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Only a small proportion of newborn infants exposed to a pathogenic microorganism 
develop overt infection. Susceptibility to infection in preterm infants and infants with 
known comorbidities has a likely multifactorial origin and can be often attributed to the 
concurrence of iatrogenic factors, environmental determinants, underlying pathogenic 
processes, and probably genetic predisposition. Conversely, infection occurring in other-
wise healthy full-term newborn infants is unexplained in most cases. Microbial virulence 
factors and the unique characteristics of the neonatal immune system only partially 
account for the interindividual variability in the neonatal immune responses to pathogens. 
We here suggest that neonatal infection occurring in otherwise healthy infants is caused 
by a failure of the specific protective immunity to the microorganism. To explain infection 
in term and preterm infants, we propose an extension of the previously proposed model 
of the genetic architecture of infectious diseases in humans. We then focus on group B 
streptococcus (GBS) disease, the best characterized neonatal infection, and outline the 
potential molecular mechanisms underlying the selective failure of the immune responses 
against GBS. In light of the recent discoveries of pathogen-specific primary immunodefi-
ciencies and of the role of anticytokine autoantibodies in increasing susceptibility to spe-
cific infections, we hypothesize that GBS disease occurring in otherwise healthy infants 
could reflect an immunodeficiency caused either by rare genetic defects in the infant or 
by transmitted maternal neutralizing antibodies. These hypotheses are consistent with 
available epidemiological data, with clinical and epidemiological observations, and with 
the state of the art of neonatal physiology and disease. Studies should now be designed 
to comprehensively search for genetic or immunological factors involved in susceptibility 
to severe neonatal infections.

Keywords: newborn infant, life-threatening, primary immunodeficiency, genetic predisposition to disease, 
Mendelian diseases, monogenic, infection, group B streptococcus

introdUCtion

Neonates are commonly thought to be vulnerable to pathogens because of neonatal immaturity, 
immune tolerance, or immune deviation, a developmentally regulated transitional state (1–4). These 
concepts, while useful to describe the highest incidence of infection during the neonatal age at the 
population level, do not take into account interindividual variability. Even if the highest incidence of 
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infection is observed during the first 28 days of life, the majority 
of newborn infants are resistant to common pathogens, and only 
a small proportion of infants exposed to a given microorganism 
develop overt disease.

It is very clear from epidemiological studies that multiple risk 
factors contribute to the individual risk of developing neonatal 
infections. Based on them, neonates can be classified into high- 
and low-risk groups; individual risks can be estimated; and 
preventive protocols can be designed for infants who are at high 
risk of suffering from severe infections (5–7).

Despite their proven clinical utility, most preventive protocols 
are only partially effective. This can be explained in part by 
incomplete adherence by healthcare practitioners and missed 
opportunities (8–10). However, another critical limitation is the 
inability of current protocols to accurately predict susceptibility 
to severe infection at the individual level. Furthermore, infections 
that occur in the absence of any recognizable factors are currently 
unpredictable.

Many research groups are focusing on the mechanisms of host 
susceptibility and resistance to pediatric and adult infections  
(11, 12). Conversely, neonatal infections have been much less 
studied from a host susceptibility perspective. Several layers of 
complexity have indeed prevented researchers from fully under-
standing the neonatal-specific protective immunity, beyond 
maternal protection of the neonate through transplancentally 
transmitted antibodies (Abs). Considering the global burden of 
neonatal infectious diseases, this looks like a missed opportunity 
to address a critical public health problem.

The study of neonatal infections raises several practical and 
ethical issues and is challenging from a scientific perspective. 
First, the neonatal immune system is a rapidly evolving entity, as 
is every other organ and system soon after birth (13). Second, and 
possibly more importantly, there is a complex immune interplay 
between the mother and the child. The maternal environment 
(the maternal immune system and microbiome) is intertwined 
with physiological and pathological processes occurring in 
the fetal and neonatal tissues (e.g., the maturation of fetal and 
neonatal immune responses, the composition of the neonatal 
microbiome) (13–17).

To date, little is known about the mechanisms leading to 
individual vulnerability and resistance to specific pathogens in 
the neonatal age. We here propose novel, testable hypotheses 
that could explain the interindividual differences in pathogen 
susceptibility and help dissect the molecular and cellular bases of 
severe neonatal infections.

epideMioLoGy oF neonataL 
inFeCtions

The Global Burden of Disease Study 2015 reports that “sepsis and 
other neonatal infections” account for 336,300 neonatal deaths 
each year worldwide (18).

The distribution of infecting microorganisms varies between 
term and preterm infants and is different in the neonatal period 
compared to other age groups. Early-onset and late-onset infec-
tions are defined as infection occurring during and after the first 

6 days of life, respectively. According to other definitions, 48–96 h 
of life could be used as cutoff (19).

Group B streptococcus (GBS), or Streptococcus agalactiae, 
is one of the leading pathogens in neonatal infections occur-
ring in full-term newborn infants during the first week of life 
(9). It is also the most frequent cause of sepsis and meningitis 
in young infants after the first week of life (20, 21). Recent 
reports show an increase in the proportion of Escherichia coli 
infection, mostly associated with urinary tract infection, in 
previously healthy, full-term infants aged 1 week to 3 months 
(22, 23). Other pathogens responsible for invasive infection in 
full-term infants include Gram-positive (Staphylococcus aureus, 
Streptococcus spp., Enterococcus spp., and, less frequently, 
Listeria monocytogenes) and Gram-negative microorganisms 
(Klebsiella spp., Citrobacter spp., Serratia marcescens, Salmonella 
spp., Haemophilus influenzae) (22, 23). Deep organ infections by 
Candida spp. and other fungal microorganisms are exceedingly 
rare in full-term infants.

