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There is an unmet clinical need for immunotherapeutic strategies that specifically 
target the active immune cells participating in the process of rejection after solid organ 
transplantation. The monocyte–macrophage cell lineage is increasingly recognized as a 
major player in acute and chronic allograft immunopathology. The dominant presence of 
cells of this lineage in rejecting allograft tissue is associated with worse graft function and 
survival. Monocytes and macrophages contribute to alloimmunity via diverse pathways: 
antigen processing and presentation, costimulation, pro-inflammatory cytokine 
production, and tissue repair. Cross talk with other recipient immune competent cells and 
donor endothelial cells leads to amplification of inflammation and a cytolytic response 
in the graft. Surprisingly, little is known about therapeutic manipulation of the function 
of cells of the monocyte–macrophage lineage in transplantation by immunosuppressive 
agents. Although not primarily designed to target monocyte–macrophage lineage 
cells, multiple categories of currently prescribed immunosuppressive drugs, such as 
mycophenolate mofetil, mammalian target of rapamycin inhibitors, and calcineurin 
inhibitors, do have limited inhibitory effects. These effects include diminishing the degree 
of cytokine production, thereby blocking costimulation and inhibiting the migration of 
monocytes to the site of rejection. Outside the field of transplantation, some clinical 
studies have shown that the monoclonal antibodies canakinumab, tocilizumab, and 
infliximab are effective in inhibiting monocyte functions. Indirect effects have also been 
shown for simvastatin, a lipid lowering drug, and bromodomain and extra-terminal motif 
inhibitors that reduce the cytokine production by monocytes–macrophages in patients 
with diabetes mellitus and rheumatoid arthritis. To date, detailed knowledge concerning 
the origin, the developmental requirements, and functions of diverse specialized 
monocyte–macrophage subsets justifies research for therapeutic manipulation. Here, 
we will discuss the effects of currently prescribed immunosuppressive drugs on 
monocyte/macrophage features and the future challenges.

Keywords: monocyte, macrophage, transplantation, immunosuppressive drug, signaling pathways
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iNTRODUCTiON

Solid organ transplantation (SOT) is the preferred method to 
treat organ failure. Over the past decades, transplantation has 
become the preferred approach to treat solid organ failure. 
Striking improvement in short-term allograft survival, in par-
ticular of kidney allograft, has been achieved, while long-term 
survival has lagged behind (1). Intriguingly, this improvement 
is seen mainly in recipients who have never experienced a 
rejection episode, thereby emphasizing the recipient’s alloim-
munity, in particular chronic antibody-mediated rejection 
(cABMR) as a major determinant of overall transplant outcome 
(2, 3). At present, there is an unmet clinical need to apply 
immunotherapeutic strategies to specifically target the active 
immune cells crucially participating in the process of rejection 
after SOT.

However, treatment with immunosuppressive drugs has 
exchanged the morbidity and mortality of organ failure for 
the risks of infection, cancer, and increased mortality from 
cardiovascular disease. Although acute and chronic rejection, 
regardless of the type and the time of occurrence, are still major 
contributors leading to graft failure (1, 4, 5), cABMR is the 
main concern for the long-term graft survival. cABMR arises, 
at least in part, because immunosuppressive strategies do not 
completely inhibit rejection-related alloimmune responses 
specifically, thereby resulting in slow progressive deterioration 
of graft function.

The monocyte–macrophage cell lineage is increasingly recog-
nized as a major player in acute and chronic allograft immunopa-
thology (6, 7). The clinically used immunosuppressive drugs are 
not specifically directed against monocyte–macrophage lineage 
cells but still have some inhibitory effects. These cells contribute 
to alloimmunity via diverse pathways, antigen processing and 
antigen presentation, costimulation, pro-inflammatory cytokine 
production, and tissue repair. Cross talk with other recipient 
immune competent cells and donor endothelial cells underlies 
amplification of inflammation at the graft site (8–10). Interestingly, 
acute antibody-mediated rejection (ABMR) and cABMR are 
characterized among others by accumulation of monocyte–mac-
rophage cells. Kidney graft-infiltrating macrophages have been 
described to be a predictor of death-censored graft failure (11–21). 
Macrophages are present in both acute ABMR and acute cellular 
rejection (ACR) of solid organ transplants (21, 22). In rejecting 
cardiac tissue, interstitial and intraluminal macrophage density 
correlates with effector alloantibodies and clinical ABMR (22). 
Even more, histopathological stainings for macrophages have 
been found to be positive prior to the onset of graft dysfunction 
indicating that macrophages can serve as potential diagnostic 
markers for transplant rejection (13). Intravascular macrophages 
in the capillaries of endomyocardial tissue are shown to be a 
distinguishing feature of ABMR and are considered as one of 
the important histopathological diagnostic criteria in cardiac 
transplantation (22, 23).

A recent study showed that the severity of macrophage infil-
tration during ACR with arthritis is associated with impaired 
kidney function as measured by creatinine values up to 36 months 
post-transplantation (21). Importantly, Oberbarnscheidt et  al. 

showed that monocyte recognition of allogeneic non-self per-
sists over time, long after acute surgical inflammation has been 
subsided, indicating the important role of monocytes in the 
principle of long-term graft failure (24). Recently, the presence 
of smooth muscle-like precursor cells within the non-classical 
monocyte subset has been described in kidney transplant 
patients. Characterization of non-classical monocytes in periph-
eral blood of kidney transplant patients undergoing chronic 
transplant dysfunction showed lower numbers compared to 
patients without chronic transplant dysfunction. Within the 
total living cell percentages of CD14+ monocytes, there was no 
change observed, suggesting a shift within different subsets. 
Non-classical monocytes being reduced in transplant recipients 
with chronic transplant dysfunction may indicate a vital role in 
interstitial and vascular remodeling (25).

