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Acquired bone marrow failure syndromes encompass a unique set of disorders char-
acterized by a reduction in the effective production of mature cells by the bone marrow 
(BM). In the majority of cases, these syndromes are the result of the immune-mediated 
destruction of hematopoietic stem cells or their progenitors at various stages of dif-
ferentiation. Microbial infection has also been associated with hematopoietic stem cell 
injury and may lead to associated transient or persistent BM failure, and recent evidence 
has highlighted the potential impact of commensal microbes and their metabolites on 
hematopoiesis. We summarize the interactions between microorganisms and the host 
immune system and emphasize how they may impact the development of acquired BM 
failure.
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inTRODUCTiOn

Bone marrow failure syndromes (BMFS) are a group of heterogeneous disorders defined by the loss 
or malfunction of hematopoietic stem cells (HSCs). Deficient cell production can be seen across 
multiple lineages, resulting in a loss of erythrocytes, granulocytes, or platelets. Distinct syndromes 
are, therefore, defined by the specific cells affected and include pure red cell aplasia (PRCA), amega-
karyocytic thrombocytopenic purpura, aplastic anemia (AA), and myelodysplastic syndrome. AA, 
the paradigm BMFS, is characterized by a deficiency of HSCs resulting in peripheral pancytopenia 
and hypoplastic bone marrow (BM) (1, 2). This may occur as the result of inherited abnormalities 
as seen in syndromes like Fanconi anemia, dyskeratosis congenital, and Shwachman–Diamond 
syndrome, or may be an acquired phenomena (3).

The primary mechanism of acquired AA centers on the immune-mediated destruction of HSCs, 
and highly immunosuppressive therapies provide excellent and durable clinical responses (4). Several 
immune cell abnormalities are also commonly found in patients, including dysregulated CD4+, 
CD8+, and Th-17 T-cell responses, as well as reduced numbers of regulatory T-cells. Furthermore, 
many patients have elevated circulating levels of inflammatory or myelosuppressive cytokines like 
interferon (IFN)-γ, tumor necrosis factor alpha (TNF)-α, and transforming growth factor beta 
(TGF-β) (5).

Despite efforts that have revealed circulating autoantibodies in acquired AA patients (6–8), the 
identification of autoantigens able to elicit cytotoxic T-cell responses and breach immune toler-
ance leading to the destruction of HSCs has been difficult. Current theories suggest that, similar 
to other autoimmune diseases, the initial immune response may be triggered by drugs, chemicals, 
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or pathogens, or through the generation of neoantigens via epi-
genetic mechanisms (4, 5, 9, 10). Interestingly, autoimmune ill-
nesses like rheumatoid arthritis, systemic lupus erythematous, or 
ulcerative colitis sometimes precede the development of acquired 
AA (11–13). As transient and persistent BM hypoplasia have been 
linked to various microorganisms (14), dysbiosis between the gut 
microbiota and immune system may serve as an initial insult in 
the development of BMFS (11).

We herein report an overview of the complex interplay 
between microorganisms, the immune system, and hematopoie-
sis and discuss the implications these interactions may have in the 
pathogenesis of acquired BMFS.

ReGULATiOn OF HeMATOPOieSiS BY 
inFLAMMATORY SiGnALS

Interplay between HSCs and their microenvironment determines 
whether or not these cells will undergo differentiation, prolifera-
tion, or apoptosis. Secreted factors like erythropoietin, throm-
bopoietin, IL-3, GM-CSF, and stem cell factor (SCF) positively 
regulate the HSC maintenance and differentiation during steady-
state hematopoiesis (1–3). Surrounding mesenchymal stem cells 
(MSCs) and other BM niche components support HSCs and 
ensure their stem cell phenotype through the release of TGF-β, 
SCF, CXCL12, and angiopoietin-1 (15).

In response to systemic injury, HSCs are signaled to proliferate 
and differentiate. HSCs express cytokine, chemokine, and patho-
gen recognition receptors (PRRs) and can be directly triggered 
by activated immune effector cells, pathogens, or by surrounding 
stem cells (16, 17). In bacterial infections, the rapid consumption 
of granulocytes triggers HSCs to proliferate along the myeloid 
lineage (15, 18). In contrast, viral infections mainly involve IFN-α 
and IFN-β signaling. Type I IFNs prevent viral replication and 
induce HSCs to transiently proliferate, whereas persistent type I 
IFN signaling may lead to HSC exhaustion (19, 20).

