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Several host-adapted pathogens and commensals have evolved mechanisms to 
evade the host innate immune system inducing a state of low-grade inflammation. 
Epidemiological studies have also documented the association of a subset of these 
microorganisms with chronic inflammatory disorders. In this review, we summarize 
recent studies demonstrating the role of the microbiota in chronic inflammatory 
diseases and discuss how specific microorganisms subvert or inhibit protective 
signaling normally induced by toll-like receptors (TLRs). We highlight our work 
on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial 
modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic 
immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses 
underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading 
to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid 
A moieties, we demonstrated that expression of antagonist lipid A was associated 
with P. gingivalis-mediated systemic inflammation and immunopathology, whereas 
strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, 
mice deficient in TLR4 were more susceptible to vascular inflammation after oral 
infection with P. gingivalis wild-type strain compared to mice possessing functional 
TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation 
of innate and adaptive responses resulting in immunopathology and systemic inflam-
mation. We propose that anti-TLR4 interventions must be designed with caution, 
given the balance between the protective and destructive roles of TLR signaling in 
response to microbiota and associated immunopathologies.

Keywords: microbiota, inflammation, toll-like receptors, innate immunity, immune subversion, immune 
dysregulation, atherosclerosis

inTRODUCTiOn

Many inflammatory conditions and immunological disorders have been recently linked to the 
microbiota (1). Studies in humans have documented that both shifts in the microbiota (dysbiosis) 
and specific microorganisms are associated with these immunological disorders (2–4). A number of 
epidemiological studies have reported phylogenetic differences in the presence and relative abun-
dance of specific microbial communities between subjects with a particular disease and “healthy” 
individuals (5–7). While overall shifts in biodiversity within (alpha diversity) or among (beta 
diversity) subject samples are often reported, more recent work has considered functional diversity 
elucidated by metagenomic analyses (8, 9). The most well-studied microbial dysbiosis is that of the 
gut microbiota, which is associated with inflammatory bowel diseases (IBD) and colorectal cancer  
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(7, 9–11). Dysbiosis of the oral microbiota has been associated with 
oral squamous cell carcinoma (OSCC), and dysbiosis of the lung 
microbiota has been associated with cystic fibrosis (CF) (12–15). 
However, gut microbiota dysbiosis has also been associated with 
non-intestinal diseases including obesity, type 1 diabetes (T1D), 
rheumatoid arthritis (RA), and atherosclerosis (16, 17). Likewise, 
dysbiosis of the oral microbiota has been associated with diseases 
occurring outside of the oral cavity, such as lung and pancreatic 
cancers as well as atherosclerosis and RA (18–21).

In addition to dysbiosis, the presence of specific microor-
ganisms has also been associated with cancer, atherosclerosis, 
autoimmune disorders, and RA (22–40). Indeed, much of the 
experimental evidence aimed at defining mechanistic links 
between the microbiota and systemic inflammatory conditions 
has focused on metabolic and immunological pathways induced 
by specific microorganisms. In this review, we summarize recent 
studies aimed at defining immunological mechanisms that link 
specific microorganisms to low-grade chronic inflammation and 
immunopathology.

MiCROBiOTA AnD CHROniC 
inFLAMMATORY DiSeASeS

In June 2012, the Human Microbiome Project Consortium 
(HMP) reported on the “healthy” microbiome at 15–18 anatomic 
sites and provided a framework for future studies on defining the 
association of the microbiome with disease states. In the few years 
since the healthy baseline was established, a number of reports 
have defined altered microbiota that may contribute to disease. 
A common finding among studies investigating dysbiosis of 
the microbiota was a decrease in alpha diversity in diseased vs. 
healthy states (41–48). Many studies have also demonstrated that 
changes in the microbiome correlate with the pathogenesis of 
various systemic inflammatory diseases (17, 18, 47, 48). As might 
be expected, changes in the microbiota specific to a particular 
anatomic location have been associated with inflammatory dis-
eases of that area as well as distant tissues or organs.

Association of Microbiota with Local 
inflammation
Several studies have linked IBD with dysbiosis of the gut micro-
biota characterized by decreases in Bifidobacterium, Clostridium, 
and Faecalibacterium prausnitzii and increases in Ruminococcus 
gnavus and adherent-invasive Escherichia coli (46, 49–51). In sub-
jects with IBD, there was also a decrease in the genus Roseburia; 
interestingly, this decrease was observed in healthy subjects with 
a high genetic risk for IBD (52–55). Not only was dysbiosis of the 
gut microbiota associated with IBD but distinct shifts in the gut 
microbiota and a decrease in alpha diversity were also shown to 
distinguish ileal vs. colonic Crohn’s disease (55). Significant phy-
logenetic differences were found between patients who respond 
to treatment for ulcerative colitis vs. those who do not respond 
to treatment (53).

Many cancers have now been linked to dysbiosis of the local 
microbiota. The gut microbiome of colorectal cancer patients 
includes significantly higher populations of Enterococcus faecalis, 

Streptococcus bovis, and Fusobacterium than the microbiota of 
healthy controls (56). The oral cancer OSCC is associated with 
a shift in the oral microbiome. Streptococcus species dominate 
the salivary microbiota within OSCC tumor sites compared to 
non-tumor sites within the same individual (57). There also is sig-
nificant enrichment of Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria, Porphyromonas, and Treponema in the uterine 
microbiota of individuals with endometrial cancer (58).

Association of Microbiota with Systemic 
inflammation at Sites Distant from 
infection
Changes in the gut microflora have also been associated with 
metabolic and inflammatory conditions distant from infection 
including obesity, diabetes, and autoimmune diseases. Studies 
have reported that the relative proportion of Actinobacteria and 
Bacteroidetes was increased and decreased, respectively, in the 
gut microbiota of obese individuals compared to lean individuals 
(43, 59). An increased abundance of Bacteroidetes and Bacteroides 
and a decreased abundance of Firmicutes and Bifidobacterium 
and Prevotella were also reported to distinguish the intestinal 
microbiome of children with T1D from that of age-matched 
healthy controls (45, 60–62).