In very low-birth-weight (VLBW; <1,500 g at birth) infants, 
Gram-negative pathogens are the most frequently isolated micro-
organism in early-onset infections, while Gram-positive bacteria 
are the most frequently isolated pathogens in late-onset infections 
in the neonatal intensive care units (NICUs), followed by Gram-
negative bacteria and fungal organisms (24–29).

sUsCeptiBiLity to neonataL 
inFeCtions

Maturation of the neonatal immune 
system
The neonatal immune responses differ in many aspects from 
immune responses in other age groups. A fine-tuning is required 
to balance the need for tolerance to beneficial antigens (microbial 
flora and nutrients) and the need for defense against harmful 
microorganisms.

The cord blood is enriched in CD4+CD25+ T regulatory cells 
with potent suppressor activity (30, 31) and other immunosup-
pressive cell populations including some B cell populations and 
CD71+ erythroid cells (32, 33).

Despite this strong immunosuppressive component, the 
neonatal immune system has been demonstrated to be able to 
mount pro-inflammatory responses that are appropriate for the 
protection against common pathogens in most infants (34). The 
two main components of the adaptive immune system, the T and 
B cell compartments, undergo maturation during human fetal 
life, with progressive and regulated acquisition of B and T cell 
repertoire diversity and complexity (35). In addition, the human 
cord blood possesses several pro-inflammatory cell populations, 
including newborn-specific interleukin (IL)8-producing T cells 
(36) and a population of CD4+ T cells with a memory-like phe-
notype and a variety of effector functions (37).

Cells of the neonatal adaptive immune system are capable of 
mounting a wide range of responses, from poor or “deviant” T 
helper 2 (Th2)-skewed antiinflammatory responses to balanced 
Th1/Th2 responses, and even strong adult-like pro-inflammatory 
responses (2–4, 38). A series of elegant experiments have shown 
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that neonatal T cells, unlike adult cells, are able to produce large 
amounts of the Th2 cytokines, IL4 and IL13, upon polyclonal 
stimulation (39, 40). This phenomenon is linked to extensive 
epigenetic modifications at the Th2 locus (IL5, IL13, and IL4 
genes) and in particular to hypomethylation of the conserved 
non-coding sequence 1 locus, an enhancer and coordinate regu-
lator of Th2 cytokine production (38, 41). Despite this Th2 bias, 
neonatal adaptive immune responses can shift toward a dominant 
Th1 and pro-inflammatory response depending on the type of 
innate responses and the conditions of antigen exposure (38, 42).

Adaptive immune responses require, however, several days to 
take place. Neonates cannot rely on preexistent immunological 
memory because exposure to foreign antigens and pathogens is 
limited during intrauterine life (34, 42). Furthermore, humoral 
immunity largely depends on maternally transmitted antimicro-
bial IgG Abs during the first days of life. The rapid decline of 
maternal IgG in the neonatal plasma after birth (with a half-life 
of 21–30 days) is accompanied by a relatively slow maturation of 
both T-dependent and T-independent B-cell responses through-
out the first months of life (13, 43).

Infections occurring in the neonatal period are, by defini-
tion, primary infections, and neonates mostly rely on the innate 
immune responses that provide a first line of defense against 
invading pathogenic microorganisms (34, 44, 45).

A number of studies demonstrated that the neonatal innate 
immune responses are characterized by dampened Th1-polarizing 
and pro-inflammatory responses [low amounts of tumor necrosis 
factor (TNF) upon toll-like receptor (TLR) stimulation] and by 
increased production of Th2-polarizing and antiinflammatory 
cytokines (higher IL6/TNF ratio compared to adult responses) 
(45–48). Furthermore, decreased phosphorylation of signal 
transducer and activation of transcription 1 in response to 
interferon gamma (IFN-γ) (49) and developmental maturation 
of specific dendritic cell subsets (50) contribute to the neonatal-
specific Th2-polarizing innate immunity.

Interestingly, full-term healthy newborn infants do not appear 
specifically vulnerable to deep infection by microorganisms typi-
cally causing disease in immunodeficient patients, most notably 
Nocardia and fungi-like Aspergillus, Candida, Cryptococcus, 
Pneumocystis, and other opportunistic pathogens, suggesting 
a substantial maturation of the specific antifungal protective 
responses in most full-term newborn infants.

Altogether, the characterization of the neonatal immune 
responses over the past two decades has shown profound dif-
ferences with adult immunity that in part explain the overall 
increased susceptibility to life-threatening infection of newborn 
infants. However, little is known so far about the interindividual 
differences in the immune protection against pathogens in the 
neonatal age.

Heritability of neonatal sepsis
There is controversy over the heritability of susceptibility to 
neonatal sepsis. In one study, comparing the concordance of late-
onset sepsis in same-sex vs. unlike-sex twin pairs, no evidence 
was found of a genetic component of susceptibility to late-onset 
sepsis among VLBW infants (51). Conversely, another study 
compared sepsis concordance rates between monozygotic and 

dizygotic twins; the authors found that 49% of the variance in 
liability to late-onset sepsis could be explained by genetic factors 
alone and 51% by residual environmental factors (52). Both stud-
ies focused on cohorts of very preterm/VLBW infants. No study 
so far addressed the question of heritability of neonatal sepsis in 
late-preterm and full-term newborn infants.

