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Follicular T helper (Tfh) cells, a subset of CD4 T lymphocytes, are essential for memory 
B cell activation, survival, and differentiation and assist B cells in the production of 
antigen-specific antibodies. Work performed in recent years pointed out the importance 
of Tfh cells in the context of HIV and SIV infections. The importance of tissue distribution 
of Tfh is also an important point since their frequency differs between peripheral blood 
and lymph nodes compared to the spleen, the primary organ for B cell activation, and 
differentiation. Our recent observations indicated an early and profound loss of splenic 
Tfh cells. The role of transcriptional activator and repressor factors that control Tfh 
differentiation is also discussed in the context of HIV/SIV infection. Because Tfh cells 
are important for B cell differentiation and antibody production, accelerating the Tfh 
responses early during HIV/SIV infection could be promising as novel immunotherapeutic 
approach or alternative vaccine strategies. However, because Tfh cells are infected 
during the HIV/SIV infection and represent a reservoir, this may interfere with HIV 
vaccine strategy. Thus, Tfh represent the good and bad guys during HIV infection.
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Adaptive immunity against pathogens originates with the expansion of antigen-specific T 
lymphocytes in secondary lymphoid organs. T cells are a heterogeneous population (1). Based 
on an array of cell surface markers, distinct subsets have been discriminated including naive, 
central memory (TCM), effector memory (TEM), and terminally differentiated (TDT) T cells (2). 
The function of TEM T cells is dependent not only on the production of cytokines, but also on 
the expression of a particular set of chemokine receptors that determine in a combinatorial 
fashion, the steps of extravasation and positioning in different tissue microenvironments (3–5). 
The discovery of follicular T helper (Tfh) cells dates back to the early 1990s, during a key period 
coincident with the acknowledgment of the crucial importance of chemokines in immunology. 
CXCL13 or B cell-attracting chemokine 1 (BCA-1) (6, 7) is the selective chemokine ligand for 
CXC chemokine receptor 5 (CXCR5, originally named MDR15/BLR1); the phenotypic marker 
used to characterize Tfh cells in early studies (8, 9).

Circulating memory CD4 T cells bearing the phenotype of Tfh cells have been termed “circulating 
Tfh” or “peripheral Tfh.” While some assume that peripheral Tfh cells are the bona fide circulating 
counterparts of lymphoid tissue Tfh cells (10, 11), such notion remains controversial (12) as revealed 
by RNA sequencing (13) and levels of programmed death molecule-1 (PD-1) (14, 15) in circulating 
Tfh cells compared to those in lymphoid tissues (16). Tfh cells are relatively scarce in peripheral blood 
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of healthy individuals. Therefore, it is of crucial importance to 
analyze Tfh cells in deep tissues.

Because of their ability to support the generation of strong 
antibody responses, memory Tfh cells are the subject of intense 
investigation aimed at harnessing this property for novel vac-
cination approaches as well as immune therapies for infectious 
diseases and cancer. Growing researches have been dedicated to 
the characterization of Tfh dynamics during microbe infections, 
particularly during HIV. This review summarizes recent advances 
in this growing field.

DYNAMiCS OF Tfh CeLLS DURiNG AiDS

Lymphopenia is a hallmark of the progression to AIDS. As 
infection progresses, CD4 T cell count progressively declines. 
The excessive induction of apoptosis and immune activation has 
been proposed as major mechanisms responsible for the CD4 
T cell depletion (17, 18). Studies performed in pathogenic and 
non-pathogenic lentiviral infections in non-human primate 
models have further suggested a correlation between the pathol-
ogy and the levels of CD4 T cells apoptosis and immune activa-
tion (19–21). The extent of T cells apoptosis in lymph nodes 
(LNs) during primary infection predicts disease progression (22, 
23) and increased apoptosis is also observed in the intestinal 
lamina propria (24, 25). In particular, memory CD4+ T cells are 
rapidly depleted in lymphoid tissues (26, 27) and are more prone 
to undergo apoptosis (23, 28).

