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NK Cells: Uncertain Allies against 
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Until recently, studies of natural killer (NK) cells in infection have focused almost entirely 
on their role in viral infections. However, there is an increasing awareness of the poten-
tial for NK cells to contribute to the control of a wider range of pathogens, including 
intracellular parasites such as Plasmodium spp. Given the high prevalence of parasitic 
diseases in the developing world and the devastating effects these pathogens have on 
large numbers of vulnerable people, investigating interactions between NK cells and 
parasitized host cells presents the opportunity to reveal novel immunological mecha-
nisms with the potential to aid efforts to eradicate these diseases. The capacity of NK 
cells to produce inflammatory cytokines early after malaria infection, as well as a possible 
role in direct cytotoxic killing of malaria-infected cells, suggests a beneficial impact of 
NK cells in this disease. However, NK cells may also contribute to overproduction of 
pro-inflammatory cytokines and the consequent immunopathology. As comparatively 
little is known about the role of NK cells later in the course of infection, and growing 
evidence suggests that heterogeneity in NK cell responses to malaria may be influenced 
by KIR/HLA interactions, a better understanding of the mechanisms by which NK cells 
might directly interact with parasitized cells may reveal a new role for these cells in the 
course of malaria infection.
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iNTRODUCTiON

Natural killer (NK) cells are a subset of lymphocytes that contribute to the control of cancers and 
infections through the production of pro-inflammatory cytokines and the destruction of damaged, 
dysfunctional or infected host cells via cytotoxic activity [reviewed in Ref. (1)]. They typically con-
stitute about 10% of peripheral blood mononuclear cells (PBMCs), although there is considerable 
variation between individuals. The activity of NK cells is regulated by binding of antibody–antigen 
complexes to the Fc receptor CD16 (2), expression of a large range of activating and inhibitory 
receptors used to directly “read” the surface of potentially infected or dysfunctional cells [reviewed 
in Ref. (3, 4)], and expression of receptors for cytokines such as interleukin (IL)-12, IL-15, IL-18 and 
IL-2 [reviewed in Ref. (5)]. Healthy cells express ligands for inhibitory NK cell receptors, ensuring 
that they are “ignored” by patrolling NK cells, but these ligands are downregulated on damaged 
or diseased cells, while activating signals (so-called “stress ligands”) may be upregulated, making 
the cells clear targets for NK cell-mediated destruction. Moreover, pro-inflammatory cytokines can 
override ligand-mediated inhibitory signals, thereby allowing NK cells to participate in systemic 
immune responses by producing inflammatory cytokines (6–8).
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Although traditionally classed as innate lymphocytes, recent 
work has suggested that NK cells may participate in adap-
tive immune responses and may also exhibit immunological 
“memory” or “memory-like” responses leading to significantly 
higher cytokine production and enhanced cytotoxic responses 
upon restimulation. This topic was recently comprehensively 
reviewed by Cerwenka and Lanier (9), but, in brief, enhanced 
NK cell responses have been described after infection with 
viruses, after exposure to haptens, and after in vitro stimulation 
with cytokines. Very recently, enhanced responses of human 
peripheral blood NK cells have also been observed ex vivo after 
influenza vaccination (10). While there is some evidence in 
murine systems, and more recently in rhesus macaques (11), that 
these “memory” NK cell responses may be antigen specific, this 
has only been shown definitively for liver-resident NK cells (12, 
13) and the only well-characterized receptor–ligand interaction is 
the mouse Ly49 receptor family binding murine cytomegalovirus 
(MCMV) ligands (14–17). In the case of human CMV (HCMV), 
the functionally equivalent interaction is mediated by heterodi-
meric CD94/NKG2A and CD94/NKG2C receptors which recog-
nize peptides from HCMV bound to human leukocyte antigen 
(HLA)-E (18) and which induce characteristic expansions of the 
NKG2C+ NK cell subset and epigenetic modifications of the NK 
cell genome (19–22) [reviewed in Ref. (23)]. However, in many 
cases such as in studies on malaria, rabies, and influenza, these 
enhanced secondary responses are at least partly attributable to 
indirect activation of NK cells by memory T cell-derived IL-2 
rather than to true “memory” on the part of NK cells themselves 
(10, 24–26). This proxy recall response was first identified during 
influenza vaccination by He et  al. (27) and then by Horowitz 
et al. (24) in response to rabies vaccination. Subsequent studies 
have demonstrated a similar IL-2-dependent effect in response to 
malaria-infected erythrocytes (25). Regardless of the underlying 
mechanism, this raises the intriguing possibility that NK cells 
may contribute substantially to immune responses after malaria 
vaccination, and preliminary studies have already demonstrated 
enhanced NK cell activation in response to increased T cell 
IL-2 production in individuals vaccinated with the RTS,S/AS01 
malaria vaccine (26).

Given this evidence, there is considerable interest in gaining 
a better understanding of the mechanisms by which NK cells are 
activated during malaria infections and whether this is beneficial 
or detrimental. Such research will serve to clarify the basic func-
tions of NK cells during infection with intracellular protozoa 
and, potentially, to target an effective immune mechanism during 
vaccine development. In this review, we summarize the current 
state of knowledge of the role of NK cells during malaria infection 
and malaria vaccination, both in humans and in experimental 
murine infections.