Interferon-γ secreted by activated T-cells and NK cells 
modulates hematopoiesis differentially based on acute on chronic 
signaling. For instance, HSCs have been shown to enter active cell 
cycle stages and differentiate in mice treated with IFN-γ. However, 
chronic IFN-γ stimulation impairs the function of HSCs, leading 
to the development of cytopenia (21, 22).

Other signaling molecules released during systemic stress may 
also impact hematopoiesis. TNF-α produced by CD8+ T-cells 
enhances HSC clonogenicity and prevents HSC apoptosis both 
in  vitro and in  vivo (23). IL-6, a pleiotropic cytokine secreted 
by BM stromal fibroblasts, leads to the expansion of myeloid 
progenitors and blocks the development of erythroid cells (24). 
In response to microbial infection, additional cytokines like IL-1, 
IL-17, and IL-27 may influence blood cell development, particu-
larly through the induction of HSC expansion and granulopoiesis 
(20, 25).

Many inflammatory signals maintain immune homeostasis 
and transiently stimulate hematopoiesis in the promotion of the 
host defenses during stress. However, the prolonged stimulation 
of HSCs may induce an opposing effect leading to anergy, chronic 
exhaustion, and apoptosis. Cytopenias associated with chronic 

inflammatory conditions and autoimmune diseases, therefore, 
likely stem from the sustained failure of HSC renewal and dif-
ferentiation (17, 26, 27).

MiCROBiOTA AnD MiCROBiAL 
MeTABOLiTeS SHAPe HeMATOPOieSiS

The complex system of bacteria, viruses, and fungi living in the 
human body is referred to as the microbiota. These commensal 
organisms colonize multiple body niches, with colonic microor-
ganisms being the most abundant (28–30).

The microbiome and its associated metabolites have recently 
been functionally linked to hematopoiesis, as evidence sug-
gests that the BM myeloid population strongly correlates with 
microflora complexity. In germ-free mice, the granulocyte and 
monocyte populations, but not the lymphoid progenitor popula-
tions, increased with greater gut flora complexity (31). A lower 
microbiota diversity was also associated with an overall worse 
survival and transplant-related mortality in patients receiving 
allogenic stem cell transplantation (32). Additionally, germ-free 
and antibiotic-treated mice have impaired functional clearance of 
systemic bacterial infections. Therefore, many have proposed that 
commensal microbes play a significant role in HSC maintenance 
and alterations, and the absence of gut microflora may lead to 
detrimental downstream defects in immunity (33, 34).

Substances like dietary fiber may exert indirect effects 
on hematopoiesis through shaping microbial composition. 
For instance, mice given a fiber-rich diet have alterations in 
Firmicutes, Bacteroidetes, and Bifidobacteriaceae populations. 
These microbes metabolize fiber to short-chain fatty acids 
(SCFAs), and mice treated with SCFA have larger populations of 
macrophages and dendritic cell precursors in the BM (35). In this 
model, high-fiber diet mice had increased circulating SCFAs and 
were found to have protection against allergic inflammatory lung 
diseases compared to low-fiber diet, low-level circulating SCFA 
animals (35).