In stable kidney transplant recipients, a skewed balance 
toward pro-inflammatory CD16+ monocytes was shown at the 
time of kidney transplantation and during the first 6  months 
post-transplant. These monocytes were able to produce IFNγ, 
which acts as an important bridge between innate and adaptive 
immunity (26, 27).

In summary, the currently available knowledge concerning the 
immunobiology of specialized monocyte–macrophage subsets, 
their pathogenic role in rejection, and the still unmet clinical need 
to specifically prevent alloimmunity justify research on strategies 
for monocyte–macrophage-directed therapeutics. In this review, 
we aim to discuss the relevant knowledge on monocyte–mac-
rophage immunobiology briefly. To elaborate on the effects of 
currently available immunosuppressive drugs in relation to 
monocyte/macrophage lineage cells mainly focused within, but 
also outside of the SOT field (Table 1 and Figure 1), and eventu-
ally touch upon the future challenges and developments.

MONOCYTe iMMUNOBiOLOGY

Monocytes and macrophages are mononuclear phagocytes with 
crucial and distinct roles in transplant immunity. Monocytes 
display a remarkable plasticity in response to signals from the 
microenvironment, enabling them to differentiate into various 
cell types. Several pro-inflammatory, metabolic, and immune 
stimuli all increase the attraction of monocytes toward tissue 
(7). Based on the expression of CD14 (LPS co-receptor) and 
CD16 (Fcγ receptor III), three phenotypically and functionally 
distinct human monocyte subsets: CD14++CD16− (classical), 
CD14++CD16+ (intermediate), and CD14+CD16++ (non-classi-
cal) monocytes can be defined (60–63). Monocytes arise from 
myeloid precursor cells in primary and secondary lymphoid 
organs, such as liver and bone marrow. In humans, monocytes 
represent, respectively, 10% of the nucleated cells in peripheral 
blood, with two major reservoirs: the spleen and lungs that can 
mobilize monocytes on demand (64, 65). Classical monocytes 
are able to start proliferating in the bone marrow in response 
to infection or tissue damage and subsequently be released 
into the circulation in a CCR2-dependent manner (Figure 2) 
(66). Intermediate and non-classical monocytes are thought to 
be descendants of classical monocytes that have been under 
control of transcription factor Nur77 (NR4A1) returned to the 
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TABLe 1 | immunosuppressive drugs and the monocyte/macrophage lineage.

Drug type effects on monocytes/macrophages Key reference

Basiliximab and ATG • Basiliximab targets the CD25 molecule (the IL-2 receptor) on activated T cells
• ATG binds to multiple T-cell-specific antigens and causes cell death via complement-mediated 

cytotoxicity
• Reduced number of monocytes in vivo
• Upregulation of the anti-inflammatory M2 macrophage subset CD14+CD163+ in vivo

Sekerkova et al. (28)

Alemtuzumab • Targets CD52 on B cells, T cells, NK cells, dendritic cells, and monocytes
• Less effective in depleting monocytes than depleting T cells
• Leads to a relative high expression of costimulatory molecules, such as IL-6 and NF-κB

Hale et al. (29), Kirk et al. (30), 
Fabian et al. (31), and Rao 
et al. (32)

Calcineurin inhibitors 
(tacrolimus and cyclosporine)

• No inhibitory effect on p38MAPK phosphorylation, but reduce cytokine production via ERK 
phosphorylation

• Downregulate production of IL-6 and TNF-α after toll-like receptor stimulation in vitro
• Impaired phagocytosis function and promotion of infection (CsA)

Escolano et al. (33), 
Howell et al. (34), and 
Tourneur et al. (35)

Mycophenolate mofetil • Diminished the production of IL-1β, IL-10, and TNF-α and decreased expression of TNF-
receptor 1 on monocytes

• Reduced monocyte migration through lower expression of adhesion molecules

Allison and Eugui (36) and 
Weimer et al. (37)

Glucocorticoids • Lower CD14+CD16++ monocyte counts
• Lower expression of B7 molecules leading to disturbed costimulation
• Induction of anti-inflammatory response via increased IL-10 production
• Impaired phagocytosis function

Rogacev et al. (38), Girndt 
et al. (39), Hodge et al. (40), 
Blotta et al. (41), and Rinehart 
et al. (42)

Mammalian target of 
rapamycin inhibitors

• Decreased chemokine and cytokine production
• Combination therapy with steroids increased pro-inflammatory cytokine production

Lin et al. (43), Oliveira et al. 
(44), and Weichhart et al. (45)

Belatacept/abatacept • Block CD80/86 molecules on antigen-presenting cells and inhibit costimulatory function
• Lower migration and adhesion capacity
• Decreased expression of the pro-inflammatory cytokines such as IL-12 and TNF-α

Latek et al. (46), Bonelli et al. 
(47), and Wenink et al. (48)