An increased abundance of Prevotella and a decreased abun-
dance of Bacteroides were reported in stool samples from subjects 
with new-onset RA compared to healthy controls (63). A separate 
study characterized an RA-associated fecal microbiome as one in 
which Actinobacteria and Collinsella and Eggerthella were con-
sistently expanded while Faecalibacterium was notably decreased 
compared to healthy controls (47). A recent study examined both 
the gut and oral microbiota of subjects with RA and reported 
increased levels of Lactobacillus salivarius and decreased levels of 
Haemophilus spp. compared to healthy controls in both sites (64). 
Shifts in the oral microbiome have been reported in subjects with 
RA, including lower levels of Corynebacterium and Streptococcus 
compared to healthy controls (18). Subjects with new-onset RA 
also have shifts in the oral microbiota with increases in Prevotella 
and Leptotrichia; these organisms were absent in the oral micro-
biota of healthy controls (18). Bronchoalveolar lavage fluid from 
subjects with early RA revealed dysbiosis of the lung microbiome 
that was attributed to a significant decrease in Actynomyces, 
Burkholderia, Porphyromonas, Prevotella, and Treponema com-
pared to healthy controls (48).

Some cancers have been associated with oral microbiota 
changes at sites distant from the primary tumor. In saliva samples 
from subjects with lung cancer, Capnocytophaga, Selenomonas, 
and Veillonella were more abundant and Neisseria was less 
abundant compared to healthy controls (19). The presence of 
the oral pathogens P. gingivalis and Aggregatibacter actinomyce-
temcomitans in oral wash samples were associated with a higher 
risk of pancreatic cancer, while presence of Fusobacteria and 
Leptotrichia in oral wash samples was associated with a lower risk 
of pancreatic cancer risk (65).

Shifts in the gut and oral microbiota have also been associated 
with symptomatic atherosclerosis patients. The gut microbiota of 
subjects with atherosclerosis had increased levels of Desulfovibrio, 
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Enterobacter, Megasphaera, and Oscillibacter and less Bacteroides, 
Faecalibacterium, and Prevotella compared to asymptomatic 
subjects (66). Subjects with symptomatic atherosclerosis have 
elevated levels of several genera of bacteria in the oral cavity, 
including Anaeroglobus and Porphyromonas (20).

innATe iMMUne MeCHAniSMS LinKinG 
SPeCiFiC MiCROORGAniSMS TO 
CHROniC inFLAMMATiOn AnD 
iMMUnOPATHOLOGY

A number of studies have examined the ability of pathogens to 
induce systemic inflammation and immunopathology at sites 
distant from infection. Well-defined animal models of RA, 
cancer, and atherosclerosis have been utilized to demonstrate a 
link between infection with specific pathogens and acceleration 
of disease (67–75). Many of these studies have focused on the role 
of the innate immune system and in particular toll-like receptors 
(TLRs) in microbial-induced immunopathology and disease (70, 
73, 76–82).

Toll-like receptors detect conserved microbial products 
and play a central role in the activation of innate and adaptive 
immune pathways (83, 84). TLR2 and TLR4 are two of the most 
well-characterized TLRs that respond to microbial membrane 
components. TLR2 is a cell-surface receptor that recognizes path-
ogen-associated molecular patterns (PAMPs) that are typically 
associated with both Gram-positive and Gram-negative bacteria, 
such as lipoproteins, lipoteichoic acid, peptidoglycan, zymosan, 
and porins (85–89). TLR4 is a cell-surface receptor that recognizes 
lipopolysaccharide (LPS) from Gram-negative bacteria (90–92). 
Signal transduction following recognition of LPS by the TLR4 
complex (CD14–TLR4–MD2) is an essential component of host 
immunity to Gram-negative bacterial infection (93). TLR4 signals 
through MyD88- and TRIF-dependent pathways to promote 
proinflammatory cytokine production and type I IFN (IFNβ) 
responses, respectively (94, 95). In addition to PAMPs, various 
endogenous “danger” molecules released from damaged host cells 
activate TLRs; these molecules are known as danger-associated 
molecular patterns and include heat-shock proteins, hyaluronic 
acid, and oxidized low-density lipoprotein (96).

Engagement of TLR signaling triggers an inflammatory 
response that is primarily aimed at eliminating the invading 
organisms, initiating repair to damaged tissues, and initiating 
the adaptive immune response (83, 84, 86, 97–99). When well 
controlled, this beneficial inflammatory response manages a 
delicate balance between the clearance of pathogens and dam-
age to the host through feedback loops and negative regulation, 
resolving once the stimulus has been removed (Figure  1A) 
(100–102). Clearance of pathogens is orchestrated through a 
combination of antimicrobial peptides, inflammatory media-
tors, phagocytosis, autophagy, and inflammasome activation 
(Figure 1A) (97, 103, 104). Chronic inflammation occurs when 
there is a breakdown in the regulation of these processes, which 
disrupts host cells locally and systemically, and it is increas-
ingly associated with chronic conditions such as autoimmune 
diseases, cancer, IBD, arthritis, and atherosclerosis (105–107).  

We recently demonstrated that differential TLR signaling by 
variant P. gingivalis lipid A moieties was associated with the pro-
duction of proinflammatory mediators and bacterial survival in 
macrophages (Figure 1B) (108).