Pathogen recognition receptors found on HSCs, including 
toll-like receptors 2, 3, 4, 7, and 9, enable HSCs to recognize 
and respond to various pathogen-derived products (36, 37). 
Quiescent HSCs are activated upon acute exposure to these 
pathogens or products and in turn proliferate. In contrast, 
chronic exposure to systemic TLR ligands appears to have 
myelosuppressive effects, as supported by HSC exhaustion seen 
in mice exposed to repeated administrations of low-dose LPS 
for 6 weeks (38). Frequent gut microbe translocation, coupled 
with persistent, detectable serum LPS found in HIV infection 
has been proposed as mechanism for HIV-related myelosuppres-
sion (36). Furthermore, TLR4 may be activated by fatty acids and 
high levels of circulating metabolites, as found in patients with 
chronic metabolic syndrome (39). Kell and Pretorius have also 
proposed that bacterial translocation from dormant bacterial 
reservoirs provide a persistent source of low-grade inflamma-
tion via immune-mediated signals triggered by LPS and other 
pathogen-associated molecular patterns (PAMPs) (40). This sup-
ports the strong association between altered gut microbiota and 
various autoimmune diseases and may underscore the frequent 
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FiGURe 1 | Microbiota and microbial metabolites can shape hematopoiesis and the immune response. Commensal microbes promote the maintenance 
of both hematopoietic stem cells (HSCs) and precursor myeloid cells. The absence of commensal microbes leads to defects in several innate immune cell 
populations, including neutrophils, monocytes, and macrophages. Feeding mice a diet rich in fiber changed the ratio of Firmicutes to Bacteroidetes and 
Bifidobacteriaceae. The presence of a complex intestinal microbiota specifically amplifies myelopoiesis in the bone marrow (BM). Dietary fiber is metabolized by gut 
microbiota, thereby increasing the levels of circulating short-chain fatty acids (SCFAs) and promoting the growing of myeloid precursors without affecting lymphoid 
progenitors in the BM. In the context of dysbiosis, the growth of pathogenic microbes acts as dormant bacterial reservoir that provides a source of persistent 
low-grade inflammation mediated by LPS and other pathogen-associated molecular patterns (PAMPs) that persistently stimulate hematopoietic stem progenitor 
cells via pathogen recognition receptors like TLR (TLR4, TLR7, and TLR9), leading to hematopoiesis inhibition. The LPS stimulation of TLR monocytes induces 
TNF-alpha secretion, and this persistent stimulation of HPSCs may further inhibit hematopoiesis via exhaustion.
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association of ulcerative colitis, a disease characterized by high 
bacterial leakage, with BMFS (11).

The association between alterations in the gut microbiome 
and BMFS has not been systematically investigated. However, 
evidence for the pivotal role of gut flora in immune system 
priming, education, and regulation (41, 42) suggests that 
microbiota, their metabolic products, or PAMPs can lead to the 
development of hematological disorders (34). In patients with 
acquired BMFS, microbes and their metabolites may inhibit 
hematopoiesis and enact negative downstream effects on HSCs 
(Figure 1). However, the details of the mechanisms have yet to 
be elucidated.

BM FAiLURe inDUCeD BY MiCROBiAL 
inFeCTiOn

Several microbial infections have been linked to the development 
of acquired BMFS. The mechanisms underlying how pathogens 
induce hematopoietic dysfunction are poorly understood for 
most diseases, except parvovirus B19 infection-related aplasia 
(43). Many hypotheses for disease pathogenesis center on the 
direct infection of HSCs, viral recognition by HSCs via PRRs, 
inflammation-mediated effects by surrounding cells or response 
to changes in the stem cell microenvironment (15, 19, 20, 44). 
Cytomegalovirus (CMV), parvovirus B19, and the Epstein–Barr 
virus (EBV) induce HSC injury through direct toxic effects from 

pathogens (14, 45). However, the majority of pathogen-related 
cases are thought to be due to the excessive activation of immune 
effector cells, leading to an overwhelming release of myelosup-
pressive cytokines and negative proliferation signaling to HSCs 
(Table 1).

PARvOviRUS B19-inDUCeD BM FAiLURe

Human parvovirus B19 (B19V) is a small DNA erythrovirus 
associated classically with fifth disease or erythema infectiosum 
(46). Primarily spread via respiratory droplets, the virus targets 
erythroid progenitors in  vivo (43). In vitro, the virus is propa-
gated in primary erythroid progenitors BFU-E and CFU-E, and 
its replication is enhanced under hypoxic conditions. B19V also 
induces apoptosis in erythroid progenitors in the BM, resulting 
in hypoplasia (43). In an immunocompromised host, persistent 
B19V infection can cause chronic anemia, aplastic crisis, PRCA, 
and idiopathic thrombocytopenic purpura (47, 48).