Experimental drugs • Canakinumab inhibits IL-1β production by monocytes
• Sinomenine is associated with less monocyte migration, differentiation, and maturation
• 15-Deoxyspergualin decreases monocyte proliferation, TNF-α production, phagocytosis, and 

antigen presentation
• Simvastatin and salsalate are associated with less monocyte activation and inhibition of IL-6 

and IL-8 production in diabetes patients
• Tocilizumab inhibits IL-6 production by monocytes
• BET inhibitors are involved in epigenetic control of monocytes thereby preventing inflammation
• Fish oils are associated with lower numbers of macrophages in obesitas patients and a 

reduced secretion of TNF-α in vitro

Hoffmann et al. (49), Ou et al. 
(50), Wang and Li (51), 
Perenyei et al. (52), Donath 
and Shoelson (53), McCarty 
(54), Tono et al. (55), Chan 
et al. (56), Spencer et al. (57), 
Zhao et al. (58), and Jialal 
et al. (59)

ATG, antithymocyte globulin; IL, interleukin; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-
regulated kinase; CsA, cyclosporin A; TNF, tumor necrosis factor; BET, bromodomain and extra-terminal motif.
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bone marrow (67). Non-classical monocytes show a patrolling, 
distinct motility and crawling pattern (68). Interestingly, inter-
mediate monocytes show higher expression of major histocom-
patibility complex (MHC) class II molecules and thereby more 
related to non-classical monocytes (69, 70). CD14+ monocytes 
can be recruited to the site of inflammation or areas of tis-
sue injury where they can differentiate into macrophages and 
dendritic cells (71). In steady state, circulating monocytes have 
minimal contribution to the maintenance of tissue-resident 
macrophages (72, 73). Depending on the microenvironment, 
activation stimuli, and cross talk with other immunological 
effector cells, activation of macrophages alters their cytokine 
profile and costimulatory molecule expression. Monocyte dif-
ferentiation to tissue macrophages is colony-stimulating factor 
1 receptor dependent. Most tissue macrophages are seeded 
before birth in embryonic state, with varying contributions of 
primitive-derived and definitive-derived cells. Monocytic input 
to tissue macrophage compartments seems to be restricted 

to inflammatory settings, such as infection and acute graft 
rejection (71). Monocyte chemotactic peptide 1 (MCP-1) is an 
important regulator of macrophage recruitment and was shown 
to be highly expressed in the kidney allograft, supporting the 
concept of recruitment of monocytes from the circulation (74).

Macrophages can be subdivided into “classically activated” 
or “alternatively activated.” Classically activated macrophages 
are described as M1 macrophages, which are developed upon 
response to IFNγ, LPS, or TNF-α. M1 macrophages express 
surface markers: MHCII, CD40, CD80, CD86, and CD11b. 
They can produce inflammatory cytokines such as TNF-α, 
IL-1, IL-6, IL-8, IL-12, CCL2, CXCL9, and CXCL10. M1 
macrophages are linked to the Th1 response and are mainly 
considered as pro-inflammatory macrophages whereas M2 are 
considered as mainly anti-inflammatory. M2 macrophages can 
be subdivided into M2a, M2b, and M2c. M2a macrophages are 
generated on response to IL-4 and IL-13. Immune complexes 
and toll-like receptor (TLR)/IL-1R ligands activate M2b 
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FiGURe 1 | Monocyte and macrophage lineage cell and the effect of immunosuppressive drugs. The effect of currently prescribed immunosuppressive 
drugs with several inhibition spots on and in monocyte/macrophage lineage cells.

4

van den Bosch et al. Targeting Monocyte–Macrophage Lineage in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 153

macrophages, whereas M2c macrophages are activated by 
IL-10, TGF-β, and glucocorticoids. M2 macrophages express 
surface markers: CD163, CD206, and CD209. M2 macrophages 
produce IL-10 and TGF-β mainly leading to tissue repair and 
scar formation. M2 macrophages are linked to Th2 response 
and show immune-modulatory functions (7, 71, 75). Human 
regulatory macrophages (Mregs) are in a specific state of 
differentiation with a robust phenotype and potent T-cell sup-
pressor function. These Mregs arise from CD14+ peripheral 
blood monocytes during 7-day culture exposed to M-CSF 
and activation by IFNγ (76). Mregs express several molecules 
such as MHCII, FCγR, IFNγR, TLR-4, and PD-L1 as shown in 
Figure 2 (77). Shifting the balance between regulatory mac-
rophages and/or monocytes on the one hand and the effector 
macrophages and pro-inflammatory monocytes on the other 
hand could theoretically result in dampening the immune 
response against the graft and the immunological tolerance, 
or to aggravation of graft rejection. To date, two clinical 
trials investigated the feasibility of regulatory macrophages 
in promoting allograft acceptance with promising results 
(78, 79). Moreover, recently, a new homogeneous monocyte 
subpopulation of human G-CSF-induced CD34+ monocytes 
with powerful immunosuppressive properties upon human 
allogeneic T-cell activation was described. Such tolerogenic 

monocytes could be used for novel immune regulatory or 
cellular therapy development (80).

