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A large proportion of cardiovascular (CV) pathology results from immune-mediated dam-
age, including systemic inflammation and cellular proliferation, which cause a narrowing 
of the blood vessels. Expansions of cytotoxic CD4+ T cells characterized by loss of CD28 
(“CD4+CD28− T cells” or “CD4+CD28null cells”) are closely associated with cardiovascular 
disease (CVD), in particular coronary artery damage. Direct involvement of these cells in 
damaging the vasculature has been demonstrated repeatedly. Moreover, CD4+CD28−  
T cells are significantly increased in rheumatoid arthritis (RA) and other autoimmune 
conditions. It is striking that expansions of this subset beyond 1–2% occur exclusively in 
CMV-infected people. CMV infection itself is known to increase the severity of autoim-
mune diseases, in particular RA and has also been linked to increased vascular pathology.  
A review of the recent literature on immunological changes in CVD, RA, and CMV infec-
tion provides strong evidence that expansions of cytotoxic CD4+CD28− T cells in RA and 
other chronic inflammatory conditions are limited to CMV-infected patients and driven 
by CMV infection. They are likely to be responsible for the excess CV mortality observed 
in these situations. The CD4+CD28− phenotype convincingly links CMV infection to CV 
mortality based on a direct cellular-pathological mechanism rather than epidemiological 
association.

Keywords: CD4 T cells, cytotoxic T cells, cardiovascular diseases, chronic inflammatory disease, autoimmune 
diseases

iNTRODUCTiON

CD28 is a costimulatory molecule expressed on naïve CD4+ and CD8+ T cells. A permanent loss of 
CD28 occurs during antigen-driven differentiation toward a terminal phenotype. Its loss suggests 
that costimulation by antigen-presenting cells (APC) via its specific ligands B7.1 (CD80) and B7.2 
(CD86) is no longer required and is indicative of replicative senescence (1). This should not be 
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TABLe 1 | Conditions in which CD4+CD28− T cells were reported and/or 
investigated.

Cardiovascular (2, 3, 
5, 12–17)

Autoimmune (5, 6, 9, 11, 18–25) Others (26)

Angina pectoris Rheumatoid arthritis Renal transplant 
dysfunction

Acute coronary 
syndrome

Granulomatosis with polyangiitis

Myocardial infarction Diabetes
Chronic heart failure Systemic lupus erythematosus
Abdominal aortic 
aneurysms

Multiple sclerosis

Ankylosing spondylitis
Crohn’s disease
Graves’ disease
Autoimmune myopathy
Dermatomyositis
Polymyositis
Polymyalgia rheumatica and giant 
cell arteritis
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confused with the transient loss of CD28 expression on CD4+ 
(and CD8+) T cells during proliferation, which is reversible 
within days (1).

CD4+CD28− T cells were first identified in the plaques of 
patients with unstable angina but since then, expansions of 
these cells have been reported in a range of cardiovascular (CV) 
conditions. They attracted particular interest in acute coro-
nary syndrome (ACS) and myocardial infarction where their 
presence was associated with increased acute mortality and 
recurrence (2–4). Patients with CD4+CD28− T cell expansions 
also showed preclinical atherosclerotic changes (5). A recent 
study of ACS with/without diabetes mellitus (DM) reported the 
highest frequencies of CD4+CD28− T cells when both condi-
tions were present, followed by ACS only, DM only, and finally 
controls (6).

As regards autoimmune diseases, expansions of so-called 
“CD4+CD28null” (synonymous for CD4+CD28−) were described 
in rheumatoid arthritis (RA) patients almost 20  years ago (7). 
Their limited TCR Vβ chain usage suggested restricted antigen-
specificity and potential involvement in autoimmunity; interest-
ingly, their numbers were related to the extent of extra-articular 
involvement (7–9). Over the years, CD4+CD28− T cells have 
been shown to be implicated in various inflammatory conditions 
(10) including granulomatosis with polyangiitis (GPA), where 
CD4+CD28− T cells were linked to increased infection and mor-
tality (11). Table 1 provides a list of conditions in which a role of 
CD4+CD28− T cells was reported or investigated.