B19V cytotoxicity appears to be mediated via the NS1 protein, 
which in turn activates caspase 3, 6, and 8, increasing the eryth-
roid cell sensitivity to apoptosis induced by TNF-α (49). In addi-
tion, B19V infection is associated with the systemic activation of 
monocytes, T-cells, and NK cells and correlates with an elevation 
in serum inflammatory cytokines IL-1β, IL-6, TNF-α, and IFN-γ 
(43). B19V infection has also been implicated in autoimmunity, 
as some patients may develop antibodies, including antinuclear, 
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TABLe 1 | Microbes triggering bone marrow (BM) failure.

Microbe effects on hematopoiesis Mechanism(s) Target cells Reference

virus
Parvovirus B19 Various cytopenias Apoptosis of target cells Erythroid progenitor (43, 47–50)

Anemia Excessive inflammatory signals IL1-β, IL6, tumor necrosis 
factor-α, and interferon (IFN)-γPure red cells aplasia

Aplastic anemia (AA)
Thrombocytopenic Purpura

Epstein–Barr virus Thrombocytopenia
AA
Pure red cells aplasia

Excessive inflammatory signals: TNF-α and IFN-γ HPSC (54–58)
HPSC inhibition by virus-specific T-cells T-cells

Dengue virus Leukopenia Apoptosis of progenitor cells Hematopoietic stem 
progenitor cells, 
megakaryocyte  
progenitor

(62–65, 69, 70)
Thrombocytopenia Excessive inflammatory signal: multiple cytokines
Severe AA

HAAA AA Excessive inflammatory signals Indirectly HPSC? (74–76)
T-cell activation
Multiple cytokines

Cytomegalovirus AA Stromal function failure Mesenchymal stem cells (77, 78)
Anemia

Human herpes 
virus-6

Anemia Apoptosis of target cells? Granulocyte 
macrophage

(79, 80)

Pancytopenia Megakaryocyte 
progenitors

HIV Anemia Excessive growth of bacterial HPSC (36, 40)
Sustained activation of pathogen recognition receptors 
(PRRs), TLRs by LPS or other pathogen-associated 
molecular patterns (PAMPs)

Bacteria
Anaplasma 
phagocytophilum

Pancytopenia Excessive inflammatory signals Circulating granulocyte (85–88)
Myelosuppressive cytokines

Ehrlichia chaffeensis Pancytopenia Granulocyte (89, 90)
Anemia
Thrombocytopenia

Tuberculosis Pancytopenia Granuloma infiltration in BM BM niche (91–93)
Maturation arrest?
Hypersplenism? HPSC?
Histiocytic hyperplasia?

Dysbiosis Anemia? Persistent release of PAMPs? HPSC? (11, 34, 36, 
38, 40)AA? Sustained stimulation of HPSCs via PRRs?
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antiphospholipid, anti-smooth muscle, gastric parietal cell anti-
bodies, and rheumatoid factors (49). Apoptotic bodies generated 
during B19V infection contain many different self-antigens and 
may serve as a reservoir of autoimmunity priming during infec-
tion (50).

eBv-inDUCeD BM FAiLURe

Epstein–Barr virus remains one of the most common 
viruses afflicting humans, most frequently causing infectious 
mononucleosis. EBV-infected cells are also associated with cell 
transformation and several malignancies, including Hodgkin’s 
lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma, 
gastric cancer, and HIV-associated neoplasms, such as hairy 
cell leukoplakia (51, 52). EBV has also been associated with an 

increased risk for autoimmune disorders, including rheumatoid 
arthritis, dermatomyositis, and systemic lupus erythematosus 
(53).