MeCHANiSMS OF NK CeLL ACTivATiON

Natural killer cells were classically considered “natural” killers 
because, unlike T cells, they do not require prior exposure to 
 antigen before being able to engage and kill target cells, although 
it is now understood that they require a complex process of 
education and licensing in order to become fully functional (7, 

28). During infection, the main functions of NK cells are cytokine 
production and cytotoxic killing of infected host cells. These 
activities can be triggered by three distinct but complementary 
activation pathways: cytokine activation, antibody-dependent 
cell-mediated cytotoxicity (ADCC), and loss of inhibitory signal-
ing due to downregulation or mismatching of major histocom-
patibility complex (MHC) class I (the missing-self hypothesis). 
NK cells can be activated via a plethora of host (target) cell 
surface receptors, including activating members of the killer cell 
immunoglobulin-like receptor (KIR) family that bind to MHC 
molecules [reviewed in Ref. (29)], killer lectin-like receptors 
(KLRs) such as NKG2D homodimers and CD94/NKG2A and 
CD94/NKG2C heterodimers that interact with HLA-E, and 
natural cytotoxicity receptors (NCRs) such as NKp30 and NKp46 
which are believed to recognize pathogen-encoded ligands 
[reviewed in Ref. (30)]. The outcome of these interactions can 
be direct lysis of the target cell by the NK cell, which implies an 
important role for NK cells in killing infected or diseased cells. 
NK cells also constitutively express receptor subunits for IL-15, 
IL-18, and IL-12, as well as the low-affinity receptor for IL-2. The 
high-affinity IL-2 receptor α chain (CD25) is upregulated upon 
activation, allowing NK cells to become activated by cytokines as 
a result of local or systemic inflammation (8, 31).

Natural killer cells are also significant producers of inflamma-
tory cytokines during early infection, prior to the priming, clonal 
expansion and activation of antigen-specific T cells (32–35); in 
particular, NK cells are an important source of interferon gamma 
(IFN-γ). In vitro, NK cells are capable of producing IFN-γ after 
activation by exogenous cytokines, in particular IL-12 and IL-18 
(8, 31, 36, 37). However, during infection, various cytokines are 
produced at different times from diverse cellular sources, allowing 
NK cell responses to be finely controlled so that pathogen growth 
and dissemination is constrained while simultaneously limiting 
the pathology caused by uncontrolled inflammation (38–40). 
For example, during infection with two classic Th1-inducing 
pathogens, Salmonella enterica and Plasmodium falciparum, 
NK cells require activating signals from three distinct sources: 
a priming or pre-activation signal of either IL-2 or IL-15 from T 
cells or dendritic cells (DCs) respectively, IL-12 and IL-18 from 
macrophages, and direct contact with macrophages (41, 42). 
Activation via these pathways allows synthesis of IFN-γ by NK 
cells that induces downstream transcription of IFN-controlled 
genes, thereby leading to macrophage activation and killing of 
target cells or pathogens.

MALARiA SYMPTOMS AND SPReAD

Perhaps the most infamous family of protozoan parasites affect-
ing humans is Plasmodium, the causative agent of malaria in a 
range of mammalian and non-mammalian hosts. The parasites 
are carried by numerous species of mosquito vectors of the 
Anopheles genus and are transmitted by female mosquitoes 
during hematophagy. During a single bite, between a dozen and 
several hundred motile and infectious malaria sporozoites are 
inoculated into the skin of the mammalian host from the salivary 
glands of the mosquito; they then disseminate to the liver via 
the blood stream to initiate the intravertebrate developmental 
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pathway (43–45). The developmental pathway of the Plasmodium 
parasite within its vertebrate host comprises multiple life stages 
exhibiting both constitutive and stage-specific genomic and 
proteomic expression (46). Of particular clinical relevance is the 
intra-erythrocytic stage during which merozoites enter eryth-
rocytes and develop into trophozoites and large, multinucleated 
schizonts. These schizonts then lyse their host cells in order to 
release the next generation of merozoites into the circulation and 
repeat the hematic replication cycle (Figure 1).

In humans, this intra-erythrocytic stage of the parasite life 
cycle causes the symptoms of malaria infection. The lysis of 
erythrocytes can lead to severe anemia, and structural changes 
induced in the red blood cell membrane by the parasite can lead 
to vascular sequestration (i.e., adherence of parasitized erythro-
cytes to vascular endothelium, causing blockage of small blood 
vessels). Anemia and sequestration can in turn lead to systemic 
lactic acidosis due to reduced oxygen delivery to the tissues, and 
in the brain can lead to cerebral malaria, resulting in seizures, 
coma, and potentially death [reviewed in Ref. (47)]. Excessive 
inflammatory immune responses, characterized as high levels of 
IL-1, IL-6, IFN-γ, and TNFα, exacerbate these direct effects of 
parasitemia, leading to immunopathology (39, 48–51). However, 
an insufficient inflammatory response is conversely associ-
ated with increased parasitemia and poorer outcomes (39, 40), 
indicating that an optimal immunological response to malaria 
is a delicate balancing act. The nature of this paradox will be 
discussed in detail later in this review.