CMv iNFeCTiON TRiGGeRS THe 
eXPANSiON OF CD4+CD28− T CeLLS

There is a striking link between CD4+CD28− T cells and CMV 
infection. Work in renal transplantation has demonstrated that 
the emergence and expansion of CD4+CD28− T cells in CMV-
seronegative (CMV−) graft recipients directly results from infec-
tion by a CMV-seropositive (CMV+) graft. Recipients showed 

detectable levels of CD4+CD28− T cells just after the clearance 
of CMV viral load, and the proliferation of these cells in vitro 
could be stimulated by CMV antigen but not tuberculin or teta-
nus toxoid, for example. However, CD4+CD28− T cells did not 
emerge in CMV− recipients of CMV− grafts (27). Furthermore, 
CMV-specific CD4+ T cells are in large part CD28− (28). Given 
that ex vivo T cell stimulation cannot adequately cover all 
CMV antigens, it has remained unclear if all CD4+CD28− T 
cells are CMV-specific or if some of them expand after CMV 
infection for reasons yet to be discovered. Interestingly, Zal 
et al. reported that in patients with ACS and/or chronic stable 
angina CD4+CD28− T cells (partially) responded to HSP60 but 
not to a CMV lysate (29). It is important to note, however, that 
CMV lysates (prepared from lytically CMV-infected human 
fibroblasts) are not an all-inclusive collection of CMV antigens 
(30). It is possible, therefore, that CD4+CD28− T cells specific for 
antigens not represented in the lysate cross-reacted with HSP60. 
Cross-reactivity between HSP60 and the CMV UL122 and US28 
proteins has indeed been described for antibodies, which might 
be an indirect mechanism by which CMV infection facilitates 
endothelial cell injury (31).

Strikingly, not a single study has reported accumulations of 
CD4+CD28− T cells in CMV-uninfected individuals; however, 
some studies have reported low frequencies of these cells in 
CMV− people in the order of 1–2% of CD4 T cells (11). Of note, 
in the context of inflammatory diseases such as RA and GPA, 
CMV-driven expansions of CD4+CD28− T cells are accentu-
ated compared to otherwise healthy individuals, which will 
increase the potential for tissue damage (11, 32). Based on the 
literature, we have drafted a model of CMV antigen-driven T cell 
differentiation toward the emergence of CD4+CD28− T cells 
(Figure 1). This pathway is different from pathways leading to 
T cell exhaustion, which are typically associated with a loss of 
effector functions (33).

CD4+CD28− T CeLLS ARe TeRMiNALLY 
DiFFeReNTiATeD eFFeCTOR CeLLS

Before CD4+ T cells lose CD28 expression, they will have lost 
the expression of a number of other molecules, in particular the 
costimulatory receptor, CD27, and gained expression of memory 
markers (40). Unlike normal helper T cells, CD4+CD28− T cells do 
not provide help to B cells; however, they express NK-cell recep-
tors, in particular killer activating receptors (18, 19, 23). They 
produce more TNF-α and IFN-γ and are more cytotoxic than 
CD4+CD28+ T cells (17, 41). CD4+CD28− T cells may home to 
atheromatous lesions because they express the chemokine recep-
tors, CXCR3, CCR6, and CCR7 (17, 24). Of note, vascular EC are 
primary CMV infection targets (42). Synovial fluid CD4+CD28− 
T cells from RA patients produce less IFN-γ and TNF-α than their 
circulating counterparts and, unlike them, also produce IL-17A 
(24). Additionally, they produce perforin and granzyme B, which 
can destroy synovial tissue (41, 43, 44). Reduced responsiveness 
to CD4+CD25+ regulatory T cells and resistance to apoptosis 
further add to their destructive potential (22, 45). Table 2 lists 
the most prominent features of CD4+CD28− T cells.
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FiGURe 1 | T cell differentiation and the emergence of CMv-induced T cell phenotypes. Memory T cell differentiation is regulated by intracellular and 
extracellular factors. Mechanisms of memory development upon naïve T cell activation (antigen stimulation) are the subject of ongoing discussion. Since it has been 
reported that CD4+ T cell memory development resembles that of CD8+ T cells (34), we assumed that both T cell subsets follow similar pathways. However, 
transitional memory subsets sitting between central memory T cells (TCM) and effector memory T cells (TEM) have been described in the CD4+ T cell compartment. 
Several memory T cell subsets have been defined but their lineage relationship has remained unclear. Some models describe a linear origin of memory T cells 
directly from effector T cells; other models propose a divergent differentiation where naïve T cells give rise to memory and effector T cells through asymmetrical 
division. More recently a progressive differentiation pathway has been proposed, depending on stimulus intensity and duration (represented inside the box). 
According to this model, T cell fate depends on the duration of signaling and presence/absence of cytokines. Brief stimulation leads to the generation of TCM 
whereas sustained stimulation plus presence of cytokines generates TEM. Therefore, in the progressive model, a single naïve T cell will give rise to different memory  
T cell subsets that are the precursors of terminally differentiated effector T cells. Progression into these differentiated memory subsets relies on the gradual response 
to cytokines, acquisition of tissue homing receptors, resistance to apoptosis, and gain of effector functions while gradually losing lymph node homing receptors, 
proliferative capacity, and the ability to produce IL-2 production, to self-renew, and survive [for review, see Ref. (35–39)]. Although the exact origin of the CD28−  
T cell phenotype is not clear, based on the literature, we hypothesize that these cells arise from terminally differentiated effector memory T cells (TEMRA) as well as TEM 
after exposure to CMV. Abbreviations: Th, T-helper cell; CTL, cytotoxic T cell; TSCM, stem cell memory T cell; TCM, central memory T cell; TEM, effector memory T cell; 
TEMRA, terminally differentiated (CD45RA reexpressing) effector memory T cell.
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CMv iNvOLveMeNT iN 
CARDiOvASCULAR DiSeASe (CvD)—
CLiNiCAL OBSeRvATiONS AND 
ePiDeMiOLOGY