In immunocompromised patients, EBV can be associated 
with a wide range of hematopoietic effects, including BMF and 
lymphoproliferative disease (51). Single cell lineage disorders 
like thrombocytopenia with ITP-like syndrome (54) or PRCA 
(55) have been found in some patients, while others have shown 
pancytopenia mimicking acquired AA (56). EBV-induced aplasia 
likely involves excessive immune activation, as experimental data 
have shown that activated T-cells exposed to autologous EBV-
infected B-cells inhibit HSC growth (57). Clinically, patients with 
EBV-induced acquired AA may respond well to immunosuppres-
sive therapy, and some suggest it may play a role in idiopathic 
acquired AA cases (58).
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DenGUe viRUS (Denv)-inDUCeD BM 
FAiLURe

Five distinct serotypes of DENV, a single-stranded RNA arbo-
virus, has been identified, and all cause dengue fever. Typically, 
DENV infection induces multiple hematologic abnormalities, 
including leukopenia, neutropenia, and thrombocytopenia (59). 
BM biopsies isolated during DENV infection are characterized 
by abnormal megakaryopoiesis, reticulocytopenia, and granulo-
cytopenia (60, 61).

Although the pathophysiology of DENV-induced BM fail-
ure is not well understood, accumulating evidence indicates 
a combination of an excessive immune response and viral 
infection of progenitor cells (62, 63). During the acute phase of 
infection, DENV infects and proliferates in HSC progenitors 
and CD61+ megakaryocyte progenitor cells (60, 64), thereby 
inducing transient BMF (63). In addition, DENV infection 
is associated with the activation of several innate immune 
responses, including IFN α/β, MIP-1α/β, viperin, and CXCL-
10 release, which may inhibit hematopoiesis (65–68). DENV 
infection has also been shown to preferentially induce pro-
duction of IFN type III (IFN-λ1) from human dendritic cells, 
signaling through TLR-3 (69). Similar to other interferons, 
IFN-λ1 acts as a myelosuppressive factor (70). As the severity 
of hematological dysfunction can be quite variable and clini-
cal responses are usually achieved via immunosuppression, 
efforts aimed at characterizing autoimmune responses dur-
ing both subclinical and clinically significant infections are 
needed (62, 63).

HePATiTiS-ASSOCiATeD BM FAiLURe 
(HABMF)

Hepatitis-associated BM failure is a distinct variant usually 
seen 2 or 3  months following an episode of acute hepatitis 
(71). Although in some cases this entity has been reported in 
association with hepatitis A, B, C, E, and G viral infections (71, 
72), as well as parvovirus B19, EBV and CMV, most patients 
with HABMF are negative for all known viruses (71). HABMF 
can be self-limited but often is severe and even fulminant (71, 
72); however, the severity appears to be independent of the age, 
sex, or severity of hepatitis (73). Typically, both the hematologic 
abnormalities and liver function parameters improve with 
immunosuppressive therapies (74). When HABMF manifests as 
severe AA, it represents a life-threatening condition that requires 
urgent hematological therapy with supportive care and stem 
cells transplantation (72). Several immunological abnormali-
ties have been documented in patients with HABMF, including 
increased soluble IL-2 receptor, low ratios of CD4+/CD8+ cells, 
high percentages of CD8+ cells, and reduced proportions of 
CD4+CD25+ regulatory T-cells (74, 75). Notably, clonal expan-
sion of T-cells with conserved antigen specificity has been found 
in HABMF patients (76), suggesting that abnormal immune 
responses underlie the disease and viral antigens may elicit T-cell 
responses that cross-react with antigens expressed by HSCs.

OTHeR viRUS-ReLATeD BM FAiLURe

Other viruses can also induce BMFS via similar mechanisms in 
many patients. For instance, several cases of CMV-associated 
BMFS have been documented, and experimental data have shown 
CMV infection and replication in MSCs, along with an impaired 
stromal function (77, 78). Anecdotic associations between human 
herpes virus 6 with BMFS, mainly in the posttransplantation set-
ting, have been also reported (79) and appear to be related to the 
direct viral injury of granulocytes, macrophages, and megakaryo-
cyte progenitors in vitro (80). Interestingly, respiratory syncytial 
virus has also been shown to infect and replicate in human BM 
stromal cells (81), although its association with resultant BMF 
does not appear to be common.