It is estimated that 3.2 billion people are currently at risk of 
developing malaria, and in 2015 alone there were an estimated 
212 million cases of malaria leading to approximately 429,000 
deaths worldwide; of these deaths, 70% were in children under 
5 years old (52). The burden of malaria falls most heavily on Sub-
Saharan Africa and South Asia; 80% of cases and 90% of deaths 
occurred in Africa, with the Democratic Republic of the Congo 
and Nigeria alone accounting for an estimated 35% of global 
malaria mortality. Current methods for controlling the spread 
of malaria include the use of long-lasting insecticide-treated bed 
nets, residual indoor spraying with insecticides, chemopreven-
tion in vulnerable individuals, and combination drug treatment 
of infected individuals (52). While these tools have curbed the 
transmission of malaria in the last decades, it is widely accepted 
by both researchers and public health officials that sustainable 
malaria control or elimination would be facilitated by a highly 
effective malaria vaccine, the development of which requires a 
greater scientific understanding of the interaction between the 
human immune system and Plasmodium parasites.

There are currently six species of Plasmodium that are 
known to cause malaria in humans (53), in addition to three 
capable of  causing similar symptoms in mice [reviewed in Ref. 
(54)] (Table 1). Of the six species capable of infecting humans, 
P. falciparum and P. vivax are responsible for most malaria deaths 
worldwide. P. falciparum is responsible for most malaria deaths 
in Africa (and therefore most global deaths due to Africa’s dis-
proportionate malarial burden) and is the most studied human 
strain of malaria, which is greatly assisted by its tolerance for 
in vitro laboratory culture. By contrast, P. vivax has so far been 
unamenable to long-term laboratory culture. This is a major 

impediment to further understanding of this species, contribut-
ing to its continued status as a major health burden across Asia 
and South America.

MALARiA iN MiCe AND THe 
iMPORTANCe OF NK CeLLS

A rapid and robust pro-inflammatory immune response is 
essential for control of malaria parasitemia. Much of the research 
underpinning this observation has been performed in mice 
infected with species of Plasmodium that naturally infect wild 
rodents, and has shown a crucial role for IFN-γ in parasite control 
and clearance (55–57) [reviewed in Ref. (58)] and a decreased 
likelihood of mice developing the severe symptoms of cerebral 
malaria (59). It is worth noting, however, that the effects of IFN-γ 
during Plasmodium infection vary depending on the amount pro-
duced, the time course of cytokine production, and the particular 
characteristics of the Plasmodium strain involved (Table 2). IFN-
γ is a crucial mediator of antimalarial effector mechanisms and is 
thought to act primarily by activating macrophages to phagocytose 
merozoites and parasitized erythrocytes in both an opsonization-
dependent (60) and opsonization-independent manner (61), and 
by inducing macrophages to produce parasiticidal free radicals 
such as nitric oxide (NO) and superoxides, which combine to 
form short-lived but highly damaging peroxynitrite capable of 
efficiently killing infected erythrocytes (62).

Given the capacity of NK cells to secrete large amounts of 
IFN-γ very quickly (63, 64), it is reasonable to assume that NK 
cells may contribute to control of malaria infections, and indeed 
several studies have demonstrated a crucial role for NK cells in 
the production of cytokines during murine malaria infections 
(55, 65). Murine splenic, hepatic and peripheral blood NK cells 
have been shown to significantly upregulate their production of 
pro-inflammatory cytokines such as IFN-γ and TNFα in response 
to both erythrocytic and hepatic stages of Plasmodium yoelii (55, 
66), as well as blood-stage Plasmodium chabaudi (55, 65). It has 
also been demonstrated that experimental depletion of NK cells 
in mice infected with P. yoelii or P. chabaudi results in a decrease in 
IFN-γ production with a corresponding increase in parasitemia 
(57, 65), suggesting that NK cells contribute significantly to the 
early production of pro-inflammatory cytokines that is associated 
with an improved clinical outcome. Additionally, NK cells play 
an important role in reciprocal activation of DCs for cytokine 
production and CD4 T cell priming during murine malaria infec-
tions (67, 68), placing them at the interface of innate and adaptive 
immunity.

In pre-erythrocytic stages of infection, IFN-γ produced by 
proliferating hepatic NK cells inhibits the growth of hepatic 
schizonts (66, 69). Type I interferons (IFN-α and -β) produced 
by plasmacytoid DCs (pDCs) are thought to be important driv-
ers of hepatic NK cell activation (69–71) as mice deficient in 
IFNAR (the IFN-α/β receptor) were unable to reduce the burden 
of liver-stage parasites in P. yoelii non-lethal infections (69, 72). 
However, some studies have suggested that NK T cells and/or 
non-conventional γδ T cells may play a greater role than NK cells 
in driving the early cytokine-driven inflammatory response (69, 
73). This uncertainty may be partly due to variability in the time 
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points of infection analyzed, as well as differences between strains 
of Plasmodium infection and murine models. In a dynamic sys-
tem such as the immune system, with high levels of redundancy, it 
is likely that more than one cell type or mechanism of protection 
contributes to the outcome of infection.

The role of IL-15 in priming NK cells has not been extensively 
studied in mouse models of malaria, but work by Ing et al. indicates 
that DC-derived IL-15 enhances NK cell production of IFN-γ in 
combination with IL-12 (67, 74); this is consistent with in vitro 
studies of human NK cells showing that IL-15 is an important 
priming signal for NK cell activation (38), and that combinations 
of cytokines are required to drive IFN-γ production by NK cells 

(8, 31, 32, 75). IL-12 is a key driver of IFN-γ production (31, 
33, 76), and loss of IL-12 results in decreased IFN-γ responses, 
higher parasitemia, and less effective malaria-specific antibody 
responses (77, 78). In tandem with this, IL-2 signaling is thought 
to promote full activation of NK cells (based on human in vitro 
studies by Horowitz et al. (63)). For many years, it was believed 
that CD25, the high-affinity IL-2 receptor subunit, was not 
expressed on murine NK cells (79) and reports on murine malaria 
infections tended to support this view (66), but more recent work 
has found a clear role for CD25 expression, primarily driven by 
IL-18 but further enhanced by IL-12, during murine malaria 
infections (64) and MCMV infection (80). Furthermore, there 
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TABLe 2 | List of experimental Plasmodium infection models in mice.