CMV infection has been associated with vascular pathology ever 
since the virus was isolated from atherosclerotic lesions, but it was 
unclear if it played a causative role (48). To date, there is strong 
epidemiologic evidence that CMV is the major driver of prema-
ture CVD in HIV-infected people (49) and increasing recognition 
of an association with higher CVD mortality in HIV-uninfected 
people (50). Meanwhile, a role for CMV in driving/accelerat-
ing autoimmune disease has been the subject of discussion 
since the early 1990s (51). Of particular interest to this review, 
several authors have shown that CMV infection exacerbates 
inflammation in RA (11, 52–54), with one study indicating that 

higher anti-CMV antibody levels associate with more frequent 
surgical procedures and more severe joint damage (53). Several 
authors have shown that in RA patients CMV antigens are indeed 
detectable in synovial tissue (55, 56). Also, high numbers of virus-
specific T cells including CMV-specific T cells can be found at 
these sites (52). Table 3 shows CV and autoimmune conditions 
in which CMV has been implicated.

There are several epidemiological links between CMV infec-
tion and CVD. In particular, lower socioeconomic position 
(SEP) correlates with a higher prevalence of dyslipidemia, higher 
cholesterol, and smoking, which are all risk factors for CVD. 
However, lower SEP is also associated with a high prevalence of 
CMV infection (63). Therefore, CVD and CMV are significantly 
correlated at an epidemiological level in such populations, which 
complicates the analysis. A recent cross sectional study, however, 
found that despite this complex interrelatedness of risk factors, 
CMV infection may explain partly the relationship between SEP 
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TABLe 3 | Cardiovascular and autoimmune conditions in which a role of 
CMv infection has been suspected or confirmed.

Cv (31, 57–60) Autoimmune (11, 51, 61, 62)

Atherosclerosis Rheumatoid arthritis

Hypertension Lupus erythematosus

Coronary heart disease Sjögren’s syndrome
Granulomatosis with polyangiitis
Diabetes mellitus
Systemic sclerosis

TABLe 2 | Properties of CD4+CD28− T cells.

Molecule type/property Specific molecules/properties identified (25, 
46, 47)

Costimulatory receptors CD27−, CD40L-, OX40+ (CD134), 4-1BB+ (CD137)

Chemokine receptors CCR7−, CX3CR1+ (fractalkine receptor), CCR5+

Toll-like receptors TLR2+, TLR4+

Natural killer receptors KIR+, NKG2D+, CD11b+, CD161+, NKG2C+

Cadherin/integrin VLA-4+, ICAM-1+

Cytokines and mediators IFN-γ+, TNF-α+, IL-2+, perforin+, granzyme B+

Other features  – increased resistance to apoptosis
 – increased resistance Treg suppression
 – slow division rate (replicative senescence)
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and CVD (64). There is also epidemiological evidence that CMV 
is a driver of heart disease in HIV+ women (65). The complexity 
and importance of this issue was recently highlighted (49).

eviDeNCe LiNKiNG (CMv-SPeCiFiC) 
T CeLLS TO HYPeRTeNSiON, vASCULAR 
PATHOLOGY, AND ACUTe CORONARY 
eveNTS

The evidence for a role of T cells in myocardial infarction has 
recently been reviewed identifying direct involvement of CD4+ 
and CD8+ T cells in both coronary artery injury and healing/
remodeling with regulatory T cells being particularly involved in 
the latter (66).