The question of the role of the genetic background on 
neonatal host susceptibility to infection has been addressed by 
several studies. All published studies, included in a recent meta-
analysis, used a candidate gene approach on cohorts of preterm 
infants (53). One genome-wide association study (GWAS) is 
ongoing (54). Such studies are useful to investigate the contri-
bution of host genetics in the setting of a likely multifactorial 
pathogenesis, as it is probably the case for most infections occur-
ring in preterm infants. Different approaches are needed to find 
the genetic determinants of susceptibility to life-threatening 
infections occurring in full-term infants with no underlying 
medical conditions in which susceptibility to infection is largely 
unexplained.

Lessons from inborn errors of immunity in 
pediatric infections
Inborn errors of immunity or primary immunodeficiencies 
(PIDs) are a group of genetic disorders characterized by increased 
susceptibility to infection. Historically, the so-called conventional 
PIDs have been the first PIDs described and dissected from 
a molecular perspective (55). They are typically Mendelian 
diseases, caused by highly penetrant single-gene defects. They 
often occur in families or in the presence of consanguinity and 
are characterized by a profound defect in one or more arms of the 
immune system leading to susceptibility to recurrent infections 
by a broad range of microorganisms (56).

Over the past two decades, it has become clear that infectious 
diseases previously thought to be due to the sole virulence of the 
pathogen may be the expression of a monogenic disorder under-
lying a PID. Inborn errors of immunity resulting from single-gene 
defects have been shown to underlie multiple bacterial infections 
[myeloid differentiation primary response 88 (MYD88) and 
interleukin 1 receptor-associated kinase 4 (IRAK4) deficiency], 
monogenic susceptibility to mycobacterial disease (deficiency 
of genes in the IL12/IFN-γ loop), herpes simplex encephalitis 
(defect in TLR3-dependent immune responses), and severe 
primary Influenza virus infection (interferon regulatory factor 7 
deficiency) (56–60).

These “non-conventional” PIDs are distinguished from 
conventional PIDs as they often occur in sporadic cases with-
out any family history of severe infection. Individuals affected 
by non-conventional PIDs are often otherwise healthy. The 
immunological phenotype is not detectable with first-line 
immunological studies, and the disease might manifest as a 
single episode of severe and potentially lethal infection caused 
by a common or opportunistic pathogen, mostly during primary 
infection (56, 58, 59).

The discovery of non-conventional PIDs suggested that 
monogenic conditions might underlie infectious diseases of 
infancy and childhood more frequently than previously thought 
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(11). The model of the genetic architecture of human infectious 
diseases that has been proposed based on these observations sug-
gests that infections occurring early in life are more likely to be 
caused by single-gene disorders (61).

pids in neonatal infections
The proportion of neonatal infections that can be explained by 
known PIDs is unknown. However, there is evidence from case 
reports or small case studies that life-threatening infections 
occurring early in life may represent the first phenotypic mani-
festation of an inborn error of immunity.

The role of conventional PIDs in conferring susceptibility 
to infection in the neonatal age has been recently reviewed by 
Walkovich and Connelly (62). It is important here to remember 
that a high index of suspicion is required, given that the infec-
tious and potential extraimmunological phenotypes may be only 
partially expressed during the neonatal period.

Non-conventional PIDs have also been shown to underlie 
life-threatening neonatal infections. Pyogenic infections occur-
ring during the first few weeks of life have been described as the 
first phenotypic manifestation of IRAK4 and MYD88 deficien-
cies (63–65). Klebsiella pneumoniae infection often striking in 
neonatal units as a fulminant and fatal disease, has been linked 
in some pediatric patients to IL12 receptor subunit beta 1 
deficiency (66).

Loss-of-function mutations in interferon induced with heli-
case c domain 1 (IFIH1), a cytosolic sensor of the viral RNA, have 
been implicated as causative factors in lower respiratory tract 
infections (pneumonitis, bronchiolitis) caused by RNA viruses 
(67). Interestingly, the phenotype of IFIH1 deficiency is narrow 
(restricted to few related RNA viruses), transient (recurrence was 
found in one of eight patients), and organ specific (only affects 
the lungs).

Variants in single Ig And TIR domain containing (SIGIRR) 
have been implicated as a possible causative or facilitating fac-
tor of necrotizing enterocolitis (NEC) (68), but fulminant and 
infection-associated NEC (69) in infants with no other identifi-
able facilitating iatrogenic factor or medical condition has not 
been linked yet to a genetic condition.

spectrum of neonatal infections
From a clinical perspective, newborn infants suffering from life-
threatening infections may be divided in two major groups:

(1) Newborn infants with a known medical condition. This 
group includes all infants admitted to a NICU (therefore 
exposed to nosocomial pathogens) and specifically very 
preterm (<32 weeks gestational age) and extremely preterm 
(<28  weeks gestational age) infants, infants undergoing 
surgery, infants with organ disease (e.g., urinary tract 
malformations, neurological conditions), and infants 
receiving medical procedures or treatments that are per se 
sufficient to explain an increased vulnerability to colonizing 
microorganisms. Infections in this group are multifactorial 
or linked to one specific known factor of vulnerability, and 
only a small proportion of the risk is probably explained by 
individual genetic variation.

(2) Otherwise healthy, full-term, or late-preterm newborn 
infants with no identifiable medical conditions. Severe 
infections in these infants occur without any apparent risk 
or facilitating factor and, from a host perspective, can be 
considered idiopathic diseases.