Recently, an adaptive feature of innate immunity has been 
described as “trained immunity.” Trained immunity is defined as 
a non-specific immunological memory resulting from rewiring 
the epigenetic program and the functional state of the innate 
immunity (81). Twenty naïve patients were vaccinated for Bacille 
Calmette–Guérin (BCG) to investigate mechanisms of the 
enhanced immune function. Interestingly, these authors identi-
fied trained monocytes in the circulation of BCG-vaccinated 
individuals for at least 3 months suggesting that reprogramming 
takes place at the level of progenitor cells in the bone marrow 
(82). Recent evidence emerged to indicate that innate immune 
memory could be transferred via hematopoietic stem and pro-
genitor cells. In vitro studies showed effects lasting for days (83, 
84), whereas other reports showed memory effects for weeks (85). 
These interesting observations might be explained by alterations 
in epigenetic (de)methylation profiles after antigenic stimula-
tion. Altering the epigenetic program by pharmacological means 
leading to behavioral changes of monocytes could be a promising 
method to restore or modify the healthy gene/protein expression 
in the pro-inflammatory microenvironment. The phenomenon 
of trained immunity in alloreactivity and transplantation may 
be a very interesting area of future research, i.e., innate memory 
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FiGURe 2 | Monocyte immunobiology. Monocytes arise from myeloid precursor cells in primary lymphoid organs, including liver and bone marrow. In the 
peripheral blood, monocytes can be subdivided into three distinct subsets according to their CD14 and CD16 expression profile. Monocytes can undergo 
transendothelial migration through α4β1 integrin interaction with VCAM-1. Activation of monocytes is followed by the polarization of macrophages to acquire 
pro-inflammatory phenotype (M1), anti-inflammatory phenotype (M2) or the regulatory phenotype (Mreg). The secretion of distinct pro-inflammatory or anti-
inflammatory cytokines, next to expression patterns of surface molecules, characterizes each phenotype.
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toward donor antigens resulting from cross-reactivity with other 
microbial and/or viral agents.

RABBiT ANTi-THYMOCYTe GLOBULiN 
(rATG) AND BASiLiXiMAB AND 
MONOCYTe/MACROPHAGe CeLL 
LiNeAGe

Rabbit antithymocyte globulin is a polyclonal antibody with 
mainly T cell-depleting capacities. rATG can also induce 
B  cell apoptosis and stimulate Treg and NKT cell generation 
(86). After rATG treatment, cytokine-dependent homeostatic 
proliferation of T cells is initiated (87). Basiliximab (anti-CD25 
monoclonal antibody) blocks the CD25 receptor on the surface 
of activated T cells. Studies on the effects of basiliximab or 
rATG on monocytes/macrophages are scarce. However, one 
report showed a reduction in the percentage of CD14+CD16+ 
monocytes when PBMC were cultured in  vitro in the pres-
ence of rATG (28). By contrast, this cell type was not affected 
by basiliximab, although low expression levels of CD25 on 
stimulated monocytes and macrophages are described (88, 
89). These authors also reported a reduction of circulating 
CD14+CD16+ monocytes in kidney transplant patients treated 
with rATG during the first week after transplantation, while this 
was not seen for basiliximab induction therapy. Another part 
of the same study showed an upregulation of the percentage 
of CD14+CD163+ monocytes in either basiliximab- or rATG-
treated kidney transplant recipients, which could be detected 
for a longer time period in the circulation than in patients 
without induction therapy. CD14+CD163+ monocytes are pre-
cursors for M2 macrophages and these cells are well known for 
their anti-inflammatory effect, suggesting that the upregulation 
of CD14+CD163+ cells may contribute to a better outcome 
after transplantation. However, this study only described the 
changes in the CD14+CD16+ monocyte subset after rATG or 
basiliximab therapy, while the effect on other subsets such 
as the classical CD14++CD16− monocytes remains unknown. 
Therefore, it is unclear whether the pro-inflammatory immune 
response by monocytes is changed in the presence of rATG 
or basiliximab.

ALeMTUZUMAB AND MONOCYTe/
MACROPHAGe CeLL LiNeAGe

The humanized monoclonal antibody alemtuzumab targets the 
CD52 molecule which is expressed at different levels on B cells, 
T cells, NK cells, dendritic cells, and monocytes. The CD52 
molecule, also known as CAMPATH-1 antigen, is a glycoprotein 
of which the precise function is unclear, although it might be 
involved in T-cell migration and costimulation (90). However, 
monocytes are known to be less sensitive for the depleting 
effects of alemtuzumab than lymphocytes, despite their high 
CD52 expression (29–32). For example, in ACR dominated 
by monocytes, alemtuzumab treatment did not show deple-
tion of monocytes in tissue, confirming the low sensitivity of 
monocytes to alemtuzumab treatment (91). An explanation 

for this low susceptibility could be the high expression levels 
of complement inhibitory proteins, which protect monocytes 
from complement mediated lysis (32). Another study showed 
repopulation of monocytes within 3 months after alemtuzumab 
therapy, while the recovery of T and B cells takes usually more 
than 1 year. Consequently, the low susceptibility of monocytes for 
alemtuzumab is thought to be one of the reasons for renal graft 
dysfunction after induction therapy with alemtuzumab, such as 
reperfusion and rejection (92). So far, this low susceptibility of 
monocytes to alemtuzumab therapy could be partially explained 
by the high expression of complementary inhibitory proteins 
that protect monocytes from getting lysed after alemtuzumab 
treatment (32). After alemtuzumab treatment, tissue monocytes 
in the rejecting graft showed an increased expression of the 
costimulatory molecules CD80 and CD86, a higher intracellular 
expression of NF-κB, and stronger production of IL-6 compared 
to patients without alemtuzumab therapy (30). Moreover, this 
pro-inflammatory cytokine production could facilitate kidney 
allograft rejection after alemtuzumab therapy, although other 
cell types, such as NK cells, could also contribute to rejection 
processes after alemtuzumab therapy (93).