As a subset of memory CD4 T cells, Tfh cells were expected to 
undergo progressive depletion during AIDS. However, Tfh fre-
quencies are increased in the blood (29), and LNs of chronically 
infected individuals (30). This frequency increases among the 
pool of memory CD4 T cells in SIV-infected monkeys (31–33). 
On the contrary, Boswell et  al. (13) showed a loss of Tfh cells 
during HIV infection. Petrovas et al. (34) have initially reported 
that half of the chronically SIV-infected rhesus macaques (RM) 
had increased numbers of LN Tfh cells, which are associated 
with preserved lymphoid architecture and lower accumulation of 
naive CD4 T cells, a hallmark of non-progression to AIDS. Two 
recent reports also indicated that the numbers of Tfh are higher 
in LNs of non-progressor compared to progressor SIV-infected 
RMs (35, 36). While the spleen contains the majority of Tfh 
cells, their dynamics in this compartment was still missing. We 
recently demonstrated an early depletion of splenic Tfh cells after 
SIV infection of RMs (16). This depletion persists in monkeys 
progressing faster to AIDS. These results underline the critical 
impact of tissue compartmentalization on Tfh cell dynamics dur-
ing AIDS. Therefore, assuming that the dynamics of circulating 
Tfh reflects the dynamics of their lymphoid tissue counterparts 
should be taken with caution and merits to be reevaluated.

TRANSCRiPTiONAL FACTORS AND 
ABNORMAL DiFFeReNTiATiON OF Tfh 
CeLLS DURiNG AiDS

Bcl-6 promotes the Tfh transcriptional program, at least in part by 
suppressing the expression of the transcriptional regulators such 

as T-bet (Th1) (37), RORγt (Th17) (38), GATA3 (Th2) (39), and 
Blimp-1 (40–42). Bcl-6 and Blimp-1 are mutually antagonistic, 
and the balance between the expression of these two factors is a 
critical element in determining the fate of Tfh cells. Nevertheless, 
others have proposed an alternative, STAT3-independent path-
way, for Tfh cell development (43). In addition to Bcl-6, it has 
been shown that Maf plays an important role in the differentiation 
and/or function of Tfh cells (44, 45). Among the transcriptional 
repressors, Krüppel-like factor 2 (KLF2) restrains Tfh cell dif-
ferentiation by inhibiting CXCR5 and Bcl-6 expression (46, 47) 
(Figure 1A). KLF2 is one of the genes targeted by Foxo1, which 
has been also shown to negatively regulate the differentiation 
of Tfh cells through at least the involvement of the E3 ubiquitin 
ligase Itch (48, 49). KLF2 as well as Foxo1 regulate the expression 
of CD62L (50, 51), which may have an impact on T cell redistri-
bution. Whereas in uninfected mice, most of Tfh cells are TEM 
cells (CD45RA−CD62L−), they exhibit a central TEM phenotype 
(CD45RA−CD62L+) after lymphocytic choriomeningitis virus 
infection (12). Our results demonstrated similar commutation of 
Tfh splenocytes during SIV infection (16). Because TCM cells are 
less prone to die than TEM CD4 T cells of HIV- and SIV-infected 
individuals (23, 28, 52–54), the observation that splenic Tfh cells 
of SIV-infected RMs present a switch toward TCM phenotype 
may reconcile the apparently contradictory observations that the 
frequency of Tfh cells increases among the pool of memory CD4 
T cells, whereas total Tfh cell numbers decreased. Our results 
have also indicated that Tfh transiently expressed higher levels of 
Bcl-6 and Maf, whereas Foxo1 and KLF2 are increased in Tfh cells 
of SIV-infected RMs concomitantly with higher levels of CD62L 
(16) (Figures 1B and 2). However, the list of transcriptional fac-
tors regulating Tfh cell differentiation is growing, which includes 
the basic leucine zipper transcriptional ATF-like (BATF), inter-
feron regulatory factor 4, achaete–scute complex homolog 2 (55), 
NFATC1 (56), STAT1 (57), TCF1 (58–61), and Bob1 (62), and 
merit to be further analyzed in the context of AIDS.