Species Strain Characteristics

Plasmodium yoelii Py17X Non-lethal, self-resolving. Also known as 
PyNL or PyXNL

Py17XL Lethal. Also known as PyL
PyYM Lethal

Plasmodium berghei ANKA Lethal. Causes experimental cerebral 
malaria in “susceptible” C57BL/6 mice; 
“resistant” BALB/c mice subsequently die 
of severe anemia

NK65 Lethal. Does not cause cerebral malaria
Plasmodium chabaudi AS Non-lethal in C57BL/6 mice, lethal in 

“susceptible” A/J mice

TABLe 1 | List of Plasmodium species causing malaria infection in mice 
or humans.

Species Common mammalian host(s)

Plasmodium falciparum Homo sapiens
Plasmodium vivax H. sapiens
Plasmodium malariae H. sapiens
Plasmodium ovale curtisi H. sapiens
Plasmodium ovale wallikeri H. sapiens
Plasmodium knowlesi H. sapiens/Macaca fascicularis
Plasmodium chabaudi Various Rodentia species including murids
Plasmodium berghei Various Rodentia species including murids
Plasmodium yoelii Various Rodentia species including murids
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appears to be a strong correlation between CD25 expression and 
IFN-γ production, which supports a role for T cell-derived IL-2 
in maintaining or driving NK cell responses in both humans and 
mice (63, 64). The capacity to respond to T cell-mediated signals 
may also indicate a role for NK cells beyond early infection.

In murine models of virulent malaria infections, excessive 
IFN-γ or TNF production can lead to severe immunopathology 
(81–84) suggesting that, although NK cells are beneficial during 
early immune responses to malaria, they may contribute to the 
detrimental effects of excessive systemic inflammation (83). 
There is also evidence that NK cells may recruit T cells to the 
brain during murine Plasmodium berghei infections and there-
fore contribute to the development of experimental cerebral 
malaria (83, 85). In keeping with this, the anti-inflammatory 
cytokines IL-10 and TGF-β have been shown to regulate the 
pro-inflammatory immune response during malaria infec-
tion, counteracting the pathological effects of inflammatory 
cytokines and promoting healthy resolution of the immune 
response after initial stimulation (86–88). Neutralization of 
TGF-β is lethal in a normally non-lethal P. chabaudi chabaudi 
infection (88), and lack of IL-10 in IL-10−/− mice leads to 
increased IFN-γ, TNFα and IL-12 production and exacerbated 
pathology and mortality (86, 89). IL-10 and TGF-β appear to 
show some overlap in function and can individually down-
regulate pro-inflammatory responses (87), although both are 
suggested to modulate macrophage activation (89, 90). The 
regulatory receptors CTLA-4 and PD-1 are also thought to 
be important regulators of inflammation and are frequently 
co-expressed on activated T cells during infection; blockade 
of either receptor has been shown to induce lethal cerebral 

malaria in normally resistant BALB/c mice (91). However, 
overexpression of TGF-β or IL-10 very early in infection 
inhibits the pro-inflammatory response and impedes parasite 
clearance (89). Similarly, blockade of CTLA-4 drives excessive 
inflammation and exacerbates pathology in mice infected with 
a lethal strain of P. yoelii, but mediates lower peak parasitemia 
and swifter parasite clearance in a non-lethal model (81). 
There is some evidence in other disease models, including 
from other protozoan infections, for NK cells as producers 
of IL-10 (92–95), drawing parallels with CD4 T cells that can 
produce both IFN-γ and IL-10. To date, IL-10-producing NK 
cells have not been reported in the context of malaria exposure 
or infection, but it is certainly possible that “regulatory” NK 
cells might be found to contribute to healthy resolution of the 
inflammation associated with malaria infections.

NK CeLLS AND CYTOKiNe ReSPONSeS 
TO MALARiA iN HUMANS

Evidence that NK cells contribute to the antimalarial immune 
response in experimental murine models has naturally provoked 
interest in establishing whether the same is true for human 
Plasmodium infections. As anticipated from experimental animal 
studies, numerous studies conducted on human populations have 
revealed positive associations between IFN-γ production and 
protection against malaria infection [reviewed in Ref. (96)]. IFN-γ 
production by PBMCs has been found to be associated with mild 
rather than severe malaria in children, and children with mild 
malaria who had detectable IFN-γ responses also demonstrated 
delayed incidence of reinfection within 1 year of initial infection 
(97). More recently, long-term protection against experimental 
malaria infection after vaccination with whole P. falciparum 
sporozoites while under protective antimalarial drug cover (98) 
has been associated with both IFN-γ and T cell IL-2 production 
by PBMCs restimulated in vitro with sporozoite antigen (99).