A number of studies have examined the role of TLR signaling 
in microbial-induced chronic inflammation and immunopathol-
ogy (70, 73, 76, 82). Mycobacterium tuberculosis and commensal 
gut microbiota have been shown to induce autoimmune arthritis 
through TLR signaling (73, 76). E. coli has been shown to increase 
non-small cell lung cancer metastasis in a TLR4-dependent 
manner (82). Chlamydia pneumoniae accelerates atherosclerosis 
through a TLR/MyD88-dependent mechanism (70). Our work 
has focused on defining the role of TLR2 and TLR4 signaling 
in P. gingivalis-mediated inflammatory atherosclerosis using a 
well-defined hyperlipidemic mouse model (ApoE−/−) (77–81). 
Numerous studies have documented a role for TLR signaling in 
lipid-induced atherosclerosis progression (110–113). Oxidized 
LDL particles are recruited to the atheroma and trigger TLR sign-
aling in macrophages and endothelial cells. This results in foam 
cell formation and the production of proinflammatory cytokines 
and other proinflammatory mediators, such as IL-1, TNFα, 
and macrophage colony-stimulating factor, which perpetuate 
inflammation within the vasculature (109, 114, 115). It has been 
postulated that the association between microbial infection and 
atherosclerosis involves common mechanisms of signaling via 
TLR2 and TLR4. Some investigators have proposed that TLR 
signaling induced by multiple pathogens and endogenous ligands 
may explain the link to atherosclerosis and that therapeutic TLR 
antagonism could prove beneficial in the treatment of chronic 
atherosclerosis (13, 14, 116–118). However, our work revealed 
that P. gingivalis-mediated TLR4 signaling protects from athero-
sclerosis, suggesting that effects are pathogen specific.

We established that oral infection with P. gingivalis is associated 
with lipid accumulation and macrophage infiltration in the aortic 
sinus and innominate artery of ApoE−/− mice (69, 71). P. gingivalis 
oral infection induced the expression of inflammatory mediators 
and proinflammatory cytokines such IFN-γ, IL-1β, interleukin-6 
(IL-6), and TNFα in the atherosclerotic lesions of ApoE−/− mice, 
which was significantly reduced in the atherosclerotic lesions 
of P. gingivalis-infected ApoE−/−TLR2−/− mice (77–79, 81).  
In contrast to the effect of TLR2-deficiency on P. gingivalis-
induced atherosclerosis, we demonstrate that TLR4-deficiency 
leads to increased disease severity, indicating a protective role 
for TLR4 signaling in P. gingivalis-induced atherosclerosis (80). 
P. gingivalis-infected TLR4-deficient mice had increased vascular 
inflammation characterized by enhanced lesion progression 
and increased macrophage accumulation compared to infected 
TLR4-sufficient mice (80). In contrast to what was observed with 
P. gingivalis, other reports have documented that TLR4-deficient 
mice infected intranasally with C. pneumoniae had diminished 
vascular inflammation compared to infected TLR4+/+ mice. These 
results suggest that the role of TLR4 signaling in atherosclerosis 
is pathogen specific.

Porphyromonas gingivalis-infected TLR4-deficient mice also 
had increased CD4/CD8 T cells, decreased regulatory T cell infil-
tration, and impaired Th1 immunity, implicating modulation of 
the adaptive immune response (80). Our results suggest that this 
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TABLe 1 | Gram-negative bacteria that express divergent lipid A structures.

Bacterial strain Acylation/phosphorylation Toll-like receptor 4 
activation

Outcomes Reference

Helicobacter pylori Mono-phosphorylated, tetra-acylated Weak agonist Bacterial survival (119, 127)
Pseudomonas aeruginosa Hepta-acylated Strong agonist Severe cystic fibrosis (CF), neutrophil survival (120)

Penta-acylated Weak agonist Decreased IL-8, CF
Bacteroides thetaiotaomicron Under-phosphorylated, penta-acylated Weak agonist Bacterial survival (121, 128)
Porphyromonas gingivalis Di-phosphorylated, penta-acylated Agonist Modest inflammation, decreased atherosclerosis (108, 122)

Mono-phosphorylated, tetra-acetylated Antagonist Systemic inflammation, increased atherosclerosis
S. flexneri Tri- or tetra-acylated Weak agonist Low cytokine production, inflammasome inhibition (123)
Neisseria meningitidis Penta-acylated Non-activating Low NFkB activation (124)
Yersinia pestis Hexa-acylated Strong agonist Bacterial clearance, no systemic disease (125, 129, 130)

Tetra-acylated (37°C) Weak agonist Systemic disease
Francisella tularensis Mono-phosphorylated, tetra-acetylated Weak agonist Decreased TNFα, bacterial survival (126, 131, 132)

The role of toll-like receptor (TLR) signaling in chronic inflammation. (A) During a normal inflammatory response, activation of TLR signaling results in an 
increase in proinflammatory mediators and antimicrobial peptides, activation of the inflammasome, and clearance of the pathogen (97, 103, 104). Eradication of the 
stimulus results in resolution of inflammation (100–102). Some bacteria inhibit one or more of these responses, preventing the resolution of inflammation. 
(B) Porphyromonas gingivalis activation of TLR2 results in decreased production of proinflammatory cytokines such as IL-12 and IFN-γ, impairing bacterial clearance 
(109). P. gingivalis expressing a TLR4 antagonist lipid A moiety produces low levels of IL-1β and prevents activation of the non-canonical inflammasome, which also 
impairs bacterial clearance (108). In contrast, P. gingivalis expressing a TLR4 agonist lipid A moiety produces high levels of IL-1β and activates the inflammasome (108).
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protective role of TLR4 signaling may be orchestrated by dendritic 
cell (DC) IL-10 and IL-12 as well as by the induction of regulatory 
T cells (80). Collectively, our studies indicate that P. gingivalis-
mediated dysregulation of innate and adaptive responses results 
in systemic inflammation and immunopathology.

innATe iMMUne SUBveRSiOn

A common theme that has recently emerged is that pathogens 
that are associated with chronic low-grade inflammation have 
developed mechanisms of immune subversion that either alter 
or inhibit protective signaling normally induced by TLRs. Lipid 
A, the biologically active moiety of LPS, can be expressed in 
variant forms by many human pathogens, allowing for evasion 
of the host innate immune system and establishment of a chronic 
infection (119–126). Table 1 summarizes the impact of impaired 
TLR4 signaling as a result of divergent lipid A of several immune 
subversive Gram-negative bacteria. Strikingly, several of these 
host-adapted Gram-negative bacteria that express immune-
evasive lipid A are associated with increased risk of autoimmune 
disease, atherosclerosis, and cancer. Although Helicobacter pylori 
expresses a hexa-acylated species of lipid A, its predominant 
lipid A species is mono-phosphorylated and tetra-acylated; this 
combination of underphosphorylation and underacylation of 
lipid A likely explains the low endotoxic and biological activities 
of H. pylori LPS (119).