Our analyses have also indicated higher T-bet expression in 
splenic Tfh cells at the chronic phase indicating the accumula-
tion of Th1-like Tfh cells (16) (Figures 1B and 2). Interestingly, 
from these initial observations the list of pathogens impacting 
on Tfh function and differentiation leading to abortive differ-
entiation is growing (63–66). Although T-bet has been reported 
to antagonize the expression of IL-21 (67, 68), IL-21 mRNA 
expression in sorted splenic Tfh cells of chronically SIV-infected 
RMs is not lower as compared to splenic Tfh cells isolated from 
healthy monkeys. The depletion Tfh cells may participate in 
the decrease of IL-21 that has been reported in HIV-infected 
individuals (69, 70). Such observation is of crucial importance, 
given the known role of IL-21 in controlling chronic viral 
infections by supporting CD8 T cell function (71–73). Schultz 
et al. (74) proposed that expression of IL-21 can be a surrogate 
marker for Tfh cells that can be used in various clinical settings 
as a useful monitoring tool for immune-based interventions 
aimed at selectively boosting Tfh cell function in humans (74). 
However, this should be extremely limitative in the sense that 
IL-21 would be therefore enough to mimic Tfh cell function, 
not integrating the role of cell–cell contact interaction and the 
architecture of lymphoid organs.
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FiGURe 1 | Reciprocal expression of transcriptional factors in Th1 and follicular T helper (Tfh) cells. (A) T-bet is the principal transcription factor for the 
differentiation and function of Th1 CD4 T cell. T-bet inhibits the expression of programmed death molecule-1 (PD-1) but induces IL-2 and IFN-γ, which in turn leads 
to the expression of Foxo1 and Krüppel-like factor 2 (KLF2). These factors including Blimp-1 inhibit Bcl-6, c-MAF, TCF1, and LEF1 necessary for the differentiation 
and function of Tfh cells. (B) In the context of HIV/SIV infection, a Th1-like Tfh profile is associated with the expression of T-bet.
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Tfh CeLLS AND B CeLL iMMUNiTY 
DURiNG AiDS

Besides CXCR5 and high levels of PD-1, Tfh cells express the 
inducible T-cell costimulator (ICOS) and CD40L (57, 75). Thus, 
Tfh cells provide survival and proliferation signals to B cells via 
CD40L, ICOS, IL-21, and BATF, which compete with death-
inducing Fas–FasL interactions (76–78). IL-21 production by 
Tfh cells is an important mediator in most processes occurring 
inside germinal centers (GCs), namely, affinity maturation, class-
switching, and differentiation of long-lived plasmacytoid cells. 
The depletion of Tfh cells in the spleen very early after infection 
may participate in the absence of maturation and loss of memory 
B cells (79–81). We found a positive correlation between B cell 
differentiation and Tfh cell number in the spleen of SIV-infected 
RMs (16), but no correlation between the extent of infection of 
Tfh cells and the percentages of memory B cell subsets, sug-
gesting that infection of Tfh cells is not directly associated with 
abnormal B cell differentiation (16). Cubas and colleagues have 