However, as previously demonstrated in mice, excessive 
pro-inflammatory cytokine production is also associated with 
onset of clinical disease and immunopathology in humans. An 
early study in African children by Riley et al. in 1991 demon-
strated an association between IFN-γ production after in vitro 
stimulation with malaria antigens and an increased likelihood 
of developing fever and malaise during in vivo infection (49). 
A later study by Walther et  al. found an association between 
the presence of IFN-γ in plasma in the first few days after 
experimental malaria infection and fever (39). Other studies 
have suggested that IFN-γ, TNFα, and IL-12 production by 
PBMCs are associated with lower parasite densities and higher 
hemoglobin concentrations, but also with increased incidence 
of febrile episodes in Ghanaian children (50, 51). High ratios 
of TNFα to IL-10 have also been linked to severe malaria in 
children from this region (48).

These studies indicate that excessive pro-inflammatory 
cytokine responses to human malaria infections correlate with 
more severe clinical symptoms but better parasite clearance. 
In concert with this evidence, several studies suggest that 
overproduction of regulatory cytokines has a negative effect 
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on parasite clearance. A 2005 study by Walther et al. revealed 
that excessive production of anti-inflammatory cytokines such 
as TGF-β and IL-10 early in infection is linked to reduced  
ability to control parasite growth (39), and a 2006 study by 
Prakash et al. indicated that regulatory cytokines were upregu-
lated in patients with cerebral malaria (40). It is interesting to 
note, however, that this study also found an association between 
high levels of TNFα, but not IFN-γ, and the development of cer-
ebral malaria (40). This perhaps suggests that classing cytokines 
as simply pro- or anti-inflammatory, and therefore “good” or 
“bad”, may be too simplistic when investigating the antimalarial 
immune response. While clinical immunity to malaria in both 
mice and humans (defined here as clearance of parasites in the 
absence of overt clinical symptoms) does seem to require a pre-
cise balance between early pro-inflammatory responses needed 
to kill parasites and regulatory anti-inflammatory responses 
needed to prevent immune pathology, increasing evidence sug-
gests that the equilibrium between the two is highly complex. 
For example, Walther et al. noted an association between a 
higher frequency of FOXP3− CD4+ IFN-γ+ IL-10+ effector T 
cells in the peripheral blood of children with uncomplicated 
compared to severe clinical malaria  (100), while Jagannathan 
et al. identified an increased risk of future episodes of malaria 
in individuals with this same population of FOXP3− CD4+ 
IFN-γ+ IL-10+ T cells (101). Clearly, the immune response to 
malaria requires a far more complex investigation than simply 
stating which cytokines are produced and which are not, and 
the specific cellular sources of cytokines, the quantity produced, 
and the timing of their production relative to the time course 
of infection appear to be key determinants of the outcome of 
infection.

For a long time, it was assumed that classical αβ CD4 and 
CD8 T cells were the primary source of malaria-induced IFN-γ 
as a result of studies where lymphocyte proliferation and IFN-γ 
production were measured utilizing techniques that could not 
differentiate between T cells and NK cells (102–104). In more 
recent times, the advent of intracellular cytokine staining and 
consequent single cell analysis of cytokine production by flow 
cytometry has revealed considerable redundancy in the cellular 
sources of IFN-γ, with γδ T cells and NK cells also producing 
IFN-γ in response to malaria-infected erythrocytes (32, 105, 
106). However, while many different lymphocyte populations 
are capable of producing IFN-γ, they vary in their relative 
contributions to the overall IFN-γ response at different stages 
of infection. The exact proportion of the cytokine response 
ascribed to NK cells or T cells appears to vary based on the time 
point examined [reviewed in Ref. (96)] and thus inconsistencies 
in the literature regarding the major sources of IFN-γ among 
PBMCs exposed to infected erythrocytes likely reflect differ-
ing experimental conditions and differences in the time points 
chosen for analysis. Very few studies have attempted to establish 
the full range of cellular sources of IFN-γ over the course of 
infection (82, 107) [reviewed in Ref. (108)]. In particular, few 
studies have assessed IFN-γ production in the first 18  h of 
exposure, and we have shown that assessing IFN-γ production 
from 24  h coculture onward risks missing important earlier 
contributions from NK cells (63, 106).

A function for NK cells as early responders in human malaria 
infection was first suggested in the early 1980s (109), and since 
that time an increasing number of studies have investigated the 
role of NK cells in the human antimalarial response. Most of 
these data are from in vitro studies culturing PBMCs or purified 
NK cells with P. falciparum-infected erythrocytes, although a 
few studies have investigated IFN-γ production and cytotoxic 
responses ex vivo among infected individuals (25, 110–112). 
In vitro studies of PBMCs from malaria-naive individuals have 
shown that P. falciparum-infected erythrocytes can induce NK 
cells to produce IFN-γ within 6  h of coculture (32), though 
this response appears to be somewhat heterogeneous between 
individuals (113). This heterogeneity may be partly explained by 
NK cell receptor repertoires (114), as evidence suggests that this 
response may require direct physical contact between NK cells 
and infected erythrocytes (51, 106). The role of NK cell receptors 
in determining the magnitude of the IFN-γ response is also sup-
ported by evidence from mouse models (83, 115, 116). Optimal 
NK cell activation also appears to require IL-12 and IL-18 pro-
duced by myeloid accessory cells (106), IL-2 from memory CD4+ 
T cells (63), and physical contacts between NK cells and myeloid 
accessory cells (42, 117, 118), the molecular basis for which has 
yet to be fully identified. The requirement for IL-12 and IL-2 for 
optimal NK cell IFN-γ production may explain the association 
between production of these cytokines and improved clinical 
outcome in human P. falciparum infections (40).