SenGupta et al. (120) reported that structural lipid A variants of 
Pseudomonas aeruginosa correlate with severity and progression 
of CF. Specifically, hepta-acylated lipid A is uniquely associated 
with severe late stage CF, and this variant acts as a strong TLR4 
agonist, resulting in neutrophil survival and substantial produc-
tion of IL-8 (120). Penta-acylated lipid A is found in patients with 

early stage or less severe (CF), accompanied by lower levels of 
IL-8 compared to those with severe late stage CF (120).

Bacteroides thetaiotaomicron expresses a penta-acylated 
4′-dephosphorylated lipid A structure and exhibits resistance to 
various inflammation-associated CAMPs (121, 128). Using wild-
type and lpxF mutant strains of B. thetaiotaomicron, Cullen et al. 
(128) demonstrated that CAMP resistance is LpxF-dependent 
but is also inflammation-dependent as lpxF deletion mutants 
were outcompeted by wild-type bacteria in germ-free mice 
only in the presence of inflammatory Citrobacter rodentium 
infection. These authors noted that LpxF orthologs have been 
identified in all sequenced human-associated Bacteroidetes. In 
addition to B. thetaiotaomicron, four other human-associated  
Bacteroides (Bacteroides fragilis, Bacteroides vulgatus, Prevotella 
salivae, and P. gingivalis) produce an under-phosphorylated lipid 
A structure (128).

Several Gram-negative bacteria that express immune-evasive 
lipid A species are associated with an increased risk of atheroscle-
rosis (133, 134), but the oral pathogen P. gingivalis is a striking 
example of how lipid A variants allow a bacterium to evade TLR4 
and promote chronic inflammation through dysregulation of 
both innate and adaptive immune responses (71, 78–80, 135).

In response to environmental conditions, P. gingivalis 
expresses a variety of lipid A species that are described as TLR4 
agonist, antagonist, or non-stimulating depending on their 
phosphorylation and acylation states and the resulting immu-
nostimulatory activity (122, 136–140). The underacylated lipid 
A moieties are poorly recognized by TLR4, and the antagonist 
lipid A species inhibits activation of TLR4 by agonist lipid  
A species from P. gingivalis or other Gram-negative organisms 
(122, 139, 141, 142). We recently examined the role of these  
P. gingivalis lipid A variants in vitro and in a mouse model of vascular 
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inflammation. We demonstrated that the antagonist lipid A species 
enhanced bacterial survival in macrophages through inhibition 
of non-canonical inflammasome activation and decreased pro-
duction of proinflammatory mediators such as IL-1β (Figure 1B) 
(108). In contrast, the agonist lipid A species was associated with 
decreased bacterial survival in macrophages and high levels of 
IL-1β (Figure 1B) (108). ApoE−/− mice orally infected with the  
P. gingivalis wild-type or antagonist strains had progressive vas-
cular inflammation characterized by enhanced lesion progression 
and increased macrophage accumulation compared to either 
sham-infected ApoE−/− mice or ApoE−/− mice that were orally 
infected with the P. gingivalis agonist strain. These studies indicate 
that distinct lipid A moieties allow P. gingivalis to evade the host 
innate immune response resulting in vascular inflammation. In 
addition to facilitating bacterial survival, it is possible that distinct 
lipid A moieties dysregulate host adaptive immune responses 
through manipulation of DC activation and downstream T cell 
polarization leading to systemic inflammatory pathologies.

DYSReGULATiOn OF ADAPTive 
iMMUniTY AnD CHROniC 
inFLAMMATiOn

Dysregulation of host immunity has been proposed to contribute 
to chronic inflammation observed in systemic inflammatory dis-
eases and typically involves modulation of DC responses, critical 
antigen-presenting cells that link innate and adaptive immunity. 
DCs play a key role in immune-modulatory functions and are 
often targeted by pathogens, resulting in altered T cell-mediated 
adaptive responses, immune dysregulation, and immunopathol-
ogy. Immature and highly phagocytic DCs reside in the tissues 
and detect pathogens through PRRs including DC-SIGN, TLR2, 
TLR4, NOD2, and the mannose receptor (143). PRR ligation and 
pathogen phagocytosis initiate DC maturation, which is charac-
terized by a decrease in phagocytic capability and an upregula-
tion of co-stimulatory molecules that are involved in activating 
T cells. The type of T cell response is dictated by which PRR is 
activated and, consequently, which cytokines are produced (143). 
The induction of a CD4 T cell response is largely determined by 
pathogen detection by DCs that present antigens to naïve T cells 
to initiate an adaptive response. DCs can also be activated to 
efficiently cross-present extracellular antigens on MHC-I, leading 
to activation of CD8 T cells (144, 145).

