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Memory T cells are characterized by their low activation threshold, robust effector func-
tions, and resistance to conventional immunosuppression and costimulation blockade. 
Unlike their naïve counterparts, memory T cells reside in and recirculate through periph-
eral non-lymphoid tissues. Alloreactive memory T cells are subdivided into different 
categories based on their origins, phenotypes, and functions. Recipients whose immune 
systems have been directly exposed to allogeneic major histocompatibility complex 
(MHC) molecules display high affinity alloreactive memory T cells. In the absence of any 
prior exposure to allogeneic MHC molecules, endogenous alloreactive memory T cells 
are regularly generated through microbial infections (heterologous immunity). Regardless 
of their origin, alloreactive memory T cells represent an essential element of the allograft 
rejection process and a major barrier to tolerance induction in clinical transplantation. 
This article describes the different subsets of alloreactive memory T cells involved in 
transplant rejection and examine their generation, functional properties, and mechanisms 
of action. In addition, we discuss strategies developed to target deleterious allospecific 
memory T cells in experimental animal models and clinical settings.

Keywords: memory T cells, allotransplantation, tolerance, heterologous immunity, transplant rejection, immune 
suppression, costimulation blockade

inTRODUCTiOn

Rapid and robust protective responses against previously encountered antigens are beneficial during 
infections, vaccinations, and tumor surveillance. Conversely, memory immune responses against 
donor antigens are detrimental in the context of transplantation and are commonly associated with 
poor graft outcome. The danger of preexisting donor-specific alloantibody (DSA) was recognized 
early in transplant history, and all transplant candidates are tested for the presence of serum DSA 
prior to transplantation. Despite well documented harmful effects of memory T cells in transplanta-
tion (1–4), the potential impact of such cells is mostly neglected while choosing treatment regimens. 
In this review, we initially outline characteristics of alloreactive memory T cells and their functions. 
We also describe existing and emerging strategies designed to delete or suppress memory T cells 
in transplant recipients. To conclude, we discuss future areas of investigation that may translate 
experimental knowledge of alloreactive memory T cells into clinical practice and thus improve 
transplant outcome in sensitized recipients.

Abbreviations: MHC, major histocompatibility complex; APC, antigen-presenting cell; Treg, regulatory T cell; IFNγ, gamma 
interferon; TNFα, tumor necrosis factor alpha; CTL, cytotoxic T lymphocyte; DC, dendritic cell; DSAs, donor-specific 
antibodies.
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FigURe 1 | Memory T cell subsets. Abbreviations: Tcm, central memory T cells; Tem, effector memory T cells; Temra, terminally differentiated effector memory T 
cells; Trm, resident memory T cells; Tfh, follicular helper memory T cells.
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BASiC BiOLOgY OF ALLOReACTive 
MeMORY T CeLLS

Origins of Alloreactive Memory T Cells
Laboratory rodents display low frequencies of memory T cells 
(5–10% of all T cells). In the absence of prior exposure to alloan-
tigens, 1–10% of these memory T cells can react to allogeneic 
major histocompatibility complex (MHC) molecules in  vitro 
(5). In mice, these cells called endogenous or natural alloreac-
tive memory T cells recognize intact allogeneic MHC molecules 
through the direct allorecognition pathway (6, 7). It is likely that 
these memory cells are generated through the recognition of 
peptides from commensal bacteria or environmental antigens 
presented by self-MHC, which can mimic complexes formed 
by allogeneic MHC molecules bound to other peptides (8). 
Such antigen mimicry, named “heterologous immunity,” is well 
documented in both humans and experimental animal models. 
Humans and non-human primates raised in a non-sterile envi-
ronment are exposed to more infectious and pro-inflammatory 
agents during their development and thereby likely to develop 
potent heterologous immunity (9). For instance, following an 
EBV infection, HLA-B8+ individuals can become sensitized to 
the allo-MHC molecule HLA-B4402 through antigen mimicry 
resulting from the presentation of some viral or parasitic peptides 
(10, 11).

In laboratory mice, direct sensitization with skin allografts or 
spleen cell immunization is a common approach for generating 

donor-reactive memory T cells. In humans, transplant patients 
can be sensitized from exposures to alloantigens such as previous 
transplants, pregnancies, and blood transfusions. Until now, only 
memory T cells recognizing intact alloantigens directly have been 
reported (2, 12). Yet, it is probable that sensitized patients exhibit-
ing high titers of allospecific antibodies display memory T cells 
recognizing alloantigens indirectly as donor peptides–self-MHC 
complexes.

Memory T cells can also be generated through homeostatic 
proliferation in a lymphopenic environment, including potentially 
alloreactive and pathogenic T cells (13–15). Such homeostatically 
expanded memory T cells can impair tolerance induction to 
allografts (15–17).

The accumulation of alloreactive memory T cells may be 
influenced by the end stage organ disease or treatment common 
in transplant candidates. For example, prolonged exposure to 
dialysis increases the risk of developing alloreactive memory T 
cells (18). In addition, Sawinski et  al. reported that low serum 
levels of 25-OH-vitamin D in dialysis patients correlates with 
the frequency of alloreactive memory T cells independent of age, 
gender, previous transplants, or time on dialysis (19).

Location of Memory T Cells
Memory T cells have been traditionally divided into two 
major subsets with largely overlapping functions but distinct 
trafficking patterns (Figure 1). Central memory T cells (Tcm) 
express lymphoid homing markers CCR7 and CD62L, whereas 
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effector memory T cells (Tem) are CCR7−CD62L− but instead 
express molecules that promote migration into peripheral tis-
sues (20–23). In humans, but not in mice, some memory T cells 
[terminally differentiated effector memory T cells (Temra)] re-
express naive T cell surface marker CD45RA, while downregu-
lating expression of CCR7, CD62L, and CD28, and represent 
a terminal stage of effector differentiation (21, 24, 25). Recent 
studies demonstrated that some T cells in peripheral tissues do 
not circulate and represent a distinct subset of tissue-resident 
memory T cells (Trm) (24, 26–28). Trm cells express early 
activation marker CD69 and αEβ7 integrin CD103 along with 
a number of tissue-specific chemokine receptors (26, 29–32). 
There is accumulating evidence that Trm cells play an important 
role in host protection against infections. It is conceivable that 
Trm cells of both donor and recipient origins may influence 
transplant outcome by facilitating GVHD or allograft rejection, 
respectively. However, the proportion of alloreactive T cells 
among Trm subset and the potential contribution of such cells 
following transplantation remain to be addressed. Another 
important type of memory T cells relevant to transplantation is 
CD4+CXCR5hi follicular helper (Tfh) cells that reside in B cell 
follicles within secondary lymphoid organs and are essential 
for optimal B cell responses and antibody generation (33). As 
memory T cells in secondary lymphoid and non-lymphoid 
peripheral tissues are spared by antibody-mediated lymphoa-
blation (34) Trm cells may be harder to control compared to 
circulating memory T cells.

Low Activation Threshold and Resistance 
to Conventional Costimulatory Blockade
In the process of memory T cell differentiation, the T cell 
receptor and costimulatory signaling cascades are adjusted to 
ensure rapid activation of high magnitude upon antigen reen-
counter (35, 36). This results in the ability of memory T cells to 
respond to lower antigen doses with limited costimulation, i.e., 
to antigen presented by non-professional antigen-presenting 
cells (36–38). While this process is essential for host defense, 
it renders alloreactive memory T cells more dangerous in 
transplant settings. Numerous studies in animal models have 
demonstrated that donor-reactive memory T cells can induce 
allograft rejection despite interruption of essential costimula-
tory pathways, CD28/CD80/CD86 and CD40/CD154 (11, 15, 
39–43).

COnTRiBUTiOn OF MeMORY T CeLLS 
TO ALLOgRAFT ReJeCTiOn AnD 
TOLeRAnCe

Role in Allograft Rejection
During the past decade, studies investigating CD4+ versus CD8+ 
memory T cells revealed that these subsets contribute to allograft 
rejection through distinct mechanisms. Indeed, memory CD4+ 
T cells not only become effector cells upon reactivation, but 
also provide help for the robust activation of donor-reactive 
effector CD8+ T cells (40). These effector CD8+ T cells then are 
the main driving force behind allograft rejection facilitated by 

memory CD4+ T cells in heart-transplanted mice, and CD8+  
T cell depletion or limiting their trafficking into the graft signifi-
cantly extends allograft survival (40, 44).

While de novo responses by naïve T cells can be efficiently 
controlled by current immunosuppression, memory CD4+ 
T cells are resistant to these therapies and can provide help 
for the generation of DSA leading to alloantibody-mediated 
graft injury (40, 44). Recent studies in a mouse model of heart 
transplantation identified potential therapeutic targets to control 
CD40-independent DSA generation by memory CD4+ T cells. 
First, gamma interferon (IFNγ) secretion by memory helper T 
cells is required for de novo DSA generation (45). Second, CD40-
independent helper functions of donor-reactive memory CD4+ 
T cells and heart allograft rejection were markedly inhibited by 
neutralizing B cell activating factor and a proliferation-inducing 
ligand, cytokines critical for B cell survival, activation, and dif-
ferentiation (46).