There are many potential trans costimulatory signals that 
could be provided by myeloid accessory cells activated after 
exposure to infected erythrocytes [reviewed in Ref. (119)], but 
so far a role has only been demonstrated for interactions between 
the adhesion molecules ICAM-1 and LFA-1 (118). The role of 
DCs in human malaria is less clear, but they appear to contribute 
to NK cell activation by early cytokine production, possibly after 
activation by parasitized erythrocytes via the CD36 scavenger 
receptor (42, 120). pDCs are a major contributor of type I IFNs in 
humans during infection with other pathogens due to expression 
of TLR7 and TLR9 (121) and are hypothesized to play a similar 
role in malaria infection (120); for example, mouse models sup-
port a role for pDCs in NK cell activation during acute infection 
(67, 71, 72, 122). Similarly, our unpublished work has shown that 
in vitro NK cell responses to P. falciparum-infected red blood cells 
are enhanced by low levels of IL-15, consistent with data from 
mouse models (74); IL-15 is likely to be trans-presented by DCs 
[reviewed in Ref. (123)].

Recent evidence from mice for the development of “adaptive” 
or “memory-like” NK cell responses after infection, antigen sen-
sitization, or exposure to inflammatory cytokines (15, 124) is now 
beginning to be supported by similar (though currently limited) 
data from human studies (10, 19). NK cells have been shown to 
contribute to increased IFN-γ responses to malaria antigens after 
vaccination (26, 98, 99, 125), although initial studies suggest this 
may be a proxy effect due to priming of antigen-specific CD4 T 
cells to secrete IL-2 rather than a reflection of intrinsic changes 
within the NK cell population itself (63). Notably, enhanced 
IFN-γ production by NK cells from individuals experimentally 
infected with malaria up to 20 weeks after initial infection appears 
to be dependent on the presence of both IL-2 and T cells (25).
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NK CeLL CYTOTOXiCiTY AGAiNST 
MALARiA

In addition to the well-established role for NK cells in cytokine 
production in response to infected erythrocytes, there is lim-
ited but growing evidence to suggest that NK cells may also be 
capable of directly killing Plasmodium-infected cells through 
cytotoxic activity. Cytotoxic granzymes have been detected in 
the plasma of people with blood-stage malaria infections (111), 
suggesting that parasite-infected erythrocytes may be targets 
of NK cell or CD8+ T cell cytotoxic activity in vivo. Peripheral 
blood NK cells from experimentally infected malaria-naive 
volunteers and naturally infected Cameroonian children have 
also been shown to release cytotoxic mediators when cultured 
in vitro with hepatocytes infected with liver-stage Plasmodium 
(111), with a similar result reported in Kenyan adults and 
children in response to infected erythrocytes (126). NK cell 
cytotoxicity has similarly been observed against hepatic-stage 
parasites in mice (66).

Natural killer cells have also repeatedly been observed forming 
stable conjugates with infected erythrocytes in vitro (32, 113, 117) 
(Figure 2). In 2005, Baratin and colleagues found that immortal-
ized NK92 cells selectively bound to infected, but not uninfected, 
erythrocytes (117) (Figure 2A), while Artavanis-Tsakonas et al. 
(106) and Korbel et  al. (113) observed conjugate formation 

between P. falciparum-infected erythrocytes and freshly isolated 
human NK cells from multiple individuals (Figure  2B). These 
conjugates can be observed by light microscopy and can be 
counted by flow cytometry as singlet events that stain for both 
NK cell markers and erythrocyte membrane markers (106); 
these results have been replicated by our group using both flow 
cytometry markers and a transgenic P. falciparum strain express-
ing green fluorescent protein (127).

Conjugates have been shown to form rapidly (within 30 min), 
although the proportion of NK cells forming conjugates varies 
considerably between donors (106, 113), suggesting that the 
receptors involved in recognition of infected erythrocytes are 
either polymorphic or are variably expressed on human NK cells. 
Additionally, in cells from some individuals there is evidence of 
NK cell cytoskeletal actin rearrangement at the point of contact 
with infected erythrocytes (113) (Figure 2B). Actin rearrange-
ment at the immune synapse between an NK cell or CD8+ T cell 
and target cells is a prelude to migration of cytotoxic granules 
toward a target cell (128); as such, these data suggest the formation 
of a functional cytotoxic synapse between NK cells and infected 
erythrocytes. More recently, in a humanized mouse model capa-
ble of sustaining a P. falciparum infection, Chen et al. showed that 
parasitemia was significantly reduced in the presence of NK cells, 
and NK cells were directly observed interacting with and kill-
ing P. falciparum-infected erythrocytes using video microscopy, 
providing the clearest evidence yet of NK cell cytotoxicity against 
malaria-infected cells (129).

While there is growing evidence for cytotoxic killing of para-
sitized cells by NK cells and for functional physical interactions 
between them, the NK cell receptors and ligands on infected 
erythrocytes that may mediate these interactions are unknown. 
Healthy erythrocytes are not known to express either classical 
or non-classical HLA class I molecules that might represent 
ligands for inhibitory NK cell receptors such as KIRs or NKG2A, 
nor are they known to express any known ligands for activat-
ing NK cell receptors such as the NCRs. Healthy erythrocytes 
are therefore generally assumed to go unnoticed by NK cells. 
However, malaria infection induces numerous perturbations of 
the erythrocyte membrane [reviewed in Ref. (130)], which may 
result in the presentation of as yet undiscovered ligands for NK 
cell receptors.