Following CMV infection of EC, class-II MHC expression in 
these cells is reduced hampering CMV-antigen presentation to 
CD4+ T cells (67). However, CMV-infected EC can release non-
infectious exosomes (NIE) that are replete with CMV proteins, 
in particular UL55, a major CD4+ T cell target protein. Uptake 
of NIE by APC leads to effective presentation of CMV antigens 
to CD4+ T cells (68). Moreover, pro-inflammatory mediators 
released by PBMCs in response to CMV can induce expression of 
fractalkine (FKN) and inducible protein 10 (IP-10) in EC. These 
specifically bind the chemokine receptors CX3CR1 and CX3CR3, 
respectively, which are expressed on effector CD4+ and CD8+ 
T cells in CMV-infected individuals (69). We hypothesize that 
vasculature-infiltrating CD4+CD28− effector T cells expressing 
CX3CR1 and/or CX3CR3 are, therefore, attracted to FKN and 

IP-10-producing EC. Cytotoxic molecules secreted by CD28− 
T  cells (Table  2) may then trigger EC death by apoptosis. Of 
interest, CMV immune evasion includes downregulation of class-
I MHC expression on infected EC but leaves HLA-E expression 
unaffected. NKG2C+-expressing NK cells and T cells expand in 
CMV infection, and NKG2C+-mediated cytotoxicity is triggered 
by the interaction between CD94/NKG2C and HLA-E molecules 
on CMV-infected EC (70, 71). Figure 2 provides a synopsis of 
these mechanisms.

Work in mouse models has also confirmed a role for T cells 
in hypertension, an important contributor to vascular damage; 
RAG-1 double-knockout (RAG-1−/−) mice lacking both T cells 
and B-cells showed blunted hypertension in response to angio-
tensin-II infusion or (DOCA)-salt. They also exhibited decreased 
vascular reactive oxygen species (ROS) production with reduced 
consumption of the relaxing factor, nitric oxide (NO). Adoptive 
transfer of T cells (but not B-cells) restored these effects to normal 
(73). Others showed that murine CMV (MCMV) infection leads 
to hypertension within weeks independently of atherosclerotic 
plaque formation, but at the same time contributes to (aortic) ath-
erosclerosis, which might result from persistent CMV infection 
of EC inducing renin expression (74). This will in turn increase 
local angiotensin-II levels, which might activate angiotensin-II 
receptor positive infiltrating T cells to produce more ROS. 
Recently, Pachnio et al (75). have confirmed that CMV-induced 
CD4+CD28− T cells indeed have all the necessary properties 
required to infiltrate the vasculature.

RA AND Cv COMPLiCATiONS

As a result of an excess of CV events, the life expectancy of RA 
patients is reduced by 3–10  years compared with the general 
population (76, 77). The risk of CVD-associated death is up 
to 50% higher in RA patients than controls, and the risks of 
ischemic heart and cerebrovascular diseases are elevated to a 
similar extent (78). RA is the most common inflammatory joint 
disease worldwide, affecting about 1% of the population (77). 
RA is characterized by infiltration of the synovial membranes by 
pro-inflammatory immune cells, swelling and deformity of joints 
and excess synovial fluid containing infiltrating immune cells and 
cytokines (79, 80). Extra-articular manifestations are widespread 
and involve the CV system (81).

Traditional CVD risk factors such as smoking, physical 
inactivity, hypertension, and DM contribute to death from CVD 
in RA but do not have the same predictive value as in patients 
without RA (77, 82). There is some evidence that RA itself accel-
erates atherogenesis (83). Also, following myocardial infarction 
patients with RA have considerably higher 30-day case fatality 
rates (76). Chronic inflammation is a normal consequence 
of aging (84) and a key player in atherogenesis. It promotes 
endothelial cell activation and vascular dysfunction and, together 
with other risk factors, leads to arterial wall thickening, promotes 
atheromatous changes, induces decreased vascular compliance, 
and contributes to increased blood pressure. This further pro-
motes vascular damage in a self-perpetuating cycle. Ultimately, 
blockage of blood vessels may lead to myocardial infarction or 
stroke (76, 85).
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TABLe 4 | CD4+CD28− T cells in studies stratified by CMv status.