Most of these infections occur as isolated events (the spectrum 
of susceptibility is extremely narrow, in most cases restricted to a 
single microorganism) and rarely recur.

Some infections are almost never observed in healthy children 
after the first year of life or in adults. These include neonatal GBS 
disease, viral bronchiolitis, and rare cases of infection-related NEC 
in late preterm and full-term infants. Conversely, other infections 
are not age specific, but may occur with particular frequency and 
severity in the neonatal period and infancy. These include infec-
tions by E. coli, Klebsiella spp., Listeria monocytogenes, and other 
Gram-negative and Gram-positive pathogens.

The biological underpinnings of the interindividual differ-
ences in resistance and vulnerability to specific pathogens in 
otherwise healthy infants are currently unknown.

Hypothetical General Model for neonatal 
infections
A general model to explain susceptibility to neonatal infections in 
full-term and preterm infants is lacking.

Single factors with high effect size explain some of the most 
severe diseases occurring in infants without known comorbidi-
ties. A prime example in neonatal medicine is the rare occurrence 
of rapidly progressive neonatal jaundice and kernicterus in 
otherwise healthy, full-term babies, which is due to neonatal 
hemolysis resulting from either monogenic defects (e.g., sphero-
cytosis, G6PD deficiency) or alloimmune maternal Abs (anti-Rh, 
anti-ABO) (70). Conversely, hemolysis leading to kernicterus 
in extremely preterm infants is more likely to be multifactorial, 
depending on the combined contribution of common genetic 
polymorphisms, underlying medical conditions, iatrogenic fac-
tors, and other environmental determinants (71).

As a general observation, single-gene or single-factor disorders 
are more likely to underlie severe neonatal disease phenotypes 
in otherwise healthy full-term infants, while a multifactorial 
pathogenesis is more likely to explain mild-to-severe neonatal 
disease in the presence of comorbidities or iatrogenic factors, 
with severity depending on the underlying pathogenic process 
(Table 1).

Along the same lines, we here suggest that single factors with 
high effect size may underlie life-threatening infections in other-
wise healthy, full-term, or late-preterm babies, while a polygenic/
multifactorial model may better explain the occurrence and 
severity of infections in very and extremely preterm infants.

Accordingly, we propose an extension of the model of the 
genetic architecture of infectious diseases proposed by Alcais 
et al. (61) to include full-term and preterm infants (Figure 1).

Additional host factors (maternal antimicrobial protective 
Abs, vaginal and breast microbiome, epigenetic, and maturational 
changes in the immune system) and determinants of microbial 
virulence may also modulate disease severity (17).
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FiGUre 1 | Human genetic architecture of infections. Modified from Alcais et al. (61). The contribution of Mendelian genetic defects (red lines) to life-
threatening infectious diseases is mostly observed during childhood, while complex interactions between environmental influences and polygenic susceptibility (blue 
lines) play a more important role for infections occurring later in life. We propose a specular trend for the contribution of human genetic variants to infection 
susceptibility with decreasing gestational age. In newborn infants at extremely low gestational ages, exogenous factors play a major role, while host genetic defects 
are more likely to explain life-threatening infection in full-term, otherwise healthy babies.

taBLe 1 | Mechanisms of disease in term and preterm infants.

involved tissue/
organ

disease phenotype single-factor disorders Multifactorial conditions

Red cells, liver Neonatal jaundice 
with/without bilirubin 
encephalopathy

Monogenic disorders (spherocytosis, 
elliptocytosis, G6PDH deficiency, Lucey–Driscoll 
and Crigler–Najjar syndromes)

Prematurity, metabolic or respiratory acidosis, alterations of blood–
brain barrier, hypoproteinemia, liver immaturity, polycythemia

Maternal abs (ABO alloimmunization, Rh 
alloimmunization)

Megakaryocytic 
lineage

Neonatal 
thrombocytopenia

Monogenic disorders (genetic 
thrombocytopenias)  
Maternal abs (auto- or alloimmune 
thrombocytopenia)

Mild thrombocytopenia in small-for-gestational-age infants, infants 
with perinatal asphyxia; thrombocytopenia in infants with bacterial 
and viral infections and/or intravascular disseminated coagulation

Thyroid Neonatal hypothyroidism Monogenic disorders (genetic thyroid dysgenesis 
and dyshormonogenesis)

Maternal exposure to iodopovidone, iodopovidone use in 
term and preterm infants (Wolff–Chaikoff effect due to iodine 
transdermal resorption)Maternal abs (anti-TPO, anti-TSHr, anti-TG)

Immune system Neonatal infection •	 Urinary tract malformation
•	 Mendelian predisposition to life-threatening 

infection?
•	 Maternal anti-cytokine Abs?