The fate and functions of donor-reactive memory CD8+ T 
cells following transplantation are equally fascinating. Early 
direct contact of circulating memory CD8+ T cells with donor 
endothelium upregulates the expression of adhesion molecules 
and chemokines thus facilitating infiltration of recipient leu-
kocytes into the graft (47, 48). A proportion of endogenous 
memory CD8+ T cells react to donor MHC class I molecules and 
can infiltrate cardiac allografts within hours after reperfusion. 
Once in the graft parenchyma, these memory CD8+ T cells 
proliferate extensively, upregulate the expression of ICOS, and 
secrete IFNγ in ICOS-dependent manner (49, 50). Although 
this early expression of effector functions was found to be insuf-
ficient to mediate allograft rejection (51), the potential danger 
of endogenous memory CD8+ T cells should not be underes-
timated. The approximation of clinical situation by increasing 
graft cold ischemia storage time enhanced effector functions of 
endogenous memory CD8+ T cells enabling them to promptly 
reject a cardiac allograft despite costimulatory blockade with 
CTLA4-Ig (52).

influence of Memory T Cells on Allograft 
Tolerance
In laboratory rodents, endogenous memory T cells generated 
through heterologous immunity have little ability to prevent 
tolerance induction given that hematopoietic chimerism and/
or costimulation blockade regularly achieve tolerance of fully 
allogeneic transplants (53–55). In contrast, mice that have 
been sensitized to allogeneic MHC through transplantation or 
multiple viral infections become resistant to tolerance induction 
(11, 39, 56, 57). Moreover, naïve mice adoptively transferred 
with alloreactive memory T cells display similar resistance to 
tolerogenesis via hematopoietic chimerism or costimulation 
blockade (11, 39, 56, 57). Therefore, in laboratory rodents, 
antigen-induced rather than endogenous memory T cells 
prevent transplant tolerance. It is still unclear whether this dif-
ference relies on the low frequency of endogenous memory T 
cells or on the fact that these two subsets of memory T cells are 
different in nature.

The presence of memory T cells has been often correlated 
with poor outcomes in clinical transplantation. In humans, the 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Benichou et al. Memory T cells in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 170

presence of memory T cells pretransplantation has been associ-
ated with an increased risk for acute rejection of kidney trans-
plants (2). However, while EBV- and CMV-specific memory T 
cells displaying alloreactivity have been detected in human trans-
plant recipients, so far there is no indication that the presence of 
“heterologous immunity” in transplant recipients correlates with 
worse graft outcomes (10, 58–60).

Our laboratory showed that a sizable proportion of endog-
enous memory T cells found in peripheral blood, and secondary 
lymphoid organs of naïve cynomolgus monkeys are allospecific. 
Most Tem were CD8+CD95+CD28− IFNγ-producing cells 
located in the spleen, peripheral blood, and bone marrow while 
IL-2-producing Tcm were primarily CD4+CD95+CD28+ and 
limited to the lymph nodes and spleen (12). Based upon this 
observation, we studied the influence of pretransplant memory 
T cell alloreactivity on rejection versus tolerance of kidney 
allografts in monkeys (61). A series of cynomolgus monkeys 
were conditioned [whole body and thymic irradiations + horse 
antithymocyte globulin (ATG) treatment] and received a 
combined kidney and bone marrow transplantation from the 
same allogeneic donor (62). The animals then received a short-
term immunosuppression treatment comprised of anti-CD40L 
antibodies and cyclosporine A (62). This procedure resulted 
in a transient multilineage hematopoietic chimerism and 
achieved long-term survival of kidney allografts (>1 year) after 
withdrawal of immunosuppression in 70% of the monkeys (62). 
On the other hand, approximately 30% of the treated monkeys 
rejected their allograft in an acute fashion within 100–200 days 
posttransplantation (61). In this model, we observed that the 
vast majority of tolerant animals displayed low frequencies of 
donor-reactive memory T cells (61). It is noteworthy that no dif-
ferences between homeostatic expansion of memory T cells were 
observed between monkeys which rejected or accepted kidney 
allografts (61).

Even though memory T cells are generally viewed as 
pathogenic in the context of transplantation, under certain cir-
cumstances, they demonstrate regulatory capacity and suppress 
deleterious pro-inflammatory immune responses. Krupnick et al. 
have reported that early infiltration of central memory CD8+ T 
cells is essential for lung allograft acceptance after treatment with 
CTLA4-Ig and anti-CD154 mAbs (63). Similarly, CD8+CD45RClo 
cells with regulatory properties have been described in rat models 
of solid organ transplantation and GVHD (64, 65). These find-
ings raise a concern that lymphoablative approaches targeting 
memory T cells may interfere with allograft acceptance of certain 
types of transplants.

ReCenT DeveLOPMenTS in TARgeTing 
ALLOReACTive T CeLL MeMORY

Lymphoablation
Induction therapy is widely used in clinical transplantation to 
overcome the deleterious effects of preexisting donor-reactive 
immunity. Antibody-mediated lymphocyte depletion is most 
commonly used induction strategy, particularly in highly sensi-
tized patients and in patients receiving marginal grafts (66–69). 

Although memory T cells are the primary targets of induction 
therapies, they are less susceptible to depletion than naïve T cells 
(70–73). T cells with an effector/memory phenotype are detect-
able after anti-CD52 mAb or ATG induction and are associated 
with acute rejection episodes in non-human primates and human 
transplant recipients (74, 75). In rodents, preexisting memory T 
cells rapidly recover following lymphocyte depletion with ATG 
and dominate anti-donor immune responses. The efficiency of 
memory CD4+ T cell depletion is generally lower than that of 
CD8+ T cells (34, 76–79). Additional depletion of residual CD4+ 
T cells severely impairs the recovery of memory CD8+ T cells 
after ATG treatment (80). Limiting CD4+ T helper signals during 
lymphoablation increases the efficacy of mATG in controlling 
memory T cell expansion and significantly extends heart allo-
graft survival in sensitized recipients (80). These findings are 
consistent with previous observations describing a synergistic 
effect between ATG lymphoablation and costimulatory blockade 
(81, 82).

Alefacept, a fusion protein combining extracellular domain 
of LFA-3 with constant regions of human IgG1 (83–85). LFA-3 
is a ligand for CD2, a molecule that is predominantly detected 
on human T and NK cells. As CD2 expression is upregulated on 
CD45RO+ effector/memory T cells, alefacept selectively depletes 
this subset and spares other T cell populations (86–88). Alefacept 
is currently being used in clinic for the treatment of severe pso-
riasis (89, 90) and is showing promise for targeting alloreactive 
effector/memory T cells in solid organ and bone marrow trans-
plantation (91–95). Most importantly, pretransplant alefacept 
therapy synergizes with CTLA4-Ig presumably by targeting 
costimulatory blockade-resistant CD8+CD2hiCD28− effector/
memory T cells (91).

In addition to direct lymphoablation, manipulating T cell sur-
vival and homeostasis by regulating cell metabolic pathways may 
be a promising therapeutic strategy in transplantation. Recent 
studies suggest that immune cells subsets use different mecha-
nisms of energy generation, and this information can be exploited 
to selectively target undesirable memory T cells [reviewed in Ref. 
(96)].

Costimulatory Blockade
Belatacept, a second generation of CTLA4-Ig, is currently 
used in clinical transplantation to prevent allograft rejection 
and minimize the toxic side effects of calcineurin inhibitors 
(97). Despite reduced side effects and improved graft survival, 
belatacept-treated patients have higher rates of acute cellular 
rejection compared to CNI treatment (98, 99). As memory T 
cells are more resistant to the effects of CTLA4-Ig in animal 
transplantation models, it is possible that presensitized T cells 
could account for some belatacept-resistant rejection episodes. 
Indeed, terminally differentiated memory CD4+ and CD8+ T 
cells in humans (Temra) lose CD28 expression and become 
insensitive to the lack of CD28/B7 costimulation (100–104). 
Not surprisingly, increased numbers of both CD4+ and CD8+ 
CD28− memory T cells are associated with a poor outcome in 
renal and lung transplant patients (105–108). A recent report by 
Espinosa et al. identified yet another population of CD57+CD4+ T 
cells as potential mediators of belatacept-resistant renal allograft 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Benichou et al. Memory T cells in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 170

rejection. These cells are more common in patients with kidney 
failure, express high levels of adhesion molecules CD2, LFA-1, 
and VLA-4, downregulate CD28, and produce IFNγ, tumor 
necrosis factor alpha (TNFα), and granzyme B consistent with 
effector/memory phenotype (109).