CALCiNeURiN iNHiBiTORS (CNis) 
AND MONOCYTe/MACROPHAGe 
CeLL LiNeAGe

Tacrolimus and cyclosporine A inhibit the calcineurin pathway 
in T cells, which is also present in other cell types. As a conse-
quence, the activation of the nuclear factor of activated T cells 
(NFAT) is blocked, leading to a reduced production of IL-2 
and IFN-γ by T cells (94, 95). CNIs also have an effect on the 
mitogen-activated protein kinase (MAPK) signaling pathway via 
the inhibition of p38MAPK phosphorylation and consequently, 
reduced production of cytokines, such as IL-2, IL-10, TNF-α, 
and IFN-γ (96). The calcineurin and MAPK pathway are also 
present in macrophages, although the inhibitory effects of CNIs 
on T cells and macrophages are different (97). In more detail, 
tacrolimus was found to have no inhibitory effect on p38MAPK 
phosphorylation at low (5 ng/ml) and high (50 ng/ml) concen-
trations in LPS-activated monocytic THP-1 leukemia cells (50). 
However, another member of the MAPK pathway, extracellular 
signal-regulated kinase (ERK), did show less phosphorylation in 
the presence of a high concentration (50 ng/ml) of tacrolimus 
in monocytes as measured by western blotting, leading to a 
lower production of TNF-α. Kang et al. reported that monocyte 
signaling pathways were activated instead of inhibited by CNI 
via the inhibition of the calcineurin pathway and, as a conse-
quence, the activation of the NF-κB signaling pathway (97). 
However, the concentrations of CNIs used in this study were 
supratherapeutic. Therefore, the observed induction in cytokine 
production, shown in this study, could also be explained by toxic 
lysis of the monocytes (34). Overall, these studies suggest that 
CNIs cannot suppress the activation of monocytes to the same 
degree as in T-cells.

Recognition of damage-associated molecular patterns by 
TLRs on the surface of monocytes leads to the activation of these 
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cells and plays an important pathogenic role during transplant 
rejection (98–100). Both tacrolimus and cyclosporine can inhibit 
TLR signaling of PBMC in liver transplant patients, as shown by 
decreased production of IL-6 and TNF-α after TLR stimulation 
(34). CNIs act differently in suppressing the cytokine production 
upon TLR activation. For example, cyclosporine inhibits the 
production of TNF-α mediated by TLR7/8 and the production of 
IL-6 mediated by TLR2 and TLR7/8 signaling significantly more 
than tacrolimus (34). Moreover, monocytes from renal transplant 
recipients treated with tacrolimus showed an increased produc-
tion of IL-1β, TNF-α, IL-6, and IL-10 after stimulation with LPS, 
in comparison to cyclosporine treated patients (101). Thus, the 
effect of CNIs on monocytes differs between tacrolimus and 
cyclosporine.

The different outcomes of tacrolimus and cyclosporine on 
cytokine production concerns only one of the monocyte/mac-
rophage functions. Bacterial infections can have a significant 
impact on the graft after transplantation. Cyclosporine inhibits 
the phagocytosis of bacteria by macrophages via the altera-
tion of nucleotide-binding oligomerization domain (NOD)-1 
expression. The NOD-1 expression depends on the activation of 
the transcription factor NFAT, which is the main target of CNI 
(35). Thus, cyclosporine can promote bacterial infections after 
transplantation by altering phagocytic capacity of macrophages 
more rigorously.

MYCOPHeNOLATe MOFeTiL (MMF) AND 
MONOCYTe/MACROPHAGe CeLL 
LiNeAGe

Mycophenolate mofetil has led to significantly reduced rejection 
rate as compared to its counterpart azathioprine (102–104). The 
active metabolite mycophenolic acid reduces the synthesis of 
guanosine nucleotides via the inhibition of inosine monophos-
phate dehydrogenase, which is a more specific metabolic pathway 
for T and B cells than for other cell types (36, 105).

Circulating monocytes of kidney transplant recipients suf-
fering from chronic rejection who were treated with MMF 
showed a decreased capacity to produce IL-1β, IL-10, and TNF-α 
as compared to circulating monocytes of chronic rejection 
patients who were not treated with MMF. Cytokine production 
capacity was measured by flow cytometry and confirmed by 
PCR on gene expression level (37). Moreover, the expression of 
the TNF-receptor 1 was decreased in the MMF treated group, 
suggesting a favorable effect in patients with chronic rejection 
(37). Furthermore, MMF reduced the expression of the adhesion 
molecules; intercellular adhesion molecule-1, and MHC II on 
isolated human monocytes (106).

GLUCOCORTiCOiDS AND MONOCYTe/
MACROPHAGe CeLL LiNeAGe

The immunosuppressive and anti-inflammatory effects of 
glucocorticoids are redundant and cover different stages of 
alloreactivity triggered by activation of donor-specific T cells 
after transplantation. Steroids can bind via passive diffusion to 

the intracellular glucocorticoid receptor. After translocation to 
the nucleus, steroids bind to the glucocorticoid response ele-
ments that have a connection with promoters of different genes. 
The anti-inflammatory effect of glucocorticoids is based on the 
transrepression of inflammatory gene transcription, such as the 
inhibition of the transcription factors AP-1 and NF-κB, and the 
transactivation of anti-inflammatory genes, including tyrosine 
aminotransferase and the induction of IκB (107–110). In this way, 
glucocorticoids control antigen presentation, cytokine produc-
tion, and proliferation of lymphocytes.

In monocytes, glucocorticoids specially affect the heteroge-
neity of monocyte subsets (38, 111, 112). Flow cytometric analy-
sis revealed that steroid treatment of stable kidney transplant 
patients for more than 12 months is associated with an increased 
absolute number of CD14++CD16− and CD14++CD16+ mono-
cyte subsets compared to patients without steroid intake. As a 
consequence, the counts for the non-classical CD14+CD16++ 
monocyte subset were significantly lower (38). Furthermore, 
glucocorticoids inhibit the upregulation of B7 molecules on the 
surface of human monocytes, which can negatively affect the 
antigen-presenting function of the cell (39, 113). The B7 fam-
ily consists of many peripheral membrane proteins, including 
CD80 and CD86, which are all involved in the costimulatory 
signal needed for T cell activation. This suggests that glucocor-
ticoid therapy in combination with belatacept therapy (blocking 
CD80/CD86) could theoretically block the immune response 
by T cells induced via antigen-presenting monocytes after 
transplantation.