Infections in infants with underlying medical conditions facilitating 
exposure and translocation of the pathogens to the bloodstream

This table reports examples of hematological and non-hematological neonatal disease phenotypes that can be explained by either monofactorial or multifactorial conditions. The 
list is non-comprehensive, and other conditions explained by the same mechanisms include neonatal hyperthyroidism, arrhythmias and neuromuscular disorders. Monofactorial 
conditions, that include monogenic disorders and pathogenic maternal Abs are, in general, severe, often explain disease in full-term infants but can also underlie disease in preterm 
infants. Disease phenotypes linked to multifactorial conditions can be mild to severe and are generally found in infants with co-morbidities.
Abs, antibodies; GSPDH, glucose-6-phosphate dehydrogenase; TPO, thyroperoxidase; TSHr, thyroid-stimulating hormone receptor; TG, thyreoglobulin.
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Current evidence supporting the Model
In preterm infants, multiple factors are well known to contribute 
to both the occurrence and the severity of infections. Colonization 
of deep mucosal tissues by hospital-acquired microorganisms and 
translocation to the bloodstream is facilitated by several factors: 
biomedical devices (endotracheal or nasogastric tubes), invasive 
procedures, thin skin and mucosal layers, central catheters, total 

parenteral nutrition, drugs (histamine type 2 receptor-antagonists, 
steroids, antibiotics), delayed initiation of enteral nutrition with 
formula milk, associated diseases, male gender, an incomplete 
maturation of the preterm immune system (6, 35, 72–74), and, 
possibly, a weak polygenic predisposition (52).

In full-term infants, supporting evidence for a role of single 
host factors in determining susceptibility to infection is provided 
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by the example of urinary tract malformation as one single, high 
effect-size factor, in determining susceptibility to urosepsis (75) 
independently of other protective or risk factors. In infants with 
urinary tract malformation, the effect of the alterations in urinary 
flow on the facilitation of urosepsis exceeds by far the effect of 
other potentially modulating factors.

Where no apparent determinant of higher susceptibility to 
infection is identified, a failure of the individual specific protec-
tive innate immune responses can be hypothesized. The failure 
of specific arms of the immune system that are non-redundant 
in the neonatal defense against a given microorganism would 
exceed in effect size the modulating potential of other protective 
factors.

The view of single-gene defects contributing to the burden of 
neonatal infections in otherwise healthy infants is supported by 
the growing body of evidence in the literature describing neonatal 
infections as the first phenotypic manifestation of a known con-
ventional or non-conventional PID (62–65, 67, 76). However, the 
great majority of neonatal infections still need to be characterized 
from a host molecular perspective.

neonataL GBs disease

In the past years, given its predominant role among neonatal 
infections, neonatal GBS disease has been extensively character-
ized from an epidemiological standpoint. The elucidation of the 
mechanisms underlying neonatal vulnerability to GBS may serve 
as a model to understand the pathogenesis of other neonatal 
infectious diseases. In the following paragraphs, we discuss the 
unique susceptibility to GBS infection of some young infants and 
propose that it could be due to genetic or immune factors.

epidemiology and Clinical Characteristics
Group B streptococcus is a Gram-positive, β-hemolytic bacterium 
frequently colonizing the human gastrointestinal and genitou-
rinary tracts. Invasive GBS disease is extremely rare in healthy 
adults, with a reported incidence of 10/100,000 non-pregnant 
individuals (20, 21). Young infants, pregnant and post-partum 
women, and older adults with underlying medical conditions 
display higher rates of invasive disease (77).

The global incidence of neonatal GBS disease is estimated to 
be as high as 0.53/1,000 live births (78). The incidence is high-
est in infants during the first 3 months of life and dramatically 
declines afterward (7). Early-onset GBS disease (EOD, onset 
during the first 6 days of life) occurs after vertical transmission 
of the bacterium through ascending infection or during delivery 
through a GBS-colonized birth canal. Risk of EOD can be reduced 
by administration of antibiotics to the mother during labor. Late-
onset GBS disease (LOD) (onset between 7 and 89 days of life) is 
thought to result from horizontal transmission in most cases. The 
source of GBS can been identified in some cases. Potential routes 
of transmission include persistent mucous membrane and skin 
colonization from acquisition of GBS at birth or after birth from 
mothers with vaginal colonization; gut colonization through 
ingestion of infected breast milk from mothers with or without 
mastitis; or the community or hospital environment (15, 79–81). 
No preventive strategy exists for LOD. After the introduction of 

intrapartum antibiotic prophylaxis in clinical practice, the inci-
dence of EOD has dropped in the United States from 1.7/1,000 
live births in 1993 to ~0.3/1,000 live births, but the incidence of 
LOD remained stable (7, 82). Clinically, neonatal GBS disease has 
the features of a severe, life-threatening bacterial infection with 
systemic disease (sepsis), often associated with organ involve-
ment (meningitis, osteoarthritis, NEC), requiring admission to a 
NICU. Untreated, it is almost always fatal with multiorgan failure 
due to septic shock and disseminated intravascular coagulopathy. 
Case-fatality ratio was as high as 50% in the 1970s (7) and has 
now dropped to <10% (78, 82), thanks to improvements in 
neonatal intensive care techniques and the prompt detection of 
clinical signs of infection and immediate initiation of antibiotic 
treatment.

established risk Factors for Human 
neonatal GBs disease and Gaps in 
Knowledge
Approximately 50% of infants born to GBS-colonized mothers 
(10–30% of all pregnancies) are in turn colonized. Of these, only 
1–2% develops overt EOD (7). Data on the proportion of GBS-
exposed infants developing LOD are lacking, but it is probably 
low, given a likely increase in the cumulative exposure/coloniza-
tion rate with age and a concurrent decline in the incidence of 
GBS disease.

During the past decades, epidemiological studies led to the 
identification of several risk factors for EOD, including maternal 
colonization with GBS and bacteriuria, prematurity, chorioam-
nionitis, and/or intrapartum fever, prolonged (>18 h) premature 
rupture of membranes (PROM), low maternal anticapsular 
polysaccharide GBS Abs (29, 83–88), and GBS disease in an older 
sibling (89). Established risk factors for LOD include prematurity 
and gut colonization by the pathogen (80, 90).