Recent reports suggest that the pedigree of alloreactive 
memory T cells in a given recipient may have important practi-
cal implications. Using three different pathogens to generate 
donor-reactive memory T cells in a mouse model of skin 
transplantation, Badell et al. demonstrated that the sensitivity 
of memory T cells to immunosuppression is dependent on 
their origin (110). In this study, Tcm with a less differentiated 
phenotype were most sensitive to the effects of costimulatory 
blockade. Consistent with these findings, in vitro comparison of 
CMV- and alloreactive T cells suggested that virus-specific fully 
differentiated T cells secreting IFNγ, TNFα, and IL-2 simulta-
neously are more resistant to the effects of CTLA4-Ig, whereas 
tacrolimus inhibits responses by both allo- and virus-specific  
T cells (111).

In addition to blocking CD28/B7 costimulation, CTLA4-Ig 
also prevents signaling through CTLA-4, which can have 
negative effects on generation and functions of regulatory T cells 
(Tregs) (112–117). To circumvent this problem, several antago-
nistic anti-CD28 mAbs and Ab F(ab′)2 fragments have been 
generated and showed promise in animal transplantation models 
(118–121). The selective effects of these reagents on memory T 
cell subsets and the potential pathogenicity of CD28lo Temra 
cells during such therapies remain to be determined. Attempts 
to target another major costimulatory pathway, CD40/CD154, 
encountered early difficulties because of thromboembolic effects 
of anti-CD154 (CD40L) blocking antibodies (122). To avoid 
cross-linking CD154 that is highly expressed on platelets, an 
alternative approach has been the generation of non-activating 
anti-CD40 antibodies. Several such reagents have been suc-
cessfully tested in non-human primate recipients of renal and 
islet allografts (123–128).

In addition to CD28/B7 and CD40/CD154 costimulation, 
several other costimulatory pathways may play a role in effector/
memory T cell functions. Inhibition or genetic lack of ICOS/
B7RP-1, CD134/CD134L, CD70/CD27, or CD137/CD137L 
improved allograft survival even in donor-sensitized recipients, 
or after delayed administration which allowed initial priming of 
donor-reactive T cells [reviewed in Ref. (129)]. It was revealed 
that these costimulatory pathways might control distinct aspects 
of the alloimmune response. For example, blocking anti-CD134L 
mAb inhibits proliferation of effector T cells while supporting the 
survival of Tregs (71, 130). Conversely, signaling through CD134 
inhibits immunosuppressive properties of FoxP3+ Tregs and 
promotes allograft rejection (131, 132). ICOS/B7RP-1 blockade 
of resting memory CD4+ T cells inhibits their helper functions 
and decreases alloantibody production. In contrast, circulating 
memory CD8+ T cells are ICOSlo, but rapidly upregulate ICOS 
surface expression upon graft infiltration. These examples 
demonstrate that the complexity of costimulatory pathways 
governing alloimmune responses must be considered when 
costimulatory blockade is used as part of immunosuppression 
regimen.

Limiting Trafficking of Alloreactive 
Memory T Cells
While preventing memory T cell entrance into graft tissue 
should improve transplant outcome, the attempts to neutralize 
chemokines or chemokine receptors such as CCR5 or CXCR3 
did not live up to the initial expectations, most likely due to 
the redundancy of chemokine/receptor network. On other 
hand, reagents blocking LFA-1 (leukocyte function-associated 
antigen-1, an αLβ2 integrin) and VLA-4 (very late antigen-4, an 
α4β1 integrin) have been demonstrated to prolong allograft sur-
vival in experimental transplantation [reviewed in Ref. (133)]. 
Treatment with either anti-LFA-1 or anti-VLA-4 blocking mAbs 
prolonged skin allograft survival in a mouse model of costimu-
latory blockade-resistant rejection by memory CD8+ T cells 
(134). In another study, pretransplant treatment with anti-LFA-1 
mAbs inhibited early infiltration of endogenous donor-reactive 
memory CD8+ T cells into cardiac allografts, and significantly 
prolonged allograft survival (135). These findings suggest that a 
short course of integrin blockade may be instrumental in con-
trolling T cell memory while avoiding side effects of long-term 
treatments.

COnCLUDing ReMARKS

While other types of immunologic memory lymphocytes such 
as memory B cells, preexisting alloantibodies, and “innate 
memory” described for NK cells and macrophages can impact 
transplant outcomes, in this review, we focused exclusively 
on T cell memory. It is now firmly established that alloreac-
tive memory T cells accelerate allograft rejection and prevent 
transplant tolerance. However, the implementation of accu-
mulated experimental knowledge in clinical transplantation 
is impeded by several factors. First, the diagnostics of T cell 
allosensitization in transplant candidates is problematic. Due 
to heterogeneity in phenotype and functions of memory T 
cells, complementary tests will be required including analyses 
of cytokine producing, cytotoxic, and follicular helper T cells. 
The resulting information is likely to be complex and hard to 
use in clinical decision-making. Second, memory T cells in 
humans are sampled only in peripheral blood. So far, there is 
no information on pathogenicity of tissue-resident alloreactive 
memory T cells. Third, memory T cell susceptibility to immu-
nosuppression may depend on their origins. As immunological 
histories of individuals are difficult to trace, the situation may 
arise when patients with similar T cell memory profile require 
distinct treatment strategies. Finally, despite rapidly accumu-
lating data on alloreactive T cell memory, the discrepancies 
between animal models and transplantation in human patients 
are profound. Ideally, animal transplantation models approxi-
mating clinical situation should take into account frequencies 
of total and donor-reactive memory T cells in different spe-
cies, time of graft cold ischemia storage, and the presence of 
DSA in recipient serum. Including these considerations into 
experimental design will facilitate the development of novel 
approaches to control memory T cells and improve transplant 
survival in sensitized recipients.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Benichou et al. Memory T cells in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 170

AUTHOR COnTRiBUTiOnS

GB, AV, BG, JM, and KA wrote portions of the manuscript;  
GB and AV edited the manuscript and prepared it for  
submission.

ACKnOwLeDgMenTS

This study was supported by NIH grants R21AI111191 and 
R21AI117466 to GB and R01AI113142 and 2PO1 AI087586-06 
to AV.

ReFeRenCeS

1. Augustine JJ, Siu DS, Clemente MJ, Schulak JA, Heeger PS, Hricik DE. Pre-
transplant IFN-gamma ELISPOTs are associated with post-transplant renal 
function in African American renal transplant recipients. Am J Transplant 
(2005) 5(8):1971–5. doi:10.1111/j.1600-6143.2005.00958.x 

2. Heeger PS, Greenspan NS, Kuhlenschmidt S, Dejelo C, Hricik DE, Schulak 
JA, et al. Pretransplant frequency of donor-specific, IFN-gamma-producing 
lymphocytes is a manifestation of immunologic memory and correlates 
with the risk of posttransplant rejection episodes. J Immunol (1999) 
163(4):2267–75. 

3. Hricik DE, Rodriguez V, Riley J, Bryan K, Tary-Lehmann M, Greenspan N, et al. 
Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma 
independently predicts renal function in kidney transplant recipients. Am 
J Transplant (2003) 3(7):878–84. doi:10.1034/j.1600-6143.2003.00132.x 

4. Poggio ED, Augustine JJ, Clemente M, Danzig JM, Volokh N, Zand MS, 
et al. Pretransplant cellular alloimmunity as assessed by a panel of reactive  
T cells assay correlates with acute renal graft rejection. Transplantation (2007) 
83(7):847–52. doi:10.1097/01.tp.0000258730.75137.39  

5. Lombardi G, Sidhu S, Daly M, Batchelor JR, Makgoba W, Lechler RI. Are 
primary alloresponses truly primary? Int Immunol (1990) 2(1):9–13. 

6. Benichou G, Valujskikh A, Heeger PS. Contributions of direct and indirect 
T cell alloreactivity during allograft rejection in mice. J Immunol (1999) 
162(1):352–8. 

7. Benichou G. Direct and indirect antigen recognition: the pathways to 
allograft immune rejection. Front Biosci (1999) 4:D476–80. 