Lipopolysaccharide isolated from the Gram-negative pathogens 
E. coli and Salmonella enterica serotype Typhimurium potently 
stimulate TLR4 on DCs leading to maturation and expression of 
proinflammatory cytokines that drive a Th1 response (143). The 
expression of immune-evasive LPS by host-adapted bacteria such 
as P. gingivalis may result in different DC responses leading to 
altered T cell responses. However, the impact of immune-evasive 
LPS on systemic immunopathology has not been explored. We 
postulate that altered DC activation by P. gingivalis lipid A mutant 
strains will result in dysregulation of adaptive immunity that leads 
to enhanced development and progression of atherosclerosis. 
Current studies are underway to define how modification of lipid 
A alters DC maturation and functional responses.

iMPLiCATiOnS FOR FUTURe THeRAPieS

Studies demonstrating a protective role for TLR deficiency 
in inflammation have prompted many to pursue therapeutic 
TLR antagonism for combating systemic inflammatory and 
autoimmune diseases. These TLR antagonists include structural 
analogs of agonists, anti-TLR antibodies, and small molecule 
antagonists. One example of a structural analog is eritoran, 
a TLR4 antagonist that inhibits LPS-induced inflammation 
and improves survival in a mouse model of sepsis (146). The 
small molecule inhibitor TAK-242 inhibits TLR4 signaling by 
binding selectively to TLR4 and disrupting interaction with its 
adaptor molecules (147). Wang et  al. (148) demonstrated that 
TAK-242 diminished the accumulation of DCs, lymphocytes, 
macrophages, and neutrophils and enhanced production of IL-6, 
IL-8, and TNF-α in a mouse model of cigarette smoke-induced 
pulmonary inflammation. It has been suggested that therapy with 
eritoran or TAK-242 may be most efficacious against bacteria 
expressing hexa-acylated lipid A structures, which act as strong 
TLR4 agonists and elicit local inflammation but typically result 
in bacterial clearance and no systemic disease (149). In contrast, 
bacteria that do not produce hexa-acylated lipid A elicit little or 
no TLR4-mediated local inflammation, which permits bacterial 
survival and dissemination and contributes to the development 
and progression of systemic diseases. Anti-TLR4 therapy has 
been suggested as a prophylactic for necrotizing enterocolitis 
(NEC), but a recent study demonstrated that secretions from the 
probiotic Bifidobacterium longum subspecies infantis, often used 
to treat NEC, attenuate IL-1β-induced IL-6 in a TLR4-dependent 
manner in a human fetal small intestinal epithelial cell line (H4 
cells) and primary NEC enterocytes (150). Despite the promis-
ing results of using TLR4 antagonists to prevent inflammation 
in mice, our results and others suggest that the role of TLR4 
signaling in the pathogenesis of chronic inflammatory diseases 
is pathogen specific and that TLR4 antagonism could encourage 
systemic inflammation and dissemination of certain pathogens 
resulting in unintended outcomes (80, 108, 150). In addition, the 
presence of comorbid conditions and the bacterial characteristics 
of both local and distant microbiota create a complex environ-
ment in which chronic disease develops and progresses. For these 
reasons, we advocate caution in the development and testing of 
TLR4 antagonists for the treatment of chronic inflammatory 
diseases induced by the microbiota.

AUTHOR COnTRiBUTiOnS

All authors listed have made substantial, direct, and intellectual 
contribution to the work and approved it for publication.

ACKnOwLeDGMenTS

The authors thank Robert Berland, Paola Massari, and George 
Papadopoulos for critical reading of the manuscript.

FUnDinG

This work was supported by NIH NIAID AI078894.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Kramer and Genco Microbiota, Immune Subversion, and Chronic Inflammation

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 255

ReFeRenCeS

1. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. 
Cell (2014) 157:121–41. doi:10.1016/j.cell.2014.03.011 

2. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients 
with gastritis and peptic ulceration. Lancet (1984) 1:1311–5. doi:10.1016/
S0140-6736(84)91816-6 

3. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace 
NR. Molecular-phylogenetic characterization of microbial community 
imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A  
(2007) 104:13780–5. doi:10.1073/pnas.0706625104 

4. Sears CL, Pardoll DM. Perspective: alpha-bugs, their microbial partners, and 
the link to colon cancer. J Infect Dis (2011) 203:306–11. doi:10.1093/jinfdis/
jiq061 

5. Foxman B, Martin ET. Use of the microbiome in the practice of epidemiology: 
a primer on -omic technologies. Am J Epidemiol (2015) 182:1–8. doi:10.1093/
aje/kwv102 

6. Robinson CK, Brotman R, Ravel J. Intricacies of assessing the human 
microbiome in epidemiologic studies. Ann Epidemiol (2016) 26:311–21. 
doi:10.1016/j.annepidem.2016.04.005 

7. Vogtmann E, Goedert JJ. Epidemiologic studies of the human microbiome 
and cancer. Br J Cancer (2016) 114:237–42. doi:10.1038/bjc.2015.465 

8. Human Microbiome Project Consortium. Structure, function and diversity 
of the healthy human microbiome. Nature (2012) 486:207–14. doi:10.1038/
nature11234 

9. Morgan XC, Huttenhower C. Chapter 12: human microbiome analysis. PLoS 
Comput Biol (2012) 8:e1002808. doi:10.1371/journal.pcbi.1002808 

10. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet (2003) 
361:512–9. doi:10.1016/S0140-6736(03)12489-0 

11. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the 
intestine. Cell (2010) 140:859–70. doi:10.1016/j.cell.2010.01.023 

12. Caverly LJ, Zhao J, LiPuma JJ. Cystic fibrosis lung microbiome: opportunities 
to reconsider management of airway infection. Pediatr Pulmonol (2015) 
50:S31–8. doi:10.1002/ppul.23243 

13. Li J, Hao C, Ren L, Xiao Y, Wang J, Qin X. Data mining of lung microbiota 
in cystic fibrosis patients. PLoS One (2016) 11(10):e0164510. doi:10.1371/
journal.pone.0164510 

14. Li H, Hong F, Pan S, Lei L, Yan F. Silencing triggering receptors expressed on 
myeloid cells-1 impaired the inflammatory response to oxidized low-density 
lipoprotein in macrophages. Inflammation (2016) 39:199–208. doi:10.1007/
s10753-015-0239-5 