One parasite-derived molecule that has been widely impli-
cated in interactions between infected erythrocytes and other 
host cells (and is thus a prime candidate for mediating NK cell 
interactions with infected erythrocytes) is Plasmodium falcipa-
rum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 can 
bind to the adhesion molecules ICAM-1, PECAM, and VCAM, 
the scavenger receptor CD36, and chondroitin sulfate A (CSA), 
a glycosaminoglycan modification of many cell surface proteins 
including those on NK cells (131–133) [reviewed in Ref. (134)]. 
Polymorphic variants of PfEMP1 display different avidities for 
these various ligands [reviewed in Ref. (134)]. Baratin et al. (118) 
have shown that binding of PfEMP1 to CSA mediates binding 
of infected erythrocytes to NK92 cells, but that this interaction 
is not required for subsequent activation of the NK cells. In 
2007, Mavoungou et al. suggested that PfEMP1 binds to NKp30, 
a member of the NCR family (135), but a subsequent study by 
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Chen et  al. indicated that none of the NCRs (NKp30, NKp44, 
or NKp46), nor the unrelated activating receptor NKG2D, are 
required for conjugate formation with infected erythrocytes 
(129). CD36 expressed on DCs may mediate DC activation by 
infected erythrocytes (120), but CD36–PfEMP1 interactions have 
not been shown to occur on NK cells.

Alternatively, a study by Böttger et  al. proposed that the 
presence of membrane-bound heat shock protein 70 (a “self ” 
stress ligand) on the surface of infected erythrocytes may be suf-
ficient to trigger release of granzyme B from NK cells, leading to 
subsequent erythrocyte death (136); however, this has not been 
subsequently confirmed. Other studies have demonstrated that, 
when compared to live and intact infected erythrocytes, dead or 
lysed infected erythrocytes do not fully activate NK cells (32, 51), 
which may narrow down possible candidate ligands, although it 
is possible that this simply reflects a reduced capacity of dead 
parasite material to fully activate myeloid accessory cells or 
IL-2-producing CD4+ T cells rather than evidence of a reduced 
capacity to bind NK cells directly.

HeTeROGeNeiTY iN NK CeLL 
ReSPONSeS TO MALARiA

In vitro, NK cell responses to infected erythrocytes differ 
greatly between individuals, although individuals’ responses 
are   consistent over time (106, 113, 114). This diversity likely 
arises from a number of sources including the strength of the 
cytokine and costimulatory signals provided to NK cells by mye-
loid accessory cells (42), differential NK cell maturation status 
dependent on age and infection with human cytomegalovirus 
(137) [reviewed in Ref. (138)], frequencies of malaria-reactive 
or cross-reactive IL-2-secreting CD4+ T cells (25, 63, 98, 99), 
and genetically determined differences in the expression of NK 
cell activating and inhibitory receptors, which set the threshold 
for NK cell activation (7, 114) [reviewed in Ref. (139)]. Among 
these, there is evidence that genetic diversity genetic diversity 
in KIRs may contribute to the heterogeneity of the response to 
infected erythrocytes.

The KIR locus contains genes for both activating (short-tailed) 
and inhibitory (long-tailed) KIR, and heterogeneity in gene 
content combined with allelic polymorphism at individual loci 
and stochastic expression of individual receptors at the cellular 
level leads to extensive haplotypic diversity and highly diverse 
NK  cell  populations within an individual (140). There are two 
distinct families of KIR haplotypes, comprising combinations 
of KIRs commonly inherited together. The A haplotype encodes 
mainly inhibitory receptors with KIR2DS4 the only activating 
receptor, while the B haplotype encodes more balanced combina-
tions of inhibitory and activating receptors (141) [reviewed in 
Ref. (142, 143)]. However, genes in the centromeric and telomeric 
regions of the two haplotypes can recombine during meiosis, 
leading to hybrid centromeric A/telomeric B haplotypes and 
vice versa (144, 145) [reviewed in Ref. (29)].

Heterozygous carriage of the AB KIR haplotypes appears 
to be  associated with increased IFN-γ production in  vitro in 
response to iRBC compared to either AA or BB homozygous 
individuals (114). Similarly, AB heterozygosity was suggested 

to be protective during clinical malaria infection, as individuals 
carrying c-AB2/t-AA (i.e., individuals with heterozygous A and 
B centromeric KIR genes in combination with telomeric A hap-
lotype genes) were more likely to have asymptomatic malaria 
infections rather than uncomplicated or severe symptomatic 
malaria (146). As carriage of both A and B haplotypes is likely 
to increase the total number of different KIR that can be an 
expressed by an individual, heterozygosity may increase the 
proportion of NK cells that express a KIR capable of binding 
self-HLA and are therefore “licensed” [reviewed in Ref. (28, 147)] 
and, as such, may be more responsive to activation by pathogens. 
Conversely, in a Gambian population, Yindom et al. suggested 
that an AA KIR haplotype may be protective during malaria 
infection and that carriage of activating KIRs is associated with 
higher mortality (148); this may suggest that NK cell responses 
contribute to the over-exuberant inflammatory responses that 
are associated with severe disease, either because they express 
a particular activating KIR that recognizes a, as yet unknown, 
ligand on infected erythrocytes or because the balance of acti-
vating to inhibitory KIR expressed by B haplotype-bearing NK 
cells lowers the threshold for activation [reviewed in Ref. (149)]. 
To date, the largest genetic association study of KIR and malaria 
susceptibility, conducted in Thailand, reported that KIR2DL3 
in association with its ligand HLA-C1 is associated with an 
increased risk of cerebral malaria compared to uncomplicated 
malaria and that this combination of KIR2DL3–HLA-C1 is sig-
nificantly less common in malaria-endemic areas than might be 
expected; the authors proposed that this was evidence of natural 
selection (150). One hypothesis that might unify all of these find-
ings is that protection is mediated by KIR2DL2, a B haplotype 
KIR, which binds HLA-C1 with higher affinity than KIR2DL3, 
an A haplotype KIR (151); thus, carriage of a single copy of the 
centromeric B haplotype may confer protection against severe 
malaria by preventing interactions between KIR2DL3 and HLA-
C1 through preferential expression of KIR2DL2. However, larger 
studies of KIRs that take into account the genetic background of 
the population and the allelic diversity of both KIR and HLA 
class I molecules are needed to determine whether KIR receptors 
do in fact influence malaria disease progression. In this respect, 
it is disappointing that all of the recent genome-wide association 
studies of malaria susceptibility exclude KIR and/or HLA from 
their analyses (152, 153).