8. Lechler R, Lombardi G. Structural aspects of allorecognition. Curr Opin 
Immunol (1991) 3(5):715–21. 

9. Mbitikon-Kobo FM, Vocanson M, Michallet MC, Tomkowiak M, Cottalorda 
A, Angelov GS, et al. Characterization of a CD44/CD122int memory CD8 
T cell subset generated under sterile inflammatory conditions. J Immunol 
(2009) 182(6):3846–54. doi:10.4049/jimmunol.0802438 

10. Amir AL, D’Orsogna LJ, Roelen DL, van Loenen MM, Hagedoorn RS, de 
Boer R, et al. Allo-HLA reactivity of virus-specific memory T cells is com-
mon. Blood (2010) 115(15):3146–57. doi:10.1182/blood-2009-07-234906 

11. Pantenburg B, Heinzel F, Das L, Heeger PS, Valujskikh A. T cells primed 
by Leishmania major infection cross-react with alloantigens and alter the 
course of allograft rejection. J Immunol (2002) 169(7):3686–93. doi:10.4049/
jimmunol.169.7.3686  

12. Nadazdin O, Boskovic S, Murakami T, O’Connor DH, Wiseman RW, Karl 
JA, et  al. Phenotype, distribution and alloreactive properties of memory  
T cells from cynomolgus monkeys. Am J Transplant (2010) 10(6):1375–84. 
doi:10.1111/j.1600-6143.2010.03119.x 

13. Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasis-stimulated prolifer-
ation drives naive T cells to differentiate directly into memory T cells. J Exp 
Med (2000) 192(4):549–56. doi:10.1084/jem.192.4.549 

14. Tchao NK, Turka LA. Lymphodepletion and homeostatic proliferation: 
implications for transplantation. Am J Transplant (2012) 12(5):1079–90. 
doi:10.1111/j.1600-6143.2012.04008.x 

15. Wu Z, Bensinger SJ, Zhang J, Chen C, Yuan X, Huang X, et al. Homeostatic 
proliferation is a barrier to transplantation tolerance. Nat Med (2004) 
10(1):87–92. doi:10.1038/nm965 

16. Taylor DK, Neujahr D, Turka LA. Heterologous immunity and homeostatic 
proliferation as barriers to tolerance. Curr Opin Immunol (2004) 16(5):558–
64. doi:10.1016/j.coi.2004.07.007 

17. Moxham VF, Karegli J, Phillips RE, Brown KL, Tapmeier TT, Hangartner 
R, et  al. Homeostatic proliferation of lymphocytes results in augmented 
memory-like function and accelerated allograft rejection. J Immunol (2008) 
180(6):3910–8. doi:10.4049/jimmunol.180.6.3910  

18. Augustine JJ, Poggio ED, Clemente M, Aeder MI, Bodziak KA, Schulak JA, 
et al. Hemodialysis vintage, black ethnicity, and pretransplantation antidonor 

cellular immunity in kidney transplant recipients. J Am Soc Nephrol (2007) 
18(5):1602–6. doi:10.1681/ASN.2006101105  

19. Sawinski D, Uribarri J, Peace D, Yao T, Wauhop P, Trzcinka P, et  al. 
25-OH-vitamin D deficiency and cellular alloimmunity as measured by 
panel of reactive T cell testing in dialysis patients. Am J Transplant (2010) 
10(10):2287–95. doi:10.1111/j.1600-6143.2010.03264.x 

20. Ahmadzadeh M, Hussain SF, Farber DL. Heterogeneity of the memory CD4 
T cell response: persisting effectors and resting memory T cells. J Immunol 
(2001) 166(2):926–35. doi:10.4049/jimmunol.166.2.926  

21. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory 
T cell subsets: function, generation, and maintenance. Annu Rev Immunol 
(2004) 22:745–63. doi:10.1146/annurev.immunol.22.012703.104702  

22. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of mem-
ory T lymphocytes with distinct homing potentials and effector functions. 
Nature (1999) 401(6754):708–12. 

23. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, et al. 
Lineage relationship and protective immunity of memory CD8 T cell subsets. 
Nat Immunol (2003) 4(3):225–34. doi:10.1038/ni889 

24. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, et al. 
Distribution and compartmentalization of human circulating and tissue- 
resident memory T cell subsets. Immunity (2013) 38(1):187–97. doi:10.1016/ 
j.immuni.2012.09.020 

25. Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity 
(2008) 29(6):848–62. doi:10.1016/j.immuni.2008.11.002  

26. Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, et  al. 
Antigen-independent differentiation and maintenance of effector-like 
resident memory T cells in tissues. J Immunol (2012) 188(10):4866–75. 
doi:10.4049/jimmunol.1200402 

27. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone 
FR. Memory T cells in nonlymphoid tissue that provide enhanced local 
immunity during infection with herpes simplex virus. Nat Immunol (2009) 
10(5):524–30. doi:10.1038/ni.1718 

28. Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, Akondy R, et al. 
Dynamic T cell migration program provides resident memory within intesti-
nal epithelium. J Exp Med (2010) 207(3):553–64. doi:10.1084/jem.20090858 

29. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The 
developmental pathway for CD103(+)CD8+ tissue-resident memory T cells 
of skin. Nat Immunol (2013) 14(12):1294–301. doi:10.1038/ni.2744 

30. Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, Igyarto BZ, 
et al. Quantifying memory CD8 T cells reveals regionalization of immuno-
surveillance. Cell (2015) 161(4):737–49. doi:10.1016/j.cell.2015.03.031 

31. Turner DL, Gordon CL, Farber DL. Tissue-resident T cells, in situ immunity 
and transplantation. Immunol Rev (2014) 258(1):150–66. doi:10.1111/
imr.12149 

32. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, et  al. 
Human skin is protected by four functionally and phenotypically discrete 
populations of resident and recirculating memory T cells. Sci Transl Med 
(2015) 7(279):279ra39. doi:10.1126/scitranslmed.3010302 

33. Hale JS, Ahmed R. Memory T follicular helper CD4 T cells. Front Immunol 
(2015) 6:16. doi:10.3389/fimmu.2015.00016  

34. Ayasoufi K, Yu H, Fan R, Wang X, Williams J, Valujskikh A. Pretransplant 
antithymocyte globulin has increased efficacy in controlling donor-reactive 
memory T cells in mice. Am J Transplant (2013) 13(3):589–99. doi:10.1111/
ajt.12068 

35. Chandok MR, Farber DL. Signaling control of memory T cell generation and 
function. Semin Immunol (2004) 16(5):285–93. doi:10.1016/j.smim.2004. 
08.009

36. Jameson SC, Masopust D. Diversity in T cell memory: an embarrassment 
of riches. Immunity (2009) 31(6):859–71. doi:10.1016/j.immuni.2009.11.007 

37. Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response 
to antigen. Memory cells are less dependent on accessory cell costimulation 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/j.1600-6143.2005.00958.x
https://doi.org/10.1034/j.1600-6143.2003.00132.x
https://doi.org/10.1097/01.tp.0000258730.75137.39
https://doi.org/10.4049/jimmunol.0802438
https://doi.org/10.1182/blood-2009-07-
234906
https://doi.org/10.4049/jimmunol.169.7.3686
https://doi.org/10.4049/jimmunol.169.7.3686
https://doi.org/10.1111/j.1600-6143.2010.03119.x
https://doi.org/10.1084/jem.192.4.549
https://doi.org/10.1111/j.1600-6143.2012.04008.x
https://doi.org/10.1038/nm965
https://doi.org/10.1016/j.coi.2004.07.007
https://doi.org/10.4049/jimmunol.180.6.3910
https://doi.org/10.1681/ASN.2006101105
https://doi.org/10.1111/j.1600-6143.2010.03264.x
https://doi.org/10.4049/jimmunol.166.2.926
https://doi.org/10.1146/annurev.immunol.22.012703.104702
https://doi.org/10.1038/ni889
https://doi.org/10.1016/
j.immuni.2012.09.020
https://doi.org/10.1016/
j.immuni.2012.09.020
https://doi.org/10.1016/j.immuni.2008.11.002
https://doi.org/10.4049/jimmunol.1200402
https://doi.org/10.1038/ni.1718
https://doi.org/10.1084/jem.
20090858
https://doi.org/10.1038/ni.2744
https://doi.org/10.1016/j.cell.2015.03.031
https://doi.org/10.1111/imr.12149
https://doi.org/10.1111/imr.12149
https://doi.org/10.1126/scitranslmed.3010302
https://doi.org/10.3389/fimmu.2015.00016
https://doi.org/10.1111/ajt.12068
https://doi.org/10.1111/ajt.12068
https://doi.org/10.1016/j.smim.2004.
08.009
https://doi.org/10.1016/j.smim.2004.
08.009
https://doi.org/10.1016/j.immuni.2009.11.007


7

Benichou et al. Memory T cells in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 170

and can respond to many antigen-presenting cell types including resting  
B cells. J Immunol (1994) 152(6):2675–85. 