The production of the anti-inflammatory cytokine IL-10 by 
monocytes is increased under treatment with methylpredniso-
lone, while the production of the pro-inflammatory cytokines 
IL-12, IL-1, and TNF-α are downregulated in the presence of 
glucocorticoids (40, 41). Addition of 16 µg/ml of glucocorticoids 
in  vitro leads to a decreased uptake of bacteria by monocytes, 
indicating that the phagocytosis of bacteria by monocytes is 
downregulated (42). Glucocorticoids are also known to drive 
the polarization of macrophages to a M2 phenotype (75, 114). 
This indicates that glucocorticoids drive the cytokine produc-
tion by monocyte to a more anti-inflammatory phenotype and 
inhibits the phagocytic function of monocytes. Glucocorticoids 
enhance the uptake of apoptotic cells by macrophages trough the 
induction of Mer-Tk (MER proto-oncogene tyrosine kinase), 
thereby inducing macrophage reprogramming toward a regula-
tory phenotype, also called Meff, for macrophages performing 
efferocytosis (115–117). This approach has been evaluated in the 
treatment of collagen-induced arthritis (118), as well as acute 
graft rejection (119), justifying further exploration in the field of 
transplantation.

iNHiBiTORS OF THe MAMMALiAN 
TARGeT OF RAPAMYCiN (mTOR) AND 
MONOCYTe/MACROPHAGe CeLL 
LiNeAGe

The mTOR signaling pathway is involved in the activation, 
proliferation, differentiation, and translocation of T cells. 
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Inhibitors of mTOR, such as everolimus and sirolimus, are 
therefore very useful after transplantation (120). The same 
mTOR inhibitors do also have an inhibitory effect on human 
monocytes by suppressing the production of the chemokines 
MCP-1, RANTES, IL-8, MIP-1α, and MIP-1β (43). Furthermore, 
the downstream effects of rapamycin therapy are characterized 
by a decreased production of the monocyte-derived cytokine 
IL-6 and an increase of TGF-beta production in comparison 
to MMF, as it was shown by fine-needle biopsy cultures from 
kidney transplant patients treated with either a cyclosporine–
rapamycin–prednisone or a cyclosporine–MMF–prednisone 
therapy 1  week after transplantation (44). This resulted in a 
more tolerogenic effect of the monocytes and less graft rejection 
during the first 6  months after transplantation in comparison 
to a MMF-based drug therapy. Moreover, combined therapy 
of mTOR inhibitors and glucocorticoid therapy increased the 
production of the pro-inflammatory cytokines IL-12, TNF-
α, and IL-1β (45). Altogether, mTOR inhibitors can inhibit 
cytokine production by monocytes shortly after transplantation, 
although a combination therapy with prednisone should be 
regarded with caution.

BeLATACePT AND MONOCYTe/
MACROPHAGe CeLL LiNeAGe

Belatacept, a fusion protein consisting of the extracellular 
domain of the human cytotoxic T-lymphocyte antigen 
(CTLA)-4 antigen linked to a Fc-fragment of immunoglobulin 
G1, inhibits the costimulatory signal between the CD80/CD86 
molecules on antigen-presenting cells and the CD28 molecule 
on T cells, thereby preventing T cell activation (121). Monocytes 
express CD80/CD86 molecules, and, as a consequence, the 
antigen-presenting function of monocytes is blocked by belata-
cept (46, 122, 123). This suggests that belatacept inhibits the 
antigen-presenting function of monocytes/macrophages. In one 
case of acute rejection within 3  months after transplantation, 
the blockade of CD80/CD86 was incomplete under belatacept 
treatment, suggesting the importance of higher belatacept tissue 
concentrations needed to completely block monocyte antigen 
presentation function (123). Thus, belatacept, in controlled 
dosages, blocks the expression of CD80/CD86 on monocytes, 
thereby inhibiting their antigen-presenting function and activa-
tion of T cells.

The older variant of belatacept, abatacept (CTLA-4Ig), is 
frequently used in the treatment of patients with rheumatoid 
arthritis (RA) (47). After treatment with abatacept, the number of 
circulating monocytes was increased, and the phenotype of these 
cells was significantly changed, due to downregulation of actin 
fibers. For example, the capability of monocyte migration was 
negatively changed even as the number of adhesion molecules 
in vitro. Data were verified with monocytes from healthy controls. 
The reduced number of adhesion molecules and migration capac-
ity could be a reason for the increased number of monocytes 
in the peripheral blood that cannot pass endothelial barriers, 
whereby it is no longer possible for the monocyte to contribute 
in inflammation.

Binding of abatacept to the CD80/CD86 receptor on mac-
rophages from healthy blood donors is associated with decreased 
production of the pro-inflammatory cytokines IL-12 and TNF-α, 
suggesting again a role for abatacept/belatacept in changing the 
pro-inflammatory environment via macrophages after transplan-
tation (48).