Reference Disease Number of 
individuals in 

study

M:F ratio Age range or IQR in 
years (median) and/or 

mean ± SD

Cell subset 
investigated

% of reference subset 
given as mean or median 

or absolute counts/µl blood 
mean ± SD

CMv+ CMv– 

Thewissen et al. (22) Rheumatoid 
arthritis (RA)

4 1:3 59–76 (67) CD4+CD28− 9.6 n.k.

HC 4 3:1 30–48 (35) 9.3 n.k.
Morgan et al. (11) GPAa 48 25:23 47–74 (64) CD4+CD28− 19 0.8

HC 38 13:25 41–77 (57) 22 1.4
Pierer et al. (53) RA 202 49:153 51–68 (62) CD4+CD28− 8.15 0.37
Jonasson et al. (86) Cardiovascular 

disease
43b All males 55.1 ± 5.6 CD4+CD28− 6.7

CD8+CD28− 452 ± 258 172 ± 174
CD8+CD57+ 392 ± 226 167 ± 183

HC 69b All males 49.5 ± 5.9 CD4+CD28− 5.8
CD8+CD28− 329 ± 216 112 ± 71
CD8+CD57+ 269 ± 190 105 ± 67

n.k., not known; HC, healthy control.
aGPA, granulomatosis with polyangiitis, was used here as a comparative inflammatory disorder.
b67% of patients and 61% of controls were CMV+.
Significance of Italics: % of reference subset given as median, as indicated in the headings of the columns.
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CD4+CD28− T CeLLS ARiSe AS AN 
OBviOUS MeCHANiSTiC LiNK BeTweeN 
CMv iNFeCTiON, CvD, AND RA

The vast majority of studies investigating the presence and role 
of CD4+CD28− T cells in CVD and autoimmune diseases did so 
without considering participant CMV infection status, suggest-
ing that many researchers are unaware of the association of an 
expansion of this subset with CMV infection. The most relevant 
details from a number of such reports are found in Tables S1 
and S2 in Supplementary Material. Only a handful of studies 
explored the presence of CD4+CD28− and/or CD8+CD28− T cells 
in CVD or autoimmune disease in the context of CMV infection 
status. Interestingly, most of these included CMV+participants 
only. We identified only two studies that included CMV+ and 
CMV− participants (Table 4). Among the studies not accounting 
for CMV status, several reported significant differences between 
RA patients and healthy controls with respect to the frequency 
of CD4+CD28− T cells (5, 8, 20, 32). Also, major differences were 
reported between cases with limited RA and extra-articular RA 
(21). On the whole, between 3 and 10 times, more CD4+CD28− T 
cells were reported in RA compared to healthy controls. With 
respect to CVD, Liuzzo et  al. found ninefold higher levels of 
CD4+CD28− T cells in patients with unstable angina compared 
to those with stable angina; these differences were later confirmed 
in a second study (2, 3). Rizzello et al., by contrast, found “only” 
a 2.5-fold difference in CD4+CD28− T cell levels between such 
groups (13). Others reported frequencies of CD4+CD28− lym-
phocytes (rather than T cells) as a percentage of all lymphocytes, 
which makes their data difficult to compare (17).

Reports in GPA and RA patients clearly confirm that signifi-
cant expansions of the CD4+CD28− T cell subset only occur in 
CMV+ individuals. The levels of these cells were 24-fold higher 
and 22-fold higher in CMV+ compared with CMV− GPA and 

RA patients, respectively (11, 53). Also, the relative expansions 
in CMV+ compared to CMV− individuals were significantly 
accelerated in the presence of GPA as they were increased “only” 
by factor 14 higher in healthy controls. The remaining studies 
listed in Table 4 report CD4+CD28− T cell frequencies in CMV+ 
individuals only.

In summary, the listed reports argue strongly in favor of a role 
of CMV infection in CV complications, most likely as a result of 
the distribution of the CD4+CD28− subsets in the disease and 
control groups.

COULD CD4+CD28− T CeLLS Be 
TARGeTeD BY iMMUNOTHeRAPieS?

Experimental evidence suggests that anti-CMV treatment could 
reduce the reactivity as well as the numbers of CMV-specific T 
cells. Particularly, low dose acyclovir therapy decreases the CD4+ 
T cell response to pp65 CMV protein, most likely by diminishing 
the CMV-antigen load, turnover, and uptake by APC (72). In 
addition, there is evidence from mouse models that, at least in 
older mice, valacyclovir treatment leads to an 80% reduction of 
the CD8+ T cell response to MCMV (87). If CMV-specific T cells 
were actually involved in mediating CMV-driven vascular dam-
age, then a possible approach to slow down this process would be 
the use of anti-viral drugs.