38. Khayyamian S, Hutloff A, Buchner K, Grafe M, Henn V, Kroczek RA, et al. 
ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and 
Th2 cytokine secretion by memory CD4+ T cells. Proc Natl Acad Sci U S A 
(2002) 99(9):6198–203. doi:10.1073/pnas.092576699  

39. Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, Kaech SM, 
et  al. Heterologous immunity provides a potent barrier to transplantation 
tolerance. J Clin Invest (2003) 111(12):1887–95. doi:10.1172/JCI17477  

40. Chen Y, Heeger PS, Valujskikh A. In vivo helper functions of alloreactive 
memory CD4+ T cells remain intact despite donor-specific transfusion and 
anti-CD40 ligand therapy. J Immunol (2004) 172(9):5456–66. doi:10.4049/
jimmunol.172.9.5456

41. Valujskikh A, Pantenburg B, Heeger PS. Primed allospecific T cells 
prevent the effects of costimulatory blockade on prolonged cardiac 
allograft survival in mice. Am J Transplant (2002) 2(6):501–9. doi:10.1034/ 
j.1600-6143.2002.20603.x  

42. Welsh RM, Markees TG, Woda BA, Daniels KA, Brehm MA, Mordes JP, 
et  al. Virus-induced abrogation of transplantation tolerance induced 
by donor-specific transfusion and anti-CD154 antibody. J Virol (2000) 
74(5):2210–8. doi:10.1128/JVI.74.5.2210-2218.2000  

43. Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW. Allograft rejection 
by primed/memory CD8+ T cells is CD154 blockade resistant: therapeu-
tic implications for sensitized transplant recipients. J Immunol (2002) 
169(8):4667–73. doi:10.4049/jimmunol.169.8.4667  

44. Zhang Q, Chen Y, Fairchild RL, Heeger PS, Valujskikh A. Lymphoid 
sequestration of alloreactive memory CD4 T cells promotes cardiac allograft 
survival. J Immunol (2006) 176(2):770–7. doi:10.4049/jimmunol.176.2.770 

45. Gorbacheva V, Fan R, Wang X, Baldwin WM III, Fairchild RL, Valujskikh 
A. IFN-gamma production by memory helper T cells is required for CD40-
independent alloantibody responses. J Immunol (2015) 194(3):1347–56. 
doi:10.4049/jimmunol.1401573  

46. Gorbacheva V, Ayasoufi K, Fan R, Baldwin WM III, Valujskikh A. B cell acti-
vating factor (BAFF) and a proliferation inducing ligand (APRIL) mediate 
CD40-independent help by memory CD4 T cells. Am J Transplant (2015) 
15(2):346–57. doi:10.1111/ajt.12984  

47. El-Sawy T, Belperio JA, Strieter RM, Remick DG, Fairchild RL. Inhibition of 
polymorphonuclear leukocyte-mediated graft damage synergizes with short-
term costimulatory blockade to prevent cardiac allograft rejection. Circulation 
(2005) 112(3):320–31. doi:10.1161/CIRCULATIONAHA.104.516708  

48. El-Sawy T, Miura M, Fairchild R. Early T cell response to allografts occurring 
prior to alloantigen priming up-regulates innate-mediated inflammation and 
graft necrosis. Am J Pathol (2004) 165(1):147–57. doi:10.1016/S0002-9440(10) 
63283-X  

49. Schenk AD, Gorbacheva V, Rabant M, Fairchild RL, Valujskikh A. Effector 
functions of donor-reactive CD8 memory T cells are dependent on 
ICOS induced during division in cardiac grafts. Am J Transplant (2009) 
9(1):64–73. doi:10.1111/j.1600-6143.2008.02460.x 

50. Schenk AD, Nozaki T, Rabant M, Valujskikh A, Fairchild RL. Donor-
reactive CD8 memory T cells infiltrate cardiac allografts within 24-h 
posttransplant in naive recipients. Am J Transplant (2008) 8(8):1652–61. 
doi:10.1111/j.1600-6143.2008.02302.x 

51. Setoguchi K, Hattori Y, Iida S, Baldwin WM III, Fairchild RL. Endogenous 
memory CD8 T cells are activated within cardiac allografts without 
mediating rejection. Am J Transplant (2013) 13(9):2293–307. doi:10.1111/ 
ajt.12372 

52. Su CA, Iida S, Abe T, Fairchild RL. Endogenous memory CD8 T cells directly 
mediate cardiac allograft rejection. Am J Transplant (2014) 14(3):568–79. 
doi:10.1111/ajt.12605 

53. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat 
Rev Immunol (2003) 3(3):199–210. doi:10.1038/nri1027  

54. Kurtz J, Shaffer J, Lie A, Anosova N, Benichou G, Sykes M. Mechanisms 
of early peripheral CD4 T-cell tolerance induction by anti-CD154 mono-
clonal antibody and allogeneic bone marrow transplantation: evidence 
for anergy and deletion but not regulatory cells. Blood (2004) 103(11): 
4336–43. doi:10.1182/blood-2003-08-2642  

55. Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden 
C, et al. Long-term acceptance of skin and cardiac allografts after blocking 
CD40 and CD28 pathways. Nature (1996) 381(6581):434–8. 

56. Brehm MA, Markees TG, Daniels KA, Greiner DL, Rossini AA, Welsh RM. 
Direct visualization of cross-reactive effector and memory allo-specific 
CD8 T cells generated in response to viral infections. J Immunol (2003) 
170(8):4077–86. doi:10.4049/jimmunol.170.8.4077  

57. Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS, et al.  
T cell allorecognition via molecular mimicry. Immunity (2009) 31(6):897–
908. doi:10.1016/j.immuni.2009.09.025 

58. Burrows SR, Silins SL, Khanna R, Burrows JM, Rischmueller M, McCluskey 
J, et al. Cross-reactive memory T cells for Epstein-Barr virus augment the 
alloresponse to common human leukocyte antigens: degenerate recognition 
of major histocompatibility complex-bound peptide by T cells and its role in 
alloreactivity. Eur J Immunol (1997) 27(7):1726–36. 

59. Heutinck KM, Yong S, Tonneijck L, van den Heuvel H, van der Weerd 
NC, van der Pant KA, et  al. Virus-specific CD8 T-cells cross-reactive to 
donor- alloantigen are transiently present in the circulation of kidney trans-
plant recipients infected with CMV and/or EBV. Am J Transplant (2016) 
16(5):1480–91. doi:10.1111/ajt.13618 

60. Mifsud NA, Nguyen TH, Tait BD, Kotsimbos TC. Quantitative and functional 
diversity of cross-reactive EBV-specific CD8+ T cells in a longitudinal study 
cohort of lung transplant recipients. Transplantation (2010) 90(12):1439–49. 
doi:10.1097/TP.0b013e3181ff4ff3 

61. Nadazdin O, Boskovic S, Murakami T, Tocco G, Smith RN, Colvin RB, et al. 
Host alloreactive memory T cells influence tolerance to kidney allografts 
in nonhuman primates. Sci Transl Med (2011) 3(86):86ra51. doi:10.1126/
scitranslmed.3002093 

62. Kawai T, Sogawa H, Boskovic S, Abrahamian G, Smith RN, Wee SL, 
et  al. CD154 blockade for induction of mixed chimerism and prolonged 
renal allograft survival in nonhuman primates. Am J Transplant (2004) 
4(9):1391–8. doi:10.1111/j.1600-6143.2004.00523.x  

63. Krupnick AS, Lin X, Li W, Higashikubo R, Zinselmeyer BH, Hartzler H, et al. 
Central memory CD8+ T lymphocytes mediate lung allograft acceptance. 
J Clin Invest (2014) 124(3):1130–43. doi:10.1172/JCI71359 

64. Guillonneau C, Picarda E, Anegon I. CD8+ regulatory T cells in solid 
organ transplantation. Curr Opin Organ Transplant (2010) 15(6):751–6. 
doi:10.1097/MOT.0b013e32834016d1 

65. Li XL, Menoret S, Bezie S, Caron L, Chabannes D, Hill M, et al. Mechanism 
and localization of CD8 regulatory T cells in a heart transplant model 
of tolerance. J Immunol (2010) 185(2):823–33. doi:10.4049/jimmunol. 
1000120 

66. Fehr T, Sykes M. Tolerance induction in clinical transplantation. Transpl 
Immunol (2004) 13(2):117–30. doi:10.1016/j.trim.2004.05.009

67. Golshayan D, Pascual M. Tolerance-inducing immunosuppressive 
strategies in clinical transplantation: an overview. Drugs (2008) 68(15): 
2113–30. doi:10.2165/00003495-200868150-00004  

68. Haudebourg T, Poirier N, Vanhove B. Depleting T-cell subpopulations 
in organ transplantation. Transpl Int (2009) 22(5):509–18. doi:10.1111/ 
j.1432-2277.2008.00788.x 

69. Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion 
and beyond. Leukemia (2007) 21(7):1387–94. doi:10.1038/sj.leu.2404683 

70. Koyama I, Nadazdin O, Boskovic S, Ochiai T, Smith RN, Sykes M, et al. 
Depletion of CD8 memory T cells for induction of tolerance of a previ-
ously transplanted kidney allograft. Am J Transplant (2007) 7(5):1055–61. 
doi:10.1111/j.1600-6143.2006.01703.x 