OTHeR eXPeRiMeNTAL DRUGS AND 
MONOCYTe/MACROPHAGe CeLL 
LiNeAGe

Although no monocyte specific drugs as such exist now, 
multiple experimental and less known drugs do influence 
monocyte functions. Looking outside the box of currently used 
immunosuppressive drugs in SOT, there are a few compounds 
with immune-inhibitory effects, which theoretically could be 
interesting in combating alloimmunity. For example, the human 
monoclonal antibody canakinumab, originally designed as an 
interleukin-beta (IL-1β) inhibitor for the repression of inflamma-
tion in autoimmune diseases, can also inhibit the IL-1β produc-
tion by monocytes (124). A high expression of IL-1β is noticed in 
the most severe liver transplant rejection episodes and at the time 
of kidney transplantation, suggesting the importance of blocking 
its production by monocytes (26, 49). However, treatment of 
kidney transplant recipients with canakinumab can inhibit IL-1β 
secretion in many other cell types, leading to undesirable side 
effects (125).

Infliximab, originally used in the treatment of autoimmune 
diseases, is another monoclonal antibody targeting monocyte 
TNF-α production. Monocytes and macrophages are main pro-
ducers of TNF-α, suggesting the importance of infliximab for tar-
geting monocytes (126). Beside the effect on TNF-α production, 
monocytes from Crohn’s disease patients treated with therapeutic 
concentrations of infliximab showed also increased apoptosis via 
the activation of caspase-3, 8, and 9 (127).

Furthermore, the herbal medicine sinomenine was found to 
reduce migration of activated human monocyte cells and inhibits 
human monocyte-derived DC differentiation and maturation 
(50, 51). In addition, peripheral blood monocytes from healthy 
donors cultured for 60 h in the presence of different concentra-
tions of sinomenine showed an enhanced production of IL-6 and 
a decreased expression of IL-8, which is important for cell migra-
tion (128). This would suggest a positive effect of sinomenine on 
monocyte infiltration and migration, although there is still an 
increased production of pro-inflammatory cytokines. However, 
this research was performed using monocytic THP-1 cell-line, 
and isolated peripheral blood monocytes from healthy donors, 
so that possible effects with regard to transplantation are still 
unknown.

15-Deoxyspergualin or gusperimus is a relatively long-
known immunosuppressive drug with an inhibitory effect on 
monocyte proliferation, TNF-α production, and phagocytotic 
functions of monocytes. More recently, it was been suggested 
that gusperimus can also be effective in suppressing the antigen 
presentation function of monocytes in transplantation (52). 
Another member of the spergualin family is LF15-0195. This 
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drug is known for its inhibitory effect on monocyte accumu-
lation in the tubulointerstitial compartment of rat kidneys 
and was shown to have beneficial effects in the treatment of 
glomerulonephritis (129).

In diabetes mellitus, macrophage accumulation and activa-
tion play a central role in disease progression. Research on 
simvastatin, a drug to lower elevated lipid levels, has been shown 
to effectively lower IL-6, IL-8, TNF cytokine, and superoxide 
anion production by monocytes isolated from human blood 
samples of patients with diabetes mellitus type 1 (59). In 
addition, simvastatin reduces the NF-κB activity in monocytes 
with approximately 60%, which causes the inhibition of IL-6 
and IL-8 production. Treatment of IgA nephropathy with the 
drug atorvastatin showed a reduction of monocyte proliferation 
(130). In diabetes mellitus type 2 patients, this drug lowers 
the TNF-alpha production by monocytes (131). Other studies 
in diabetes mellitus patients have shown potential effects of 
salsalate on macrophages activation. Salsalate, a prodrug of 
salicylic acid, is also known for the inhibition of the NF-κB 
pathway in macrophages (53, 54). This suggests a working 
mechanism for salsalate that is similar to simvastatin. Both 
drugs can be promising compounds to inhibit monocyte and 
macrophage activation.

In RA, research on therapeutic drugs to target monocytes and 
macrophages is more common because of the important role of 
monocytes in developing this disease. In addition, TNF-α is a key 
player known to cause inflammation in RA and is mainly pro-
duced by monocytes (132). Some of the drugs used to suppress 
inflammation in RA could also have a potential in transplantation. 
For example, a decreased number of CD14+CD16+ monocytes 
were found after treatment of RA patients with tocilizumab, an 
IL-6 receptor blocker (133). In addition, production of IL-6 by 
monocytes from healthy donors was reduced when tocilizumab 
was added in vitro. The drug also induces the apoptosis of staphy-
lococcal enterotoxin B-activated monocytes (55). These results 
suggest that tocilizumab could theoretically impair the monocyte 
responses after transplantation. Furthermore, bromodomain and 
extra-terminal (BET) inhibitors are developed to control the 
intracellular chromatin regulation responsible for the activa-
tion of monocytes, thereby inhibiting inflammation processes 
induced by monocytes. In more detail, CD14+ monocytes were 
isolated from blood samples of healthy volunteers and cultured 
in the presence of BET inhibitors and IFN-β, IFN-γ, IL-4, and 
IL-10 stimuli, where after the intracellular activation cytokine 
response were suppressed (56). In RA patients, this epigenetic 
control by BET inhibitors could suppress the production of pro-
inflammatory cytokines and chemokines such as CXCL10. This 
would indicate that BET inhibitors could also inhibit monocyte 
activation after transplantation, although this is very speculative 
and require more research.

Fish oil-based drugs, such as lovaza, are used to lower triglyc-
eride levels in obesity. These fish oil compounds demonstrated 
a reduction in the number of macrophages and reduced MCP-1 
blood levels (57). Eicosapentaenoic acid, one of the major fatty 
acids in fish oil, reduces the secretion of TNF-α by human 
monocytic THP-1 cells, via the inhibition of the intracellular 
NF-κB activation (58). This suggests also a suppressing role for 

fatty acids in monocyte activation that could have a potential 
effect in transplantation as well.