In many cases, invasive GBS infection develops in otherwise 
healthy, full-term newborn infants, with as many as 42% of 
early-onset cases (91) and most late-onset cases occurring in 
the absence of any established risk factor. Known risk factors are 
therefore unable to reliably predict the occurrence of GBS disease 
at the individual level. Rather, they identify groups of infants 
enriched for determinants of susceptibility, but the nature of such 
determinants has remained elusive.

GBs Microbial Load and Virulence Factors
Fetal and neonatal exposure to the microorganism is the sine 
qua non-for neonatal colonization and subsequent infection. 
Heavy maternal vaginal colonization has since long been 
recognized as a risk factor for EOD, possibly due to greater 
bacterial inoculum to the lungs (7). High bacterial load in 
maternal milk has been linked to neonatal gut colonization and 
subsequent invasive LOD (80). The determinants of maternal 
carriage and the maternal bacterial overgrowth are poorly 
understood. Mild maternal disease may accompany heavy 
maternal colonization: maternal GBS urinary tract infection in 
pregnancy is considered a sign of heavy colonization (7), and 
maternal mastitis may be responsible for high bacterial load in 
maternal milk (80).
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Additional microbial factors, beyond bacterial load, contribute 
to the development of invasive disease. Ten different GBS sero-
types have been described (Ia, Ib, II–IX), based on the capsular 
polysaccharide antigen. Serotypes Ia, Ib, II, III, and V are most 
frequently found in EOD; serotype III is the most frequently iso-
lated serotype in LOD and meningitis, but all serotypes can cause 
neonatal infection (19, 82, 92, 93). The capsular polysaccharide is 
thought to contribute to the virulence of the microorganism by 
aiding to escape the host immune responses. Deeper investiga-
tion on GBS isolates through multilocus sequence typing and 
grouping of genetically related sequence types (STs) into clonal 
complexes (CCs) has shown that most human isolates belong to 
few CCs (CC1, CC10, CC17, CC19, CC23, and CC26) (94–98) 
(http://pubmlst.org/sagalactiae/). The hypervirulent CC17 
strains (including the hypervirulent ST-17 strain) are newborn 
specific. They possess the adhesin HvgA and other surface pro-
teins conferring the ability to invade the neonatal central nervous 
system and are responsible for most LOD with meningitis, but are 
usually not responsible for adult disease (99). Strains belonging to 
all the six CCs have been reported in EOD (82, 98, 99).

The neonatal-specific hypervirulence of some bacterial strains 
and the bacterial load may explain in part the occurrence of 
neonatal disease. Nonetheless, individual susceptibility is not 
fully explained by bacterial virulence, especially in cases in which 
infection is caused by non-hypervirulent strains.

protective immunity to GBs
One fundamental and yet-unanswered question in the field is 
which are the non-redundant pathways of the innate immune 
system conferring neonatal protection to GBS.

Several different methodologies in in vitro and animal models 
have been used to attempt to answer this question.

Both knockout mouse and in  vitro models of GBS infection 
identified a critical role for TLR and IL1 receptor signaling and/or 
signaling through MYD88 in bacterial clearance, TNF-mediated 
inflammation, septic shock, and microglia activation and neurode-
generation (100–109). Specifically, TLR2 and IL1R signaling have 
been shown to be both beneficial and harmful, depending on the 
experimental conditions (101, 110–112). A role for IL6, IL10, IL12, 
and IL18 has been demonstrated in mouse models of GBS infection 
through administration of anticytokine specific Abs (113–116).

The relevance of the studied pathways in the experimental 
settings may largely depend on the experimental conditions. 
Conversely, the non-redundant role of the studied signaling path-
ways in the human model in natural (as opposed to experimental) 
conditions still needs to be elucidated (117).

One human study suggested that a null polymorphism in sialic 
acid-binding immunoglobulin-like lectin 14 (SIGLEC14) influ-
ences human inflammatory responses to GBS in neutrophils and 
amniotic membranes and is possibly correlated with GBS-related 
preterm birth (118), but no data are available on the possible role 
of SIGLEC proteins in the pathogenesis of GBS infection.

HypotHesis

Despite advances in the understanding of both the host and the 
microbial sides of neonatal GBS infection, currently available data 

are not able to fully explain neonatal susceptibility to infection at 
the individual level.

We hypothesize that susceptibility to neonatal GBS disease in 
otherwise healthy infants is due to a failure of the specific neo-
natal protective innate immune responses to GBS. This neonatal 
immunodeficiency could be either intrinsic (genetic defect in 
the infant) or extrinsic/environmental (interference of maternal 
Abs). In the next paragraphs, we present the genetic and the 
“maternal antibody” hypotheses of GBS disease and explain how 
these fit with current evidence.

the Genetic Hypothesis of GBs disease
Several reports, recently reviewed (76), demonstrate that adult 
and neonatal GBS infection may be a phenotypic expression 
of both conventional (Kostmann disease, transient hypogam-
maglobulinemia of infancy, chronic granulomatous disease, 
activated phosphatidylinositol 3-kinase δ syndrome—like 
immunodeficiency, C2 and IgG4 subclass deficiency, and isolated 
congenital asplenia) and non-conventional (IRAK4 and MYD88 
deficiency) PIDs. Even when occurring in the context of a non-
conventional PID, neonatal GBS infection may be one of the 
several manifestations of a broader phenotype that, for MYD88 
and IRAK4 deficiency, includes susceptibility to multiple pyo-
genic bacteria. Conversely, most cases of neonatal GBS disease 
occur as an isolated infection, indicating that the susceptibility to 
GBS is pathogen specific and not linked to a more general state 
of immunosuppression.