71. Kroemer A, Xiao X, Vu MD, Gao W, Minamimura K, Chen M, et  al.  
OX40 controls functionally different T cell subsets and their resistance 
to depletion therapy. J Immunol (2007) 179(8):5584–91. doi:10.4049/
jimmunol.179.8.5584  

72. Neujahr DC, Chen C, Huang X, Markmann JF, Cobbold S, Waldmann H, 
et  al. Accelerated memory cell homeostasis during T cell depletion and 
approaches to overcome it. J Immunol (2006) 176(8):4632–9. doi:10.4049/
jimmunol.176.8.4632  

73. Zeevi A, Husain S, Spichty KJ, Raza K, Woodcock JB, Zaldonis D, et  al. 
Recovery of functional memory T cells in lung transplant recipients 
following induction therapy with alemtuzumab. Am J Transplant (2007) 
7(2):471–5. doi:10.1111/j.1600-6143.2006.01641.x  

74. Haanstra KG, Sick EA, Ringers J, Wubben JA, Kuhn EM, t Hart BA, et al. 
No synergy between ATG induction and costimulation blockade induced 
kidney allograft survival in rhesus monkeys. Transplantation (2006) 
82(9):1194–201. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1073/pnas.092576699
https://doi.org/10.1172/JCI17477
https://doi.org/10.4049/jimmunol.172.9.5456
https://doi.org/10.4049/jimmunol.172.9.5456
https://doi.org/10.1034/
j.1600-6143.2002.20603.x
https://doi.org/10.1034/
j.1600-6143.2002.20603.x
https://doi.org/10.1128/JVI.74.5.2210-2218.2000
https://doi.org/10.4049/jimmunol.169.8.4667
https://doi.org/10.4049/jimmunol.176.2.770
https://doi.org/10.4049/jimmunol.1401573
https://doi.org/10.1111/ajt.12984
https://doi.org/10.1161/CIRCULATIONAHA.104.516708
https://doi.org/10.1016/S0002-9440(10)
63283-X
https://doi.org/10.1016/S0002-9440(10)
63283-X
https://doi.org/10.1111/j.1600-6143.2008.02460.x
https://doi.org/10.1111/j.1600-6143.2008.02302.x
https://doi.org/10.1111/ajt.12372
https://doi.org/10.1111/ajt.12372
https://doi.org/10.1111/ajt.12605
https://doi.org/10.1038/nri1027
https://doi.org/10.1182/blood-2003-08-2642
https://doi.org/10.4049/jimmunol.170.8.4077
https://doi.org/10.1016/j.immuni.2009.09.025
https://doi.org/10.1111/ajt.13618
https://doi.org/10.1097/TP.0b013e3181ff4ff3
https://doi.org/10.1126/scitranslmed.3002093
https://doi.org/10.1126/scitranslmed.3002093
https://doi.org/10.1111/j.1600-6143.2004.00523.x
https://doi.org/10.1172/JCI71359
https://doi.org/10.1097/MOT.0b013e32834016d1
https://doi.org/10.4049/jimmunol.
1000120
https://doi.org/10.4049/jimmunol.
1000120
https://doi.org/10.1016/j.trim.2004.05.009
https://doi.org/10.2165/00003495-200868150-00004
https://doi.org/10.1111/
j.1432-2277.2008.00788.x
https://doi.org/10.1111/
j.1432-2277.2008.00788.x
https://doi.org/10.1038/sj.leu.2404683
https://doi.org/10.1111/j.1600-6143.2006.01703.x
https://doi.org/10.4049/jimmunol.179.8.5584
https://doi.org/10.4049/jimmunol.179.8.5584
https://doi.org/10.4049/jimmunol.176.8.4632
https://doi.org/10.4049/jimmunol.176.8.4632
https://doi.org/10.1111/j.1600-6143.2006.01641.x


8

Benichou et al. Memory T cells in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 170

75. Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. 
Immunocompetent T-cells with a memory-like phenotype are the dominant 
cell type following antibody-mediated T-cell depletion. Am J Transplant 
(2005) 5(3):465–74. doi:10.1111/j.1600-6143.2005.00759.x  

76. Hu Y, Turner MJ, Shields J, Gale MS, Hutto E, Roberts BL, et  al. 
Investigation of the mechanism of action of alemtuzumab in a human 
CD52 transgenic mouse model. Immunology (2009) 128(2):260–70. 
doi:10.1111/j.1365-2567.2009.03115.x 

77. Marco MR, Dons EM, van der Windt DJ, Bhama JK, Lu LT, Zahorchak 
AF, et  al. Post-transplant repopulation of naive and memory T cells in 
blood and lymphoid tissue after alemtuzumab-mediated depletion in 
heart-transplanted cynomolgus monkeys. Transpl Immunol (2013) 29(1–4): 
88–98. doi:10.1016/j.trim.2013.10.002  

78. Ruzek MC, Waire JS, Hopkins D, Lacorcia G, Sullivan J, Roberts BL, et al. 
Characterization of in  vitro antimurine thymocyte globulin-induced reg-
ulatory T cells that inhibit graft-versus-host disease in  vivo. Blood (2008) 
111(3):1726–34. doi:10.1182/blood-2007-08-106526  

79. Yokota N, Daniels F, Crosson J, Rabb H. Protective effect of T cell deple-
tion in murine renal ischemia-reperfusion injury. Transplantation (2002) 
74(6):759–63. 

80. Ayasoufi K, Fan R, Fairchild RL, Valujskikh A. CD4 T cell help via B cells 
is required for lymphopenia-induced CD8 T cell proliferation. J Immunol 
(2016) 196(7):3180–90. doi:10.4049/jimmunol.1501435 

81. D’Addio F, Yuan X, Habicht A, Williams J, Ruzek M, Iacomini J, et  al. A 
novel clinically relevant approach to tip the balance toward regulation in 
stringent transplant model. Transplantation (2010) 90(3):260–9. doi:10.1097/
TP.0b013e3181e64217  

82. Kim EJ, Kwun J, Gibby AC, Hong JJ, Farris AB III, Iwakoshi NN, et  al. 
Costimulation blockade alters germinal center responses and prevents anti-
body-mediated rejection. Am J Transplant (2014) 14(1):59–69. doi:10.1111/
ajt.12526 

83. da Silva AJ, Brickelmaier M, Majeau GR, Li Z, Su L, Hsu YM, et al. Alefacept, 
an immunomodulatory recombinant LFA-3/IgG1 fusion protein, induces 
CD16 signaling and CD2/CD16-dependent apoptosis of CD2(+) cells. 
J Immunol (2002) 168(9):4462–71. doi:10.4049/jimmunol.168.9.4462

84. Majeau GR, Meier W, Jimmo B, Kioussis D, Hochman PS. Mechanism of 
lymphocyte function-associated molecule 3-Ig fusion proteins inhibition 
of T cell responses. Structure/function analysis in vitro and in human CD2 
transgenic mice. J Immunol (1994) 152(6):2753–67. 

85. Miller GT, Hochman PS, Meier W, Tizard R, Bixler SA, Rosa MD, et  al. 
Specific interaction of lymphocyte function-associated antigen 3 with CD2 
can inhibit T cell responses. J Exp Med (1993) 178(1):211–22. 

86. Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, et  al. 
Alefacept reduces infiltrating T cells, activated dendritic cells, and inflam-
matory genes in psoriasis vulgaris. Proc Natl Acad Sci U S A (2005) 102(6): 
2075–80. doi:10.1073/pnas.0409569102  

87. Ortonne JP, Lebwohl M, Em Griffiths C; Alefacept Clinical Study Group. 
Alefacept-induced decreases in circulating blood lymphocyte counts cor-
relate with clinical response in patients with chronic plaque psoriasis. Eur 
J Dermatol (2003) 13(2):117–23. 