FUTURe CHALLeNGeS AND 
DeveLOPMeNTS

Therapies targeting monocytes and macrophages in (SOT) could 
intervene at different points with monocyte actions and their 
subsequent functions (Figure 3). First, the activation and func-
tion of the cells can be inhibited at multiple stages: signaling 
pathway activation, antigen presentation, and cytokine produc-
tion. Blockade of the intracellular signaling pathways inhibits 
the activation of monocytes and macrophages. For example, the 
use of specific MAPK inhibitors, such as SB203580, blocks the 
activation of monocytes (134). However, these drugs will also 
block the activation of many other cell types. Targeting antigen 
presentation is even more difficult than targeting signaling 
pathways. It is known that the Fcγ receptor on monocytes is 
involved in the recognition and processing of donor antigen-
specific antibodies (135, 136). Blocking this receptor with spe-
cific antibodies could inhibit the antigen presentation function 
of monocytes. Furthermore, already existing drugs that reduce 
the cytokine production by monocytes and macrophages, for 
example, canakinumab, infliximab, and tocilizumab, mainly 
target the inhibition of one single cytokine. To be more effec-
tive, monocyte-specific drugs should be developed to inhibit the 
production or the effects of multiple cytokines at once, thereby 
reducing side effects.

Second, delivering any potential new drug to the target 
cell, in this case monocytes and macrophages, is a major 
point of intervention, which could lower the side effects. One 
can envision a delivery system using the phagocytosis func-
tion of the monocyte/macrophage, whereby macrophages can 
ingest immunosuppressive drug-loaded-inactivated bacteria 
or liposomes carrying the potential new drug (137). However, 
the monocyte is not the only cell type with a phagocytic 
system. Therefore, the surface of these bacteria or liposomes 
should be modified to facilitate the specific recognition by 
the monocyte/macrophage in order to overcome side effects. 
Another approach to target monocytes and macrophages via 
their phagocytotic function is to use apoptotic cells through a 
process that is known as efferocytosis (116, 117). Phagocytosis 
of these apoptotic cells by monocytes and macrophages will 
induce an anti-inflammatory response at the tissue level and 
may induce immunological tolerance. Furthermore, ex vivo 
experiments showed a decrease in CD11b expression on 
macrophages (138), suggesting that treatment with apoptotic 
cells induces the generation of Mregs. As mentioned above (see 
Glucocorticoids and Monocyte/Macrophage Cell Lineage), the 
uptake of apoptotic cells can be enhanced by treatment with 
glucocorticoids (116).

The third point of therapeutic efficacy would be the manipula-
tion of the nature of these cells. The future of in vivo manipulation 
of macrophages is intriguing; phenotypes could be changed by 
transfection with adenovirus, modulation of nuclear transcrip-
tion factor NR4A1 (Nur77), or by modulation of local microen-
vironment with cytokines to polarize macrophages to reparative 
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phenotype (67). Targeting all monocytes and macrophages indis-
criminately could also be a disadvantage as regulatory and effec-
tor macrophages also have beneficial effects including the control 
of infections and the induction of regulatory cells (139).

Moreover, inhibition of all macrophages will also affect the 
number of Mregs, which are important for inducing tolerance 
after transplantation (140). Too much inhibition of effector mac-
rophages or Mregs could lead to graft rejection or complications, 
such as atherosclerosis and cardiovascular diseases. Furthermore, 
currently prescribed immunosuppressive drugs might miss the 
power to upregulate Mregs efficiently. In experimental mouse 
models, Mregs have demonstrated anti-inflammatory and 
T-cell-suppressing effects (other beneficial effects of Mregs are 
described in Section “Monocyte Immunobiology”) (141, 142). 
A more specific upregulation of these cells could be an approach 
to beneficially shift the balance toward macrophages control-
ling immune responses including those in organ transplant 
patients. Ideally, after SOT, the balance of macrophage subsets 
should be in favor of macrophages that control the anti-donor 
response, while the accumulation of macrophages with pro-
inflammatory and antigen presentation characteristics should 
be decreased (143, 144). For example, reduced function of the 
detrimental functions of macrophages involved in alloreactivity 
might be a useful therapy, although more research is needed to 
find a specific approach. Another way to differentiate between 
effector and controlling functions of macrophages could be 
by polarizing cells into M1 and M2 subsets. Targeting specific 

signaling pathways involved in this polarization process such as 
the Notch signaling pathway could change the nature of these 
cells to a more anti-inflammatory phenotype (145). NF-κB 
signaling, controlled by the Notch pathway, is associated with 
pro-inflammatory macrophage responses, while a more anti-
inflammatory phenotype is induced via the ERK pathway (145, 
146). Targeting these pathways with specific stimuli may change 
the phenotype of macrophages. Stimuli that induce macrophage 
polarization toward a M1 phenotype are GM-CSF, IFN-γ, and 
LPS, while IL-4, IL-13, and IL-10 enhance a M2 macrophage 
phenotype (147). Future insight and research are necessary 
to investigate the effect of these manipulated macrophages on 
healthy and diseased tissue.

Ideally, a potential new drug inhibiting monocytes–mac-
rophages at these three levels would change the spectrum of not 
only rejection treatment or prevention after (SOT) but also the 
course of many autoimmune mediated diseases. Either alone or 
in combination with other existing immunosuppressive drugs, 
this field constitutes a challenging area of future therapeutic 
research.
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