proposed that excessive and persistent triggering of PD-1 on 
LN Tfh cells may affect their ability to provide adequate B cell 
help (31). It is noteworthy that patients who are responders to 
a Flu vaccine display an expansion of circulating Tfh-like cells 
compared to non-responders (82), supporting a role of Tfh cells 
in maintaining the pool of long live memory B cells (36). It has 
been proposed in HIV-infected individuals that a subpopula-
tion of peripheral blood memory PD-1+CXCR5+CD4+ T cells 
is associated with the development of broadly neutralizing 
antibodies (bnAbs) (83). In the sera, higher level of CXCL13, 
the CXCR5 ligand, is associated with the detection of bnAbs-
positive in HIV-infected individuals (84). They propose that 
individuals able to generate HIV bnAbs may have superior 
GC responses (84). On the contrary, defect in Tfh cells can be 
associated with hypergammaglobulinemia and the absence of 
bnAbs. Therefore, the early depletion of Tfh cells in the spleen 
of SIV-infected monkeys may contribute to the absence of 
efficient B cell immune response in controlling HIV and SIV 
infections. The significant association between frequency and 
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FiGURe 2 | Follicular T helper (Tfh) cell, a reservoir for Hiv. Tfh precursor cells that express CCR5, the main co-receptor for HIV/SIV entry, are early infected. 
Because Foxo1 and Krüppel-like factor 2 (KLF2) are upregulated in Tfh cells during HIV/SIV infection, these transcriptional factors control the full maturation of Tfh 
leading to central memory cells associated with the expression of CD62L. Because these cells are less sensitive to undergo death than effector memory T cells, 
infected Tfh cells represent potent reservoirs for viral replication.
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quality (IFN-γlowIL-21high) of Env-specific Tfh cells and develop-
ment of broad neutralization activity was recently described in 
NHP infected with SHIV virus (36). The co-evolution of virus 
(a process likely affected by the immunological pressure of the 
humoral responses too) and Tfh responses could represent 
major biological factors underlying the development of bnAbs. 
Investigation of the follicular immune reactions in lymph nodes 
from patients mounting bnAbs combined with studies utilizing 
the NHP model could provide critical information regarding the 
relative impact of these factors on this process.

Furthermore, several studies indicate that full expression of 
the Tfh differentiation program depends on cognate interactions 
between primed CD4 T cells and antigen-activated B cells (40, 
85). Thus, a reciprocal regulation exists between Tfh and GC B 
cells, mediated by ICOS–ICOSL and CD40–CD40L interactions 
(86). In mice, the absence of PD-1 impairs Tfh function, resulting 
in suboptimal synthesis of important cytokines for the differen-
tiation of long-lived plasma B cells (87). In SIV-infected RMs, B 
cell follicles and GCs become barely distinguishable in progressor 
animals, but are preserved in non-progressors, highlighting the 
profound remodeling of the normal splenic architecture that 
occurs during progression to AIDS (16). Tfh cells are hardly 
detectable on the B cell follicles of the spleen and LNs (16, 88, 89).

Altogether, these observations showing abortive differentiation 
(quality) associated with the loss of Tfh cells (quantity) provides 

rationale for interventions aimed at boosting Tfh cell responses 
in the setting of HIV prevention or therapy, in particular for 
inducing the generation of more efficient antibodies and bnAbs.

iNFeCTiON OF Tfh CeLLS

Virus production in human immunodeficiency virus 1-infected 
individuals is largely the result of a dynamic process involving 
continuous rounds of de novo infection and replication in CD4 T 
cells with rapid turnover of both free virus and virus-producing 
cells. Thus, the level of viral load in the peripheral blood is a 
strong predictor of disease progression in pathogenic lentivirus 
infection (90–92). Earlier it has been clearly shown that even dur-
ing clinical latency, HIV infection is never completely silent (93). 
Productively infected cells are detected at a higher frequency, 
emphasizing the progressive nature of HIV infection in lymphoid 
organs. Peripheral lymphoid tissues such as axillary and inguinal 
(LNs) and the spleen are major sites for HIV/SIV replication. An 
increasing body of evidence suggests that reservoirs, cell types or 
anatomical sites (“sanctuaries”), represent a major barrier to virus 
eradication (94). This has been recently demonstrated by the 
observation that despite intense ART therapy introduced early 
after infection, drug regimen has been unable to clear reservoirs 
(95). In this context, intestine tissues and their draining LNs 
also represent likely sanctuaries for persistent viral replication 
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due to the particularity of the immune response in these sites, 
which are exposed to myriad of antigens to surveil the intestinal 
microbiome (96).