88. Larsen R, Ryder LP, Svejgaard A, Gniadecki R. Changes in circulating 
lymphocyte subpopulations following administration of the leucocyte 
function-associated antigen-3 (LFA-3)/IgG1 fusion protein alefacept. Clin 
Exp Immunol (2007) 149(1):23–30. doi:10.1111/j.1365-2249.2007.03380.x  

89. Chamian F, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, 
et al. Alefacept (anti-CD2) causes a selective reduction in circulating effector 
memory T cells (Tem) and relative preservation of central memory T cells 
(Tcm) in psoriasis. J Transl Med (2007) 5:27. doi:10.1186/1479-5876-5-27  

90. Ellis CN, Krueger GG; Alefacept Clinical Study Group. Treatment of chronic 
plaque psoriasis by selective targeting of memory effector T lymphocytes. N 
Engl J Med (2001) 345(4):248–55. doi:10.1056/NEJM200107263450403  

91. Lo DJ, Weaver TA, Stempora L, Mehta AK, Ford ML, Larsen CP, et  al. 
Selective targeting of human alloresponsive CD8+ effector memory  
T cells based on CD2 expression. Am J Transplant (2011) 11(1):22–33. 
doi:10.1111/j.1600-6143.2010.03317.x 

92. Shapira MY, Abdul-Hai A, Resnick IB, Bitan M, Tsirigotis P, Aker M, et al. 
Alefacept treatment for refractory chronic extensive GVHD. Bone Marrow 
Transplant (2009) 43(4):339–43. doi:10.1038/bmt.2008.324 

93. Shapira MY, Resnick IB, Bitan M, Ackerstein A, Tsirigotis P, Gesundheit B, 
et al. Rapid response to alefacept given to patients with steroid resistant or 
steroid dependent acute graft-versus-host disease: a preliminary report. Bone 
Marrow Transplant (2005) 36(12):1097–101. doi:10.1038/sj.bmt.1705185  

94. Shapira MY, Resnick IB, Dray L, Aker M, Stepensky P, Elad S, et al. A new 
induction protocol for the control of steroid refractory/dependent acute 
graft versus host disease with alefacept and tacrolimus. Cytotherapy (2009) 
11(1):61–7. doi:10.1080/14653240802644669  

95. Weaver TA, Charafeddine AH, Agarwal A, Turner AP, Russell M, Leopardi 
FV, et al. Alefacept promotes co-stimulation blockade based allograft survival 
in nonhuman primates. Nat Med (2009) 15(7):746–9. doi:10.1038/nm.1993 

96. Priyadharshini B, Turka LA. T-cell energy metabolism as a controller of 
cell fate in transplantation. Curr Opin Organ Transplant (2015) 20(1):21–8. 
doi:10.1097/MOT.0000000000000149 

97. Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E, et  al. 
Rational development of LEA29Y (belatacept), a high-affinity variant of 
CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 
(2005) 5(3):443–53. doi:10.1111/j.1600-6143.2005.00749.x  

98. Rostaing L, Vincenti F, Grinyo J, Rice KM, Bresnahan B, Steinberg S, et al. 
Long-term belatacept exposure maintains efficacy and safety at 5 years: 
results from the long-term extension of the BENEFIT study. Am J Transplant 
(2013) 13(11):2875–83. doi:10.1111/ajt.12460 

99. Vincenti F, Larsen CP, Alberu J, Bresnahan B, Garcia VD, Kothari J, et al. 
Three-year outcomes from BENEFIT, a randomized, active-controlled, 
parallel-group study in adult kidney transplant recipients. Am J Transplant 
(2012) 12(1):210–7. doi:10.1111/j.1600-6143.2011.03785.x 

100. de Graav GN, Hesselink DA, Dieterich M, Kraaijeveld R, Weimar W, Baan 
CC. Down-regulation of surface CD28 under belatacept treatment: an escape 
mechanism for antigen-reactive T-cells. PLoS One (2016) 11(2):e0148604. 
doi:10.1371/journal.pone.0148604 

101. Hamann D, Kostense S, Wolthers KC, Otto SA, Baars PA, Miedema F, 
et  al. Evidence that human CD8+CD45RA+CD27- cells are induced by 
antigen and evolve through extensive rounds of division. Int Immunol (1999) 
11(7):1027–33. 

102. Rufer N, Zippelius A, Batard P, Pittet MJ, Kurth I, Corthesy P, et al. Ex vivo 
characterization of human CD8+ T subsets with distinct replicative history 
and partial effector functions. Blood (2003) 102(5):1779–87. doi:10.1182/
blood-2003-02-0420  

103. Sze DM, Giesajtis G, Brown RD, Raitakari M, Gibson J, Ho J, et al. Clonal 
cytotoxic T cells are expanded in myeloma and reside in the CD8(+)
CD57(+)CD28(-) compartment. Blood (2001) 98(9):2817–27. doi:10.1182/
blood.V98.9.2817  

104. Weekes MP, Carmichael AJ, Wills MR, Mynard K, Sissons JG. Human 
CD28-CD8+ T cells contain greatly expanded functional virus-specific 
memory CTL clones. J Immunol (1999) 162(12):7569–77. 

105. Baeten D, Louis S, Braud C, Braudeau C, Ballet C, Moizant F, et  al. 
Phenotypically and functionally distinct CD8+ lymphocyte populations 
in long-term drug-free tolerance and chronic rejection in human kidney 
graft recipients. J Am Soc Nephrol (2006) 17(1):294–304. doi:10.1681/
ASN.2005020178  

106. Bai Y, Liu J, Wang Y, Honig S, Qin L, Boros P, et al. L-selectin-dependent 
lymphoid occupancy is required to induce alloantigen-specific tolerance. 
J Immunol (2002) 168(4):1579–89. doi:10.4049/jimmunol.168.4.1579  

107. Pawlik A, Florczak M, Masiuk M, Dutkiewicz G, Machalinski B, Rozanski 
J, et  al. The expansion of CD4+CD28- T cells in patients with chronic 
kidney graft rejection. Transplant Proc (2003) 35(8):2902–4. doi:10.1016/j.
transproceed.2003.10.061  

108. Studer SM, George MP, Zhu X, Song Y, Valentine VG, Stoner MW, et  al. 
CD28 down-regulation on CD4 T cells is a marker for graft dysfunction in 
lung transplant recipients. Am J Respir Crit Care Med (2008) 178(7):765–73. 
doi:10.1164/rccm.200701-013OC 

109. Espinosa JR, Samy KP, Kirk AD. Memory T cells in organ transplantation: 
progress and challenges. Nat Rev Nephrol (2016) 12(6):339–47. doi:10.1038/
nrneph.2016.9 

110. Badell IR, Kitchens WH, Wagener ME, Lukacher AE, Larsen CP, Ford ML. 
Pathogen stimulation history impacts donor-specific CD8(+) T cell suscep-
tibility to costimulation/integrin blockade-based therapy. Am J Transplant 
(2015) 15(12):3081–94. doi:10.1111/ajt.13399 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/j.1600-6143.2005.00759.x
https://doi.org/10.1111/j.1365-2567.2009.03115.x
https://doi.org/10.1016/j.trim.2013.10.002
https://doi.org/10.1182/blood-2007-08-106526
https://doi.org/10.4049/jimmunol.1501435
https://doi.org/10.1097/TP.0b013e3181e64217
https://doi.org/10.1097/TP.0b013e3181e64217
https://doi.org/10.1111/ajt.12526
https://doi.org/10.1111/ajt.12526
https://doi.org/10.4049/jimmunol.168.9.4462
https://doi.org/10.1073/pnas.0409569102
https://doi.org/10.1111/j.1365-2249.2007.03380.x
https://doi.org/10.1186/1479-5876-5-27
https://doi.org/10.1056/NEJM200107263450403
https://doi.org/10.1111/j.1600-6143.2010.03317.x
https://doi.org/10.1038/bmt.2008.324
https://doi.org/10.1038/sj.bmt.1705185
https://doi.org/10.1080/14653240802644669
https://doi.org/10.1038/
nm.1993
https://doi.org/10.1097/MOT.0000000000000149
https://doi.org/10.1111/j.1600-6143.2005.00749.x
https://doi.org/10.1111/ajt.12460
https://doi.org/10.1111/j.1600-6143.2011.03785.x
https://doi.org/10.1371/journal.pone.0148604
https://doi.org/10.1182/blood-2003-02-0420
https://doi.org/10.1182/blood-2003-02-0420
https://doi.org/10.1182/blood.V98.9.2817
https://doi.org/10.1182/blood.V98.9.2817
https://doi.org/10.1681/ASN.2005020178
https://doi.org/10.1681/ASN.2005020178
https://doi.org/10.4049/jimmunol.168.4.1579
https://doi.org/10.1016/j.transproceed.2003.10.061
https://doi.org/10.1016/j.transproceed.2003.10.061
https://doi.org/10.1164/rccm.200701-013OC
https://doi.org/10.1038/nrneph.2016.9
https://doi.org/10.1038/nrneph.2016.9
https://doi.org/10.1111/ajt.13399


9

Benichou et al. Memory T cells in Transplantation

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 170

111. Xu H, Perez SD, Cheeseman J, Mehta AK, Kirk AD. The allo- and 
viral-specific immunosuppressive effect of belatacept, but not tacrolimus, 
attenuates with progressive T cell maturation. Am J Transplant (2014) 
14(2):319–32. doi:10.1111/ajt.12574 

112. Ariyan C, Salvalaggio P, Fecteau S, Deng S, Rogozinski L, Mandelbrot D, et al. 
Cutting edge: transplantation tolerance through enhanced CTLA-4 expres-
sion. J Immunol (2003) 171(11):5673–7. doi:10.4049/jimmunol.171.11.5673  

113. Fecteau S, Basadonna GP, Freitas A, Ariyan C, Sayegh MH, Rothstein DM. 
CTLA-4 up-regulation plays a role in tolerance mediated by CD45. Nat 
Immunol (2001) 2(1):58–63. doi:10.1038/83175  

114. Iwakoshi NN, Mordes JP, Markees TG, Phillips NE, Rossini AA, Greiner 
DL. Treatment of allograft recipients with donor-specific transfusion and 
anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and 
prolonged graft survival in a CTLA4-dependent manner. J Immunol (2000) 
164(1):512–21. doi:10.4049/jimmunol.164.1.512  

115. Judge TA, Wu Z, Zheng XG, Sharpe AH, Sayegh MH, Turka LA. The role 
of CD80, CD86, and CTLA4 in alloimmune responses and the induction of 
long-term allograft survival. J Immunol (1999) 162(4):1947–51. 