MARROw APLASiA AnD BACTeRiAL 
inFeCTiOnS

Bacterial infection of HSCs is uncommon, as these cells are rare, 
quiescent and reside in a protected microenvironment with sur-
rounding MSCs. Stromal elements are capable of inhibiting the 
growth of several Gram-negative and Gram-positive bacteria (82). 
Additionally, in vitro experiments have suggested that HSCs may 
be resistant to intracellular bacteria like Listeria monocytogenes, 
Salmonella enterica, and Yersinia enterocolitica (83). These find-
ings are consistent with clinical observations that bacterial patho-
gens are rarely associated with direct hematopoietic dysfunction. 
Notably, human CD34+ hematopoietic stem progenitor cells 
exposed to Escherichia coli in  vitro produce pro-inflammatory 
cytokines, such as IL-1, IL-6, IL-8, and TNF-α, via NFκB activa-
tion (84), although the implications of these observations in the 
clinical setting are unknown.

One of the best characterized myelosuppressive pathogens 
is Anaplasma phagocytophilum, which causes granulocytic ana-
plasmosis or ehrlichiosis (85). This Gram-negative bacterium 
infects granulocytes and persists primarily within circulating 
granulocytes (86, 87), and infection typically results in multiple 
cytopenias, including anemia, leucopenia, and thrombocy-
topenia (86). Mouse models of infection show profound and 
rapid multilineage deficits in proliferation and differentiation, 
including B-cell depletion, erythroid depletion, granulocytic 
hyperplasia, and a significant downregulation of CXCL12 in the 
BM. These defects are accompanied by induction of myelosup-
pressive cytokine release such as MCP-1, MIP-2, TNF-α, and 
IL-6. The absence of infectious particles in the BM compart-
ment suggests that hematopoietic suppression stems from the 
systemic activation of inflammatory signaling rather than direct 
infection (88).

Ehrlichia chaffeensis causing monocyte ehrlichiosis is also 
associated with the development of multiple cytopenias (89). 
Mouse models have supported the notion that microbial infec-
tion may lead to anemia, thrombocytopenia, and BM hypocel-
lularity. Furthermore, in this model, the number of committed 
progenitors, including erythroid, granulocyte, and monocyte 
progenitors, in the BM was significantly fewer than in control 
mice (90).
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Finally, pancytopenia with BM suppression is an uncommon 
hematological manifestation of active tuberculosis (91). This 
may be due to granulomatous inflammation and focal necrosis 
in the BM (92). Although not clearly defined, other mechanisms 
that may lead to pancytopenia in these patients include histio-
cytic hyperplasia, HSC maturation arrest, and hypersplenism 
(92, 93).

COnCLUDinG ReMARKS AnD FUTURe 
DiReCTiOnS

During acute infections, the immune system regulates the 
expansion and differentiation of HSCs in an attempt to appro-
priately combat invasive pathogens. However, sustained signal-
ing mechanisms may lead to chronic HSC exhaustion and BM 
suppression. Clinically, many microbial infections have been 
associated with BMFS; however, identifying patients who are 
susceptible to hematopoietic suppression remains impossible 
at present. Immune-mediated BMF following clearance of viral 
infections may be a common mechanism; however, further 
investigation regarding inflammatory-related genes, immune 
education, and tolerance is needed. For instance, regulatory 
T-cells, which maintain self-tolerance and prevent excessive 
immune activation, have also been found to suppress colony 
formation in vitro and HSC myeloid differentiation in vivo (94, 
95). Notably, the numbers of regulatory T-cells are significantly 
diminished in patients with acquired AA (96). Specific regula-
tory T-cell changes following microbial infections in certain 
system compartments have not been investigated, but may now 

be detectable with the advent of new cellular subset population 
analyses (97).

How chronic infections may affect HSCs over time remains 
unknown as well. As this review highlights, the gut microbiome 
may have a direct role in normal hematopoiesis, as microbes and 
their metabolic products may have downstream consequences. 
As proposed, dysbiosis may trigger autoimmune effects via the 
enzymatic posttranslation modification of proteins and genera-
tion of neoantigens for unique T-cell responses (98). This model 
is quite well-suited for studying the basis for immune-mediated 
BMFS, particularly in patients with known microbial alterations 
like inflammatory bowel diseases. However, further research that 
characterizes the microflora patterns, whether by genomic or 
metabolic recognition, may have novel diagnostic and prognos-
tic utility. Interventions targeting the suppression and removal 
of distinct microbial species may have a tremendous impact on 
human health and disease.
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