Therapies based on the direct targeting of CD4+CD28−  
T cells have been investigated in several conditions. To this regard, 
the effects of different therapeutic regimens on CD4+CD28−  
T cell frequencies have been investigated in patients with hyper-
insulinemic polycystic ovary syndrome, in which increased 
frequencies of this subset have also been observed (but an 
association with CMV has not been investigated). Treatment 
with drospirenone–ethinylestradiol and metformin resulted in 
a significant reduction of frequencies of CD4+CD28− T cells 
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FiGURe 2 | Proposed mechanisms for CMv-driven vascular damage. CMV-infected EC will downregulate MHC expression but produce non-infectious 
exosomes (NIE) loaded with CMV proteins, in particular UL55 (gB) (1) (68), allowing effective CMV antigen presentation by antigen-presenting cells (APC) following 
NIE uptake/processing. Vasculature-infiltrating CMV-specific CD4+ effector T cells will hence encounter these antigens on APC (shown as green CMV antigen in 
diagram; green block arrow) (2) and subsequently produce pro-inflammatory mediators such as IFN-γ. These induce the expression of fractalkine (FKN), IFN-γ-
inducible protein 10, and possibly additional chemokines in EC (3) (69), which in turn attract infiltrating CD4+CD28− and probably also CD8+CD28− T cells to the ECs 
(4). These may be CMV-specific but possibly also non-CMV-specific (symbolized by red “target antigen” in diagram; red block arrow). They may kill ECs through 
perforin/granzyme secretion (5). Despite CMV infection, HLA-E expression remains unaffected in EC, so that interaction between HLA-E on EC and CD94/NKG2C 
on NK cells may also trigger CD94/NKG2C-mediated cytotoxicity (6) (71). NKG2C+ NK cells are known to be expanded by CMV infection and it is noteworthy that 
CD4+CD28− T cells may also express NKG2C (indicated by “?” in diagram). Acyclovir reduces CMV-specific T cell responses by inhibiting replication (72) and will 
probably reduce NIE formation in infected EC, thus reducing antigen presentation by APCs and subsequent effector T cell activation (7).
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(88). Moreover, it has been demonstrated in organ transplant 
recipients that treatment with polyclonal anti-thymocyte globu-
lin preferentially triggers apoptosis in CD4+CD28− compared to 
CD4+CD28+ T cells (89). Other therapies targeting the functional 
capacity of these cytotoxic cells have been investigated as well. 
The only K+ channels present in CD4+CD28− T cells from ACS 
patients are Kv1.3 and IKCa1. Blockade of the Kv1.3 channel by 
5-(4-phenoxybutoxy)psoralen (PAP-1) resulted in suppression 
of the pro-inflammatory function of CD4+CD28− T cells (90), 
however, did not appear to induce general immunosuppression. 
In a rat model, chronic administration of PAP-1 prevented the 
development of unstable atherosclerotic plaques, most probably 

by blocking the release of inflammatory and cytotoxic molecules 
from CD4+CD28− T cells (91). Finally, in RA patients treated 
with abatacept, a reduction of circulating CD4+CD28− T cells 
has been observed, and it was correlated with a reduction of 
disease activity (92–94). Similar results were observed by Pierer 
et  al. (95) in RA patients treated with TNF-α blocking agents 
(etanercept and infliximab). Anti-TNF therapy has been shown 
to diminish the myocardial infarction risk and to increase vascu-
lar compliance (96, 97). At the same time, it reduces the number 
of CD4+CD28− T cells (13). However, little is known about 
how other drugs used in RA affect CV complications (recently 
reviewed in this journal) (98).
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CONCLUSiON

We believe that the literature reviewed in this article explains to 
a large extent the striking epidemiological association reported 
between CMV infection and increased CV mortality (50, 60, 
99–102). It is, in particular, the emerging, immediate and specific 
role of CD4+CD28− T cells in both acute and chronic vascular 
pathology that takes this association to a higher level. This is, 
because expansion of this T cell subset beyond a very small 
percentage (1–2% of CD4+ T cells) is exclusively found in CMV+ 
individuals. Literature from the fields of chronic inflammation/
autoimmunity, CVD, and viral immunology, together provide a 
fascinating insight into the effects of expanded populations of 
cytotoxic, CD4+CD28− T cells. These are ultimately driven by a 
common virus infection, whose burden on the immune system is 
still being underestimated (103).
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