In the context of natural infection, it was clearly established 
that productively infected cells and virus trapped at the follicular 
dendritic cell (FDC) surface, showing a diffuse labeling over the 
FDC network in GC, are detectable in lymphoid tissues. The 
amount of viral particles trapped in the region of GCs increases 
with the pathogenicity (97, 98). Trapping of SIV in GCs is also 
observed in non-pathogenic SIV-infected African green mon-
keys (AGMs) (21) or in sooty mangabeys at the border of the 
GCs where Tfh cells are localized (99). During the early acute 
phase of infection, the viral dynamics in peripheral blood is 
quite similar between pathogenic and non-pathogenic lentiviral 
infections. However, a major distinction is evident by the end of 
the acute phase with higher numbers of SIV RNA+ cells in RMs 
compared to AGMs, in which productively infected cells are 
barely detectable (21, 100). In HIV long-term non-progressors, 
it has been recently reported that B cell follicles represent an 
active site for viral replication (33), suggesting distinct viral 
dynamics. Furthermore, a clear difference in the dynamics of 
GC and B cells is observed between non-pathogenic (AGM) 
and pathogenic (RM) lentiviral infections. SIV-infected AGMs 
showed a more prominent B-cell activation than SIV-infected 
RMs, as manifested by the level of Ki67+ cells in the LN GCs at 
the set point compared to that in RMs (21, 101, 102). Altogether 
these observations indicated that the dynamic of GC and innate 
immunity is inversely correlated with viral replication and 
pathogenicity in peripheral LNs (100).

Growing evidences suggest that Tfh cells are infected by HIV/
SIV early after infection (33, 89, 103–105). Splenic Tfh cells are 
infected early after SIV inoculation in RMs. Importantly, the fre-
quencies and total numbers of SIV DNA+ Tfh cells were higher at 
the chronic phase in non-progressor than in progressor RMs (16) 
suggesting that this population may be a latent pool associated 
with a “silent” Tfh phenotype in non-progressors. Consistent with 
in situ hybridization, few SIV p28 positive cells are observed in 
follicles of LN GCs of non-progressors (106).

Because Tfh cells do not express CCR5, the main co-receptor 
for HIV and SIV, how to explain that this memory subset is 
infected? Circulating Tfh cells are more permissive in  vitro to 
HIV infection than non-Tfh cells (107). It has been reported that 
Tfh precursor cells (LN CXCR5+PD-1intCD4+) express CCR5 
(106). This observation suggests that this subset (PD-1intCD4+) 
can be the target of infection and not Tfh themselves (Figure 2). 
Furthermore, the observation that Tfh cells display a TCM phe-
notype (16) may favor viral persistence because this CD4 T cell 
subset is less potent to die than TEM CD4 T cell subset. Our results 
have also demonstrated that despite their high frequency in SIV 

DNA, Tfh cells of non-progressors showed a similar or lower 
level of cellular SIV RNA compared to progressors (16), point-
ing to the fact that non-progressor Tfh cells might be less active 
to replicate SIV than Tfh cells of progressors, which might be 
related to the differentiation stage of Tfh cells (central versus TEM 
subset). Interestingly, HIV long terminal repeat contains bind-
ing sites for Bcl-6 that has previously been reported to repress 
HIV transcription (108), which may control HIV replication in  
Tfh cells.

Altogether these results indicate that Tfh cells may represent 
a potent viral reservoir in lymphoid tissues, in particular in 
non-progressors.

CONCLUSiON

Although this review synthesizes recent advances on the role 
of Tfh cells in the context of HIV/SIV infections, several key 
questions remain to be addressed. By which mechanisms Tfh are 
early lost? Which are the processes leading to abortive Tfh cell 
differentiation by inducing a Th1-like profile? Does preventing 
CD4 T cell depletion boost the generation of high affinity and 
HIV-neutralizing Abs? Does ART therapy improve the quality 
and the quantity of splenic Tfh cells? Therefore, understanding 
the biology and dynamics of Tfh cells in deep tissues is of crucial 
interest for the development of novel vaccine strategies and the 
delineation of the cellular and molecular mechanisms leading to 
the formation of persistent reservoirs for HIV.
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