We hypothesize that inborn errors of the primary innate 
immune responses to GBS, i.e., monogenic susceptibility to GBS 
disease, underlie some cases of isolated neonatal GBS infec-
tion occurring in otherwise healthy neonates. The clinical and 
immunological phenotypes of isolated neonatal GBS disease may 
indeed be consistent with those of non-conventional PIDs (57): 
(i) GBS disease is a potentially lethal infection striking early in life; 
(ii) the infecting strain/serotype and its virulence factors, while 
accounting for some variability in the occurrence and severity of 
infection (92, 119, 120), are not sufficient to explain susceptibility 
and resistance at the individual level; (iii) the spectrum of suscep-
tibility is extremely narrow, restricted to GBS; and (iv) in most 
cases, there are no immunological defects at first-line immuno-
logical studies that would be consistent with conventional PIDs. 
In addition, GBS infection usually strikes once in life and only 
rarely recurs (~1% of cases) (121). This observation is consistent 
with a low recurrence rate in the subset of non-conventional PIDs 
characterized by immunodeficiency of the protective immunity 
to primary infections (57).

The highest incidence of GBS disease during the first 3 months 
of life would be explained by the high likelihood of being exposed 
to GBS in the perinatal period and/or by the full penetrance of the 
genetic defects in this age group.

Recurrence of GBS infection concerns only a small percent-
age of cases, both singletons and twins, and has been linked to 
re-exposure to GBS through maternal milk or other sources, to 
inappropriate treatment, or to persistence of GBS on skin and 
mucosal surfaces after the first infectious episode (122–125). A 
genetic explanation for recurrence is also plausible. In some PIDs 
of protective immunity to primary infection, the genotype has 
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been shown to influence the recurrence rate (126). Therefore, 
recurrence of neonatal GBS disease may indicate a more severe 
phenotype or represent the phenotypic manifestation of a specific 
genetic defect.

The occurrence of GBS disease in siblings (89), as well as the 
recurrence described in a consanguineous family (76), suggests 
that the genetic hypothesis may be a plausible explanation for 
some cases. Infection by poorly virulent strains, the presence of 
other cases with overlapping phenotypes in the family, consan-
guinity in the parents, recurrence and severity of the clinical signs, 
and slow or absent response to antimicrobials despite appropriate 
treatment strengthen (although their absence does not exclude) 
the hypothesis of a PID underlying GBS infection.

the “Maternal antibody” Hypothesis  
of GBs disease
The highest incidence of GBS disease is registered during the 
first 3 months of life, with most cases (77–78%) occurring during 
the first week of life (20, 21). This observation, together with a 
known role of GBS in prenatal disease, both prematurely and at 
full term of pregnancy (GBS-related stillbirth, term or preterm 
PROM, chorioaminionitis), suggest that a maternal factor might 
be particularly important for perinatal infection.

Recently, neutralizing anticytokine auto-Abs have been found 
in adult and pediatric patients suffering from life-threatening 
infections, revealing novel mechanisms of unusual susceptibility 
to specific pathogens (127–130). Auto-Abs against IL17 and/or 
IL22 have been associated with chronic mucocutaneous candidi-
asis; anti-IFN-γ auto-Abs with adult-onset immunodeficiency; 
anti-IL6 auto-Abs with recurrent skin infection; and auto-Abs 
against GM-CSF with pulmonary alveolar proteinosis (131).

The clinical phenotypes resulting from anticytokine auto-Abs 
partially (anti-IFN-γ, anti-IL6) or completely (anti-IL17, anti-
GM-CSF) overlap with known monogenic conditions affecting 
the same pathways, demonstrating that Ab-mediated diseases 
may be immunophenocopies of monogenic immune disorders.

In neonates, autoimmunity is an exceedingly rare condition, 
but Ab-mediated disease due to transplacental crossing of mater-
nal auto- or allo-Abs is a well-recognized and relatively frequent 
mechanism of organ dysfunction. This has been shown in the thy-
roid (congenital hypothyroidism), the blood (fetal and neonatal 
hemolytic disease and fetal and neonatal auto- and alloimmune 
thrombocytopenia), the neuromuscular junction (transient 
neonatal myasthenia gravis), the heart (congenital heart block 
due to SSA/Ro Abs), and other organs and tissues (132–137). 
We therefore hypothesize that neonatal GBS disease may be 
caused by yet-undiscovered neutralizing maternal auto-Abs or 
allo-Abs against components of the fetal and neonatal immune 
system that are non-redundant in conferring neonatal protection 
against GBS. The progressive decay of circulating maternal Abs 
in the infant plasma might then explain the decreasing incidence 
of infection over the first 3  months of life. Furthermore, the 
presence of pathogenic circulating Abs in the maternal blood 
would be consistent with the occurrence of mild disease in the 
mother (GBS-related urinary tract infection or mastitis) that is 
often associated with neonatal GBS disease, as well as with the 

well-documented higher risk of GBS-EOD in infants with a 
previous sibling with GBS disease (7). Finally the removal, with 
exchange transfusion, of pathogenic Abs from neonatal plasma 
could be an additional explanation to the efficacy of the proce-
dure in infants with septic shock (138).