116. Lin H, Rathmell JC, Gray GS, Thompson CB, Leiden JM, Alegre ML. 
Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute 
rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function 
independently of CD28. J Exp Med (1998) 188(1):199–204. 

117. Markees TG, Phillips NE, Gordon EJ, Noelle RJ, Shultz LD, Mordes JP, 
et  al. Long-term survival of skin allografts induced by donor splenocytes 
and anti-CD154 antibody in thymectomized mice requires CD4(+) T cells, 
interferon-gamma, and CTLA4. J Clin Invest (1998) 101(11):2446–55. 

118. Poirier N, Azimzadeh AM, Zhang T, Dilek N, Mary C, Nguyen B, et  al. 
Inducing CTLA-4-dependent immune regulation by selective CD28 block-
ade promotes regulatory T cells in organ transplantation. Sci Transl Med 
(2010) 2(17):17ra10. doi:10.1126/scitranslmed.3000116 

119. Poirier N, Mary C, Dilek N, Hervouet J, Minault D, Blancho G, et  al. 
Preclinical efficacy and immunological safety of FR104, an antagonist 
anti-CD28 monovalent Fab’ antibody. Am J Transplant (2012) 12(10):2630–
40. doi:10.1111/j.1600-6143.2012.04164.x 

120. Vanhove B, Laflamme G, Coulon F, Mougin M, Vusio P, Haspot F, et al. Selective 
blockade of CD28 and not CTLA-4 with a single-chain Fv-alpha1-antitrypsin 
fusion antibody. Blood (2003) 102(2):564–70. doi:10.1182/blood-2002- 
08-2480 

121. Zhang T, Fresnay S, Welty E, Sangrampurkar N, Rybak E, Zhou H, et  al. 
Selective CD28 blockade attenuates acute and chronic rejection of murine 
cardiac allografts in a CTLA-4-dependent manner. Am J Transplant (2011) 
11(8):1599–609. doi:10.1111/j.1600-6143.2011.03624.x 

122. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic 
complications after treatment with monoclonal antibody against CD40 
ligand. Nat Med (2000) 6(2):114. doi:10.1038/72162  

123. Adams AB, Shirasugi N, Jones TR, Durham MM, Strobert EA, Cowan S, 
et  al. Development of a chimeric anti-CD40 monoclonal antibody that 
synergizes with LEA29Y to prolong islet allograft survival. J Immunol (2005) 
174(1):542–50. doi:10.4049/jimmunol.174.1.542 

124. Aoyagi T, Yamashita K, Suzuki T, Uno M, Goto R, Taniguchi M, et  al. A 
human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in 

cynomolgus monkeys: induction and maintenance therapy. Am J Transplant 
(2009) 9(8):1732–41. doi:10.1111/j.1600-6143.2009.02693.x 

125. Badell IR, Russell MC, Cardona K, Shaffer VO, Turner AP, Avila JG, et al. 
CTLA4Ig prevents alloantibody formation following nonhuman primate 
islet transplantation using the CD40-specific antibody 3A8. Am J Transplant 
(2012) 12(7):1918–23. doi:10.1111/j.1600-6143.2012.04029.x 

126. Haanstra KG, Ringers J, Sick EA, Ramdien-Murli S, Kuhn EM, Boon L, et al. 
Prevention of kidney allograft rejection using anti-CD40 and anti-CD86 
in primates. Transplantation (2003) 75(5):637–43. doi:10.1097/01.TP. 
0000054835.58014.C2 

127. Imai A, Suzuki T, Sugitani A, Itoh T, Ueki S, Aoyagi T, et al. A novel fully 
human anti-CD40 monoclonal antibody, 4D11, for kidney transplantation in 
cynomolgus monkeys. Transplantation (2007) 84(8):1020–8. doi:10.1097/01.
tp.0000286058.79448.c7  

128. Pearson TC, Trambley J, Odom K, Anderson DC, Cowan S, Bray R, et al. 
Anti-CD40 therapy extends renal allograft survival in rhesus macaques. 
Transplantation (2002) 74(7):933–40.

129. Valujskikh A. The challenge of inhibiting alloreactive T-cell memory. Am 
J Transplant (2006) 6(4):647–51. doi:10.1111/j.1600-6143.2005.01215.x  

130. Ge W, Jiang J, Liu W, Lian D, Saito A, Garcia B, et al. Regulatory T cells are 
critical to tolerance induction in presensitized mouse transplant recipients 
through targeting memory T cells. Am J Transplant (2010) 10(8):1760–73. 
doi:10.1111/j.1600-6143.2010.03186.x 

131. Burrell BE, Lu G, Li XC, Bishop DK. OX40 costimulation prevents 
allograft acceptance induced by CD40-CD40L blockade. J Immunol (2009) 
182(1):379–90. doi:10.4049/jimmunol.182.1.379  

132. Chen M, Xiao X, Demirci G, Li XC. OX40 controls islet allograft tolerance in 
CD154 deficient mice by regulating FOXP3+ Tregs. Transplantation (2008) 
85(11):1659–62. doi:10.1097/TP.0b013e3181726987 

133. Kitchens WH, Larsen CP, Ford ML. Integrin antagonists for transplant 
immunosuppression: panacea or peril? Immunotherapy (2011) 3(3):305–7. 
doi:10.2217/imt.10.113   

134. Kitchens WH, Haridas D, Wagener ME, Song M, Kirk AD, Larsen CP, et al. 
Integrin antagonists prevent costimulatory blockade-resistant transplant 
rejection by CD8(+) memory T cells. Am J Transplant (2012) 12(1):69–80. 
doi:10.1111/j.1600-6143.2011.03762.x 

135. Setoguchi K, Schenk AD, Ishii D, Hattori Y, Baldwin WM III, Tanabe K, 
et  al. LFA-1 antagonism inhibits early infiltration of endogenous memory 
CD8 T cells into cardiac allografts and donor-reactive T cell priming. Am 
J Transplant (2011) 11(5):923–35. doi:10.1111/j.1600-6143.2011.03492.x  

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Benichou, Gonzalez, Marino, Ayasoufi and Valujskikh. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/ajt.12574
https://doi.org/10.4049/jimmunol.171.11.5673
https://doi.org/10.1038/83175
https://doi.org/10.4049/jimmunol.164.1.512
https://doi.org/10.1126/scitranslmed.3000116
https://doi.org/10.1111/j.1600-6143.2012.04164.x
https://doi.org/10.1182/blood-2002-
08-2480
https://doi.org/10.1182/blood-2002-
08-2480
https://doi.org/10.1111/j.1600-6143.2011.03624.x
https://doi.org/10.1038/72162
https://doi.org/10.4049/jimmunol.174.1.542
https://doi.org/10.1111/j.1600-6143.2009.
02693.x
https://doi.org/10.1111/j.1600-6143.2012.04029.x
https://doi.org/10.1097/01.TP.
0000054835.58014.C2
https://doi.org/10.1097/01.TP.
0000054835.58014.C2
https://doi.org/10.1097/01.tp.0000286058.79448.c7
https://doi.org/10.1097/01.tp.0000286058.79448.c7
https://doi.org/10.1111/j.1600-6143.2005.01215.x
https://doi.org/10.1111/j.1600-6143.2010.03186.x
https://doi.org/10.4049/jimmunol.182.1.379
https://doi.org/10.1097/TP.0b013e3181726987
https://doi.org/10.2217/imt.10.113
https://doi.org/10.1111/j.1600-6143.2011.03762.x
https://doi.org/10.1111/j.1600-6143.2011.03492.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Role of Memory T Cells in Allograft Rejection and Tolerance
	Introduction
	Basic Biology of Alloreactive Memory T Cells
	Origins of Alloreactive Memory T Cells
	Location of Memory T Cells
	Low Activation Threshold and Resistance to Conventional Costimulatory Blockade

	Contribution of Memory T Cells to Allograft Rejection and Tolerance
	Role in Allograft Rejection
	Influence of Memory T Cells on Allograft Tolerance

	Recent Developments in Targeting Alloreactive T Cell Memory
	Lymphoablation
	Costimulatory Blockade
	Limiting Trafficking of Alloreactive Memory T Cells

	Concluding Remarks
	Author Contributions
	Acknowledgments
	References


