
miRNAs was observed between HIV-positive and HIV-negative 
groups, whereas between HIVE and HIV-negative no changes in 
expression were observed. General increased expression was only 
observed when HIVE and HIV-positive groups were compared, 
with miR-19b-2*, miR-937, and miR-362-5p displaying the larg-
est fold changes (213).

Hand, Foot and Mouth Disease (HFMD)
Human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) 
are the most common pathogens responsible for HFMD. More 
than 500,000 cases, including 176 fatal ones, have been reported in 
China since an outbreak in 2008 (214). Levels of eight circulating 
serum miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p, 
miR-206, miR-140-5p, miR-455-5p, and miR-362-3p) were 
significantly higher in sera of patients with enteroviral infections 
(215). The combination of six miRNAs (miR-148a, miR-143, miR-
324-3p, miR-628-3p, miR-140-5p, and miR-362-3p) generated 
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a biosignature that could distinguish enteroviral patients and 
HC. In addition, a panel comprising miR-143, miR-324-3p, and 
miR-545 had moderate ability in discriminating patients infected 
with CVA16 from those with EV71 (215). Circulating exosomal 
miRNAs (miR-671-5p, miR-16-5p, and miR-150-3p) have also 
been observed to be differentially expressed in serum samples 
from both mild and extremely severe cases of HFMD when com-
pared to that from healthy individuals (216). Lastly, a signature of 
eight miRNAs (miR-494, miR-29b-3p, miR-551a, miR-606, miR-
876-5p, miR-30c-5p, miR-221-3p, and miR-150-5p) was identi-
fied in serum of children infected with EV71 (119). Furthermore, 
the results presented by Wang and collaborators suggested that 
upregulation of miR-876-5p is a specific response to severe EV71 
infection.

Varicella
Varicella, commonly known as chickenpox, is caused by the 
varicella-zoster virus. Aberrant serum miRNA expression in 
non-vaccinated children that contracted varicella revealed a 
panel of five miRNAs (miR-197, miR-629, miR-363, miR-132, 
and miR-122) that could differentiate, with moderate sensitivity 

and specificity, varicella patients from HC, and also varicella 
patients from patients with three other microbial infections (B. 
pertussis, measles virus, and enterovirus) (217).

Influenza
Influenza A viruses are the causative agents of influenza in birds 
and mammals. A panel of 14 circulating miRNAs was observed 
to be aberrantly expressed in whole blood samples from patients 
infected with the H1N1 strain of influenza virus A (218). Further 
analyses showed that six of these miRNAs (miR-1260, miR-335*, 
miR-664, miR-26a, miR-576-3p, and miR-628-3p) had similar 
expression signatures in human A549 and Madin–Darby canine 
kidney (MDCK) cells infected with H1N1 in vitro. In addition, 
examination of MDCK supernatant exosomes indicated that 
only miR-576-3p was not detectable (218). Also, evaluation of 
serum samples from influenza A/H1N1 patients demonstrated 
that critically ill patients exhibited elevated expression of miR-
150, when compared to those presenting a milder form of the 
disease (219).

Avian influenza A (H7N9) has been recently detected in China 
and was associated with fatal cases. Circulating serum miR-17, 

TABLe 5 | Circulating microRNAs (miRNAs) profiled in selected infectious disease studies.

Pathology Platform/assay Biological 
fluid

Notable miRNAs detected (arrows 
indicate direction of expression)

Data 
normalization

Reference

Pertussis (human) RT-qPCR TaqMan Array Human miRNA 
panel (Applied Biosystems)

Serum miR-202↑, miR-342-5p↑ miR-206↑, 
miR-487b↑, miR-576-5p↑

cel-miR-238 Ge et al. (208)

Varicella (human) RT-qPCR TaqMan Array Human miRNA 
panel (Applied Biosystems)

Serum miR-197↑, miR-629↑, miR-363↑, miR-
132↑, miR-122↑

cel-miR-238 Qi et al. (217)

Influenza H1N1 (human) miRCURY LNA microRNA Arrays (Exiqon) Whole blood miR-1260↑, miR-335↑*, miR-664↑, miR-
26a↓, miR-576-3p↑, miR-628-3p↓

Normalized to 
endogenous 
controls and the 
spike-in control

Tambyah et al. 
(218)

RT-qPCR TaqMan 18S rRNA

Influenza A/H1N1 virus 
(human)

RT-qPCR TaqMan Array Human miRNA 
panel (Applied Biosystems)

Serum miR-150↑ U6 snRNA Moran et al. 
(219)

Avian Influenza A H7N9 
(human)

RT-qPCR TaqMan Array Human miRNA 
panel (Applied Biosystems)

Serum miR-17↑, miR-20a↑, miR-106a↑, 
miR-376c↑

cel-miR-238 Zhu et al. (220)

Hand, foot and mouth 
disease (human)

RT-qPCR TaqMan Array Human miRNA 
panel (Applied Biosystems)

Serum miR-148a↑, miR-143↑, miR-324-
3p↑, miR-628-3p↑, miR-140-5p↑, 
miR-362-3p↑

cel-miR-238 Cui et al. (215)

Hand, foot and mouth 
disease (human)

miRNA microarrays (Agilent Technologies) Serum 
exosomes

miR-671-5p↓, miR-16-5p↑, 
miR-150-3p↓

Standard Agilent 
normalization

Jia et al. (216)

RT-qPCR miR-642a-3p

Hand, foot and mouth 
disease (human)

nCounter® miRNA Expression assays 
(NanoString)

Serum miR-494↑, miR-29b-3p↑, miR-551a↓, 
miR-606↓, miR-876-5p↑, miR-30c-5p↑, 
miR-221-3p↓, miR-150-5p↓

Geometric 
mean of top 100 
miRNAs

Wang et al. 
(119)

RT-qPCR TaqMan assays (Applied 
Biosystems)

U6 snRNA

Human immunodeficiency 
virus (HIV)-associated 
neurological disorders 
(human)

RT-qPCR microRNA panels (Exiqon) Plasma miR-151a-5p↑, miR-194-5p↑, 
miR-19b-1-5p↑

miR-23a-3p and 
miR-23b-3p

Kadri et al. (211)

HIV-encephalitis (human) RT-qPCR microRNA panels (Exiqon) Cerebrospinal 
fluid

miR-19b-2*↑, miR-937↑, miR-362-5p↑ miR-622 and 
miR-1266

Pacifici et al. 
(213)

Staphylococcus aureus-
induced mastitis (bovine)

TruSeq small RNA sequencing (Illumina) Bovine milk 
exosomes

miR-142-5p↑, miR-223↑ Upper quantile 
normalization

Sun et al. (222)
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