15. Hu X, Zhang Q, Hua H, Chen F. Changes in the salivary microbiota of 
oral leukoplakia and oral cancer. Oral Oncol (2016) 56:e6–8. doi:10.1016/j.
oraloncology.2016.03.007 

16. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs 
in physiology and disease. Nat Med (2016) 22:1079–89. doi:10.1038/nm.4185 

17. Rosser EC, Mauri C. A clinical update on the significance of the gut microbi-
ota in systemic autoimmunity. J Autoimmun (2016) 74:85–93. doi:10.1016/j.
jaut.2016.06.009 

18. Scher JU, Ubeda C, Equinda M, Khanin R, Buischi Y, Viale A, et al. Periodontal 
disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis 
Rheum (2012) 64:3083–94. doi:10.1002/art.34539 

19. Yan X, Yang M, Liu J, Gao R, Hu J, Li J, et al. Discovery and validation of 
potential bacterial biomarkers for lung cancer. Am J Cancer Res (2015) 
5:3111–22. 

20. Fåk F, Tremaroli V, Bergström G, Bäckhed F. Oral microbiota in patients 
with atherosclerosis. Atherosclerosis (2015) 243:573–8. doi:10.1016/ 
j.atherosclerosis.2015.10.097 

21. Zhang CZ, Cheng XQ, Li JY, Zhang P, Yi P, Xu X, et al. Saliva in the diagnosis 
of diseases. Int J Oral Sci (2016) 8:133–7. doi:10.1038/ijos.2016.38 

22. Forman D, Newell DG, Fullerton F, Yarnell JW, Stacey AR, Wald N, et al. 
Association between infection with Helicobacter pylori and risk of gastric 
cancer: evidence from a prospective investigation. BMJ (1991) 302:1302–5. 
doi:10.1136/bmj.302.6788.1302 

23. Shor A, Kuo CC, Patton DL. Detection of Chlamydia pneumoniae in coronary 
arterial fatty streaks and atheromatous plaques. S Afr Med J (1992) 82:158–61. 

24. Kuo CC, Gown AM, Benditt EP, Grayston JT. Detection of Chlamydia 
pneumoniae in aortic lesions of atherosclerosis by immunocytochemical 
stain. Arterioscler Thromb (1993) 13:1501–4. doi:10.1161/01.ATV.13.10.1501 

25. Ebringer A, Wilson C. HLA molecules, bacteria and autoimmunity. J Med 
Microbiol (2000) 49:305–11. doi:10.1099/0022-1317-49-4-305 

26. Farsak B, Yildirir A, Akyön Y, Pinar A, Oç M, Böke E, et al. Detection of 
Chlamydia pneumoniae and Helicobacter pylori DNA in human atheroscle-
rotic plaques by PCR. J Clin Microbiol (2000) 38:4408–11. 

27. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification 
of periodontal pathogens in atheromatous plaques. J Periodontol (2000) 
71:1554–60. doi:10.1902/jop.2000.71.10.1554 

28. Beck JD, Elter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S. 
Relationship of periodontal disease to carotid artery intima-media wall 
thickness: the atherosclerosis risk in communities (ARIC) study. Arterioscler 
Thromb Vasc Biol (2001) 21:1816–22. doi:10.1161/hq1101.097803 

29. Pussinen PJ, Jousilahti P, Alfthan G, Palosuo T, Asikainen S, Salomaa V. 
Antibodies to periodontal pathogens are associated with coronary heart 
disease. Arterioscler Thromb Vasc Biol (2003) 23:1250–4. doi:10.1161/01.
ATV.0000072969.71452.87 

30. Taniguchi A, Nishimura F, Murayama Y, Nagasaka S, Fukushima M, Sakai 
M, et al. Porphyromonas gingivalis infection is associated with carotid athero-
sclerosis in non-obese Japanese type 2 diabetic patients. Metabolism (2003) 
52:142–5. doi:10.1053/meta.2003.50001 

31. Pussinen PJ, Alfthan G, Tuomilehto J, Asikainen S, Jousilahti P. High 
serum antibody levels to Porphyromonas gingivalis predict myocardial 
infarction. Eur J Cardiovasc Prev Rehabil (2004) 11:408–11. doi:10.1097/01.
hjr.0000129745.38217.39 

32. Latsios G, Saetta A, Michalopoulos NV, Agapitos E, Patsouris E. Detection 
of cytomegalovirus, Helicobacter pylori and Chlamydia pneumoniae DNA 
in carotid atherosclerotic plaques by the polymerase chain reaction. Acta 
Cardiol (2004) 59:652–7. doi:10.2143/AC.59.6.2005249 

33. Kozarov EV, Dorn BR, Shelburne CE, Dunn WA Jr, Progulske-Fox A. Human 
atherosclerotic plaque contains viable invasive Actinobacillus actinomycetem-
comitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol (2005) 
25:17–8. doi:10.1161/01.ATV.0000155018.67835.1a 

34. Kaplan M, Yavuz SS, Cinar B, Koksal V, Kut MS, Yapici F, et al. Detection of 
Chlamydia pneumoniae and Helicobacter pylori in atherosclerotic plaques of 
carotid artery by polymerase chain reaction. Int J Infect Dis (2006) 10:116–23. 
doi:10.1016/j.ijid.2004.10.008 

35. Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, et  al. 
Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates 
human fibrinogen and α-enolase: implications for autoimmunity in rheu-
matoid arthritis. Arthritis Rheum (2010) 62:2662–72. doi:10.1002/art.27552 

36. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss 
J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal 
carcinoma. Genome Res (2012) 22:299–306. doi:10.1101/gr.126516.111 

37. Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland 
A, et  al. Plasma antibodies to oral bacteria and risk of pancreatic cancer 
in a large European prospective cohort study. Gut (2013) 62:1764–70. 
doi:10.1136/gutjnl-2012-303006 