A major limitation of NK cell licensing as a possible explana-
tion for the association between KIR AB heterozygosity and 
resistance to malaria is that licensing has only been shown to 
enhance NK cell cytotoxicity in  situations where MHC class 
I expression is downregulated (i.e., missing self) [reviewed in 
Ref. (139)]. For activation via missing self, at least in terms of 
lack of MHC class I, to operate in malaria infections, the bal-
ance of NK cell receptor signaling would probably have to be 
altered by expression of a potent activating ligand. Moreover, it 
is not clear that licensed NK cells display a greater capacity for 
cytokine production (which is the more established role for NK 
cells in malaria infection) compared to unlicensed cells (154). 
Indeed, CD56dim NK cells (which express KIR) seem to produce 
lower levels of IFN-γ than CD56bright NK cells that lack KIR 
expression (106, 114), and in some viral infections unlicensed 
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FiGURe 3 | Hypothesized model for the continuing role of natural killer (NK) cells during malaria infection. NK cells may destroy infected hepatocytes by 
perforin/granzyme-mediated cytotoxic killing or death receptor-induced apoptosis, or may kill the parasite within the hepatocyte via cytokine-mediated induction of 
toxic radicals (A). During the early erythrocytic stage of infection, NK cells are activated by cytokines from macrophages and dendritic cells (DCs) and in turn release 
interferon gamma (IFN-γ) to activate macrophages that phagocytose infected erythrocytes (B). Once the adaptive immune response has developed, T cells 
contribute interleukin (IL)-2 to enhance the ongoing NK cell response. In the presence of specific IgG antibodies, NK cells may now mediate parasite clearance and 
killing by antibody-dependent cell-mediated cytotoxicity (ADCC). NK cells may also kill infected erythrocytes directly via formation of an immune synapse and release 
of cytolytic granules (C).

cells are thought to be key producers of cytokines (155). Finally, 
in considering the potential role of KIR in controlling NK cell 
responses to malaria, more definitive evidence is required for 
direct, functional interactions between NK cells and infected 
erythrocytes, and it is also necessary to consider that genetic 
associations between malaria severity and KIR might be medi-
ated by NK cell interactions with infected hepatocytes (which 
express MHC class I) during the pre-erythrocytic liver stage of 
infection.

CONCLUDiNG COMMeNTS

Natural killer cells have traditionally been considered to 
contribute to the control of infection by producing IFN-γ 
and killing infected cells during the first hours and days of 
infection, before being superseded by the adaptive immune 
response. This narrow interpretation of NK cells as mediators 
of innate immunity has had to be re-evaluated in light of more 
recent studies implicating NK cells as effectors in the adaptive 
immune response (mediating antibody-dependent cellular 
cytotoxicity and responding to IL-2 from effector and effec-
tor memory CD4+ T cells) (19, 24, 25) [reviewed in Ref. (9, 
156)]. In the case of malaria, NK cells have been implicated 

in cytokine-mediated as well as cytotoxic activity against both 
erythrocyte and liver-stage parasites, and in both early and late 
stages of infection. Although the currently available data tend 
to support a primarily beneficial role for NK cells as an early 
source of a key cytokine (IFN-γ) and suggest that they might 
also contribute to controlling parasitemia by lysis of infected 
erythrocytes, these studies fall far short of convincingly dem-
onstrating either a protective or deleterious role for NK cells 
in human malaria infection. Figure 3 shows the different roles 
that NK cells may play throughout the course of malaria infec-
tion; future studies may confirm or refute these suggestions. An 
alternate hypothesis is that, in some people, NK cell cytokine 
production may contribute to immune pathology. If so, this 
may be a transient effect associated with particular stages of 
the development of antimalarial immunity.

Interferon gamma is produced by many lymphocyte popula-
tions at the various stages of malaria infections (including αβ 
CD4+ T cells, γδ T cells, and NK T cells (112)), suggesting that 
the particular importance of NK cells as cytokine producing 
cells is during the very first few days of a blood-stage infec-
tion (63). The role of NK cells later in malaria infection, or 
upon secondary or subsequent infection, and in particular the 
importance of NK cell-mediated cytotoxicity, ADCC and NK 
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cell “memory,” requires further investigation. As we learn more 
about how KIR and HLA genotypes influence NK cell function 
and licensing, and how NK cell phenotype and function change 
over the course of life, we may gain a better understanding of 
the role of NK cells throughout the course of malaria infections.
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