The proposed mechanism could in part explain neonatal 
GBS disease in full-term infants. Despite transplacental transfer 
of Abs is reduced at low gestational ages, allo- or autoimmune 
pathogenic maternal Abs have been demonstrated to be able 
to cause disease in the preterm infant or during gestation  
(71, 134). Therefore, the “maternal antibody” hypothesis could 
also explain some cases of neonatal GBS disease occurring in 
preterm infants.

testing the Hypotheses—possible study 
Methodologies
Previous studies that addressed the role of genetics in the 
susceptibility to neonatal infection focused on the associations 
between selected common single-nucleotide polymorphisms and 
infectious outcomes (139). A more integrated approach including 
genomics, transcriptomics, proteomics, and functional studies 
is required to uncover the precise molecular determinants of 
susceptibility to specific pathogens causing neonatal infections.

Ad hoc studies should be designed depending on the pheno-
type under investigation.

Multicenter GWASs may provide some insight into the patho-
genesis of suspected multifactorial infections as, for instance, 
those occurring in preterm infants. GWAS are currently ongoing 
on neonatal cohorts (54).

Exome or genome sequencing studies have potential to 
uncover the cause of suspected monogenic disorders. Cases 
should be prioritized based on the clinical profile most sug-
gestive of a monogenic etiology, including extreme severity, 
consanguinity, recurrence of infection, and familial presenta-
tion. Depending on the design of the study, analysis of the trio 
(proband and parents) and of the family or cohort studies should 
be carried out to uncover the individual, rare (<1% in the gen-
eral population), and functionally deleterious genetic variants 
that best fit the most likely genetic model (de novo, autosomal 
dominant with complete or incomplete penetrance, autosomal 
recessive with mono- or biallelic mutations). This approach 
could shed light on the pathways that are non-redundant in 
neonatal protection against GBS.

Functional follow-up will be required to validate candidate 
variants and confirm their causative role. These studies should 
be designed to assess the integrity of the molecular pathways 
affected by the mutations and determine how they are relevant to 
the neonatal immune responses in primary cells and/or immor-
talized cell lines.

Laboratory experiments will be also needed to investigate the 
possible interfering effect of maternal plasma on the neonatal 
immune responses. The laboratory tests could include cytokine 
production assays, detailed analyses of RNA (transcriptome 
analysis) and protein expression in ex vivo samples (blood col-
lected during sepsis), and in  vitro experiments (stimulation of 
patient and control cells with different ligands, cell differentiation 
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taBLe 2 | Comparison of neonatal hemolytic disease and neonatal group 
B streptococcus (GBs) disease.

neonatal hemolytic 
disease

neonatal GBs disease

Physiological 
condition

Mild jaundice (~50% 
newborn infants)

GBS colonization (~10% of 
infants at birth; probably higher 
cumulative colonization rate 
during the first 3 months of life)

Disease Life-threatening jaundice/
kernicterus

Life-threatening infection

Incidence of 
disease in the 
absence of 
prevention

Estimated ~1/1,000 EOD: 1.8/1,000
LOD: 0.3/1,000

Incidence after 
prevention

0.4–2.7/100,000 EOD: 0.3/1,000
LOD: 0.3/1,000

Prenatal disease Facultative: fetal anemia/
erythroblastosis

Facultative: term/preterm 
premature rupture of membranes, 
chorioamnionitis, GBS-related 
stillbirth

Screening/early 
diagnosis

Highly effective: direct 
and indirect Coombs test/
serial plasma bilirubin

Partially effective: universal 
screening of pregnant women for 
GBS/C-reactive protein, blood 
count, cultures after onset of 
infection

Prevention of 
life-threatening 
disease

Phototherapy Intrapartum antibiotic prophylaxis

Treatment Phototherapy; blood 
exchange

Antibiotics; intensive care; blood 
exchange

Molecular 
mechanisms

Known (red cells genetic 
defects, maternal AB0/Rh 
alloimmunization)

Unknown

EOD, early-onset GBS disease; LOD, late-onset GBS disease.
Incidence is expressed as number per 1,000 (or 100,000) live births.
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assays) in the presence of maternal or control plasma. Specific 
assays should be used for the detection of specific Abs in the 
maternal and in the perinatal plasma.

Ultimately, these experiments should aim at demonstrating 
a causative link between the molecular findings, the observed 
cellular phenotypes, and the patient’s clinical phenotype.

ConCLUsion

Transient susceptibility to a narrow range of infections during 
the neonatal age may be explained by inborn errors of immunity, 
in the context of a relatively immature, non-redundant immune 
system. The early recognition of a PID as an essential contributing 
factor to a severe neonatal infection is clinically very relevant, 
as it may change the management and allow the referral of the 
patient to the clinical immunologist for specific follow-up and 
family counseling.

In parallel fields, the discovery of concurrent genetic and 
auto-/alloimmune mechanisms for several neonatal diseases has 

dramatically changed practice, as exemplified by the develop-
ment of highly effective screening and diagnostic procedures 
for neonatal hemolysis, which reduced the incidence of fetal 
erythroblastosis and neonatal bilirubin encephalopathy by two 
orders of magnitude, from ~1/1,000 to ~1/100,000 live births 
(Table 2) (140). Similar observations can be made for congenital 
hypothyroidism and other common and rare neonatal diseases 
(Table 1).

Current prevention efforts, although invaluable for neonatal 
health, only had a limited impact on the global incidence of neo-
natal infections (9, 141) (Table 2). A more complete understand-
ing of the mechanisms underlying the interindividual variability 
in the neonatal innate immune responses to pathogens is required 
to develop highly effective, pathogen-specific and individual-
tailored preventive protocols.
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