38. Smyk DS, Koutsoumpas AL, Mytilinaiou MG, Rigopoulou EI, Sakkas LI, 
Bogdanos DP. Helicobacter pylori and autoimmune disease: cause or bystander. 
World J Gastroenterol (2014) 20:613–29. doi:10.3748/wjg.v20.i3.613 

39. Stagi S, Rigante D, Lepri G, Bertini F, Matucci-Cerinic M, Falcini F. Evaluation 
of autoimmune phenomena in patients with pediatric autoimmune neuro-
psychiatric disorders associated with streptococcal infections (PANDAS). 
Autoimmun Rev (2014) 13:1236–40. doi:10.1016/j.autrev.2014.08.009 

40. Zhu H, Shen Z, Luo H, Zhang W, Zhu X. Chlamydia trachomatis infection-as-
sociated risk of cervical cancer: a meta-analysis. Medicine (Baltimore) (2016) 
95:e3077. doi:10.1097/MD.0000000000003077 

41. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, 
et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a 
metagenomic approach. Gut (2006) 55:205–11. doi:10.1136/gut.2005.073817 

42. Dicksved J, Halfvarson J, Rosenquist M, Järnerot G, Tysk C, Apajalahti J, 
et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s 
disease. ISME J (2008) 2:716–27. doi:10.1038/ismej.2008.37 

43. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley 
RE, et  al. A core gut microbiome in obese and lean twins. Nature (2009) 
457:480–4. doi:10.1038/nature07540 

44. Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: 
time to connect with the host. Curr Opin Gastroenterol (2010) 26:327–31. 
doi:10.1097/MOG.0b013e328339536b 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.cell.2014.03.011
https://doi.org/10.1016/S0140-6736(84)91816-6
https://doi.org/10.1016/S0140-6736(84)91816-6
https://doi.org/10.1073/pnas.0706625104
https://doi.org/10.1093/jinfdis/jiq061
https://doi.org/10.1093/jinfdis/jiq061
https://doi.org/10.1093/aje/kwv102
https://doi.org/10.1093/aje/kwv102
https://doi.org/10.1016/j.annepidem.2016.04.005
https://doi.org/10.1038/bjc.2015.465
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1371/journal.pcbi.1002808
https://doi.org/10.1016/S0140-6736(03)12489-0
https://doi.org/10.1016/j.cell.2010.01.023
https://doi.org/10.1002/ppul.23243
https://doi.org/10.1371/journal.pone.0164510
https://doi.org/10.1371/journal.pone.0164510
https://doi.org/10.1007/s10753-015-0239-5
https://doi.org/10.1007/s10753-015-0239-5
https://doi.org/10.1016/j.oraloncology.2016.03.007
https://doi.org/10.1016/j.oraloncology.2016.03.007
https://doi.org/10.1038/nm.4185
https://doi.org/10.1016/j.jaut.2016.06.009
https://doi.org/10.1016/j.jaut.2016.06.009
https://doi.org/10.1002/art.34539
https://doi.org/10.1016/
j.atherosclerosis.2015.10.097
https://doi.org/10.1016/
j.atherosclerosis.2015.10.097
https://doi.org/10.1038/ijos.2016.38
https://doi.org/10.1136/bmj.302.6788.1302
https://doi.org/10.1161/01.ATV.13.10.1501
https://doi.org/10.1099/0022-1317-49-4-305
https://doi.org/10.1902/jop.2000.71.10.1554
https://doi.org/10.1161/hq1101.097803
https://doi.org/10.1161/01.ATV.0000072969.71452.87
https://doi.org/10.1161/01.ATV.0000072969.71452.87
https://doi.org/10.1053/meta.2003.50001
https://doi.org/10.1097/01.hjr.0000129745.38217.39
https://doi.org/10.1097/01.hjr.0000129745.38217.39
https://doi.org/10.2143/AC.59.6.2005249
https://doi.org/10.1161/01.ATV.0000155018.67835.1a
https://doi.org/10.1016/j.ijid.2004.10.008
https://doi.org/10.1002/art.27552
https://doi.org/10.1101/gr.126516.111
https://doi.org/10.1136/gutjnl-2012-303006
https://doi.org/10.3748/wjg.v20.i3.613
https://doi.org/10.1016/j.autrev.2014.08.009
https://doi.org/10.1097/MD.0000000000003077
https://doi.org/10.1136/gut.2005.073817
https://doi.org/10.1038/ismej.2008.37
https://doi.org/10.1038/nature07540
https://doi.org/10.1097/MOG.0b013e328339536b


8

Kramer and Genco Microbiota, Immune Subversion, and Chronic Inflammation

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 255

45. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. 
Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 
(2011) 5:82–91. doi:10.1038/ismej.2010.92 

46. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel 
disease: current status and the future ahead. Gastroenterology (2014) 
146:1489–99. doi:10.1053/j.gastro.2014.02.009 

47. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, et al. An expan-
sion of rare lineage intestinal microbes characterizes rheumatoid arthritis. 
Genome Med (2016) 8:43. doi:10.1186/s13073-016-0299-7 

48. Scher JU, Joshua V, Artacho A, Abdollahi-Roodsaz S, Öckinger J, Kullberg S, 
et al. The lung microbiota in early rheumatoid arthritis and autoimmunity. 
Microbiome (2016) 4:60. doi:10.1186/s40168-016-0206-x 

49. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, 
et al. A pyrosequencing study in twins shows that gastrointestinal microbial 
profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 
(2010) 139:1844–54.e1. doi:10.1053/j.gastro.2010.08.049 

50. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P. 
Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their 
unaffected relatives. Gut (2011) 60:631–7. doi:10.1136/gut.2010.223263 

51. Negroni A, Costanzo M, Vitali R, Superti F, Bertuccini L, Tinari A, et  al. 
Characterization of adherent-invasive Escherichia coli isolated from pedi-
atric patients with inflammatory bowel disease. Inflamm Bowel Dis (2012) 
18:913–24. doi:10.1002/ibd.21899 

52. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et  al. 
A decrease of the butyrate-producing species Roseburia hominis and 
Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative 
colitis. Gut (2014) 63:1275–83. doi:10.1136/gutjnl-2013-304833 

53. Shah R, Cope JL, Nagy-Szakal D, Dowd S, Versalovic J, Hollister EB, et al. 
Composition and function of the pediatric colonic mucosal microbiome 
in untreated patients with ulcerative colitis. Gut Microbes (2016) 7:384–96. 
 doi:10.1080/19490976.2016.1190073 

54. Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, et  al. 
Reduced abundance of butyrate-producing bacteria species in the fecal 
microbial community in Crohn’s disease. Digestion (2016) 93:59–65. 
doi:10.1159/000441768 

55. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. 
Interplay of host genetics and gut microbiota underlying the onset and 
clinical presentation of inflammatory bowel disease. Gut (2016). doi:10.1136/
gutjnl-2016-312135 

56. Coleman OI, Nunes T. Role of the microbiota in colorectal cancer: updates 
on microbial associations and therapeutic implications. Biores Open Access 
(2016) 5:279–88. doi:10.1089/biores.2016.0028 

57. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of 
oral microbiota in tumor and non-tumor tissues of patients with oral squamous 
cell carcinoma. BMC Microbiol (2012) 12:144. doi:10.1186/1471-2180-12-144 

58. Walther-António MR, Chen J, Multinu F, Hokenstad A, Distad TJ, Cheek 
EH, et  al. Potential contribution of the uterine microbiome in the devel-
opment of endometrial cancer. Genome Med (2016) 8:122. doi:10.1186/
s13073-016-0368-y 

59. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human 
gut microbes associated with obesity. Nature (2006) 444:1022–3. 
doi:10.1038/4441022a 

60. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee 
N, et al. Gut microbiome metagenomics analysis suggests a functional model 
for the development of autoimmunity for type 1 diabetes. PLoS One (2011) 
6:e25792. doi:10.1371/journal.pone.0025792 

61. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, 
Soriguer F, et  al. Gut microbiota in children with type 1 diabetes differs 
from that in healthy children: a case-control study. BMC Med (2013) 11:46. 
doi:10.1186/1741-7015-11-46 

62. de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, et al. 
Fecal microbiota composition differs between children with β-cell autoimmu-
nity and those without. Diabetes (2013) 62:1238–44. doi:10.2337/db12-0526 

63. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et  al. 
Expansion of intestinal Prevotella copri correlates with enhanced susceptibil-
ity to arthritis. Elife (2013) 2:e01202. doi:10.7554/eLife.01202 

64. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut 
microbiomes are perturbed in rheumatoid arthritis and partly normalized 
after treatment. Nat Med (2015) 21:895–905. doi:10.1038/nm.3914 

65. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et  al. 
Human oral microbiome and prospective risk for pancreatic cancer: a 
population-based nested case-control study. Gut (2016). doi:10.1136/
gutjnl-2016-312580 

66. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al. Dysbiosis of gut microbi-
ota with reduced trimethylamine-N-oxide level in patients with large-artery 
atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc (2015) 
4:e002699. doi:10.1161/JAHA.115.002699 

67. Moazed TC, Campbell LA, Rosenfeld ME, Grayston JT, Kuo CC. Chlamydia 
pneumoniae infection accelerates the progression of atherosclerosis in apolipo-
protein E-deficient mice. J Infect Dis (1999) 180:238–41. doi:10.1086/314855 

68. Lalla E, Lamster IB, Hofmann MA, Bucciarelli L, Jerud AP, Tucler S, et al. Oral 
infection with a periodontal pathogen accelerates early atherosclerosis in 
apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol (2003) 23:1405–11. 
doi:10.1161/01.ATV.0000082462.26258.FE 

69. Miyamoto T, Yumoto H, Takahashi Y, Davey M, Gibson FC III, Genco CA. 
Pathogen-accelerated atherosclerosis occurs early after exposure and can be 
prevented via immunization. Infect Immun (2006) 74:1376–80. doi:10.1128/
IAI.74.2.1376-1380.2006 

70. Naiki Y, Sorrentino R, Wong MH, Michelsen KS, Shimada K, Chen S, et al. 
TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally 
control Chlamydia pneumoniae-induced acceleration of atherosclerosis. 
J Immunol (2008) 181:7176–85. doi:10.4049/jimmunol.181.10.7176 

71. Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, Gibson FC III, 
et  al. Porphyromonas gingivalis accelerates inflammatory atherosclerosis 
in the innominate artery of ApoE deficient mice. Atherosclerosis (2011) 
215:52–9. doi:10.1016/j.atherosclerosis.2010.12.009 

72. Marchesan JT, Gerow EA, Schaff R, Taut AD, Shin SY, Sugai J, et  al. 
Porphyromonas gingivalis oral infection exacerbates the development and 
severity of collagen-induced arthritis. Arthritis Res Ther (2013) 15:R186. 
doi:10.1186/ar4376 

73. Kanagawa H, Niki Y, Kobayashi T, Sato Y, Katsuyama E, Fujie A, et  al. 
Mycobacterium tuberculosis promotes arthritis development through 
toll-like receptor 2. J Bone Miner Metab (2015) 33:135–41. doi:10.1007/
s00774-014-0575-9 

74. Lakritz JR, Poutahidis T, Mirabal S, Varian BJ, Levkovich T, Ibrahim YM, 
et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. 
Oncotarget (2015) 6:9387–96. doi:10.18632/oncotarget.3328 

75. Sorrentino R, Yilmaz A, Schubert K, Crother TR, Pinto A, Shimada K, et al. 
A single infection with Chlamydia pneumoniae is sufficient to exacerbate 
atherosclerosis in ApoE deficient mice. Cell Immunol (2015) 294:25–32. 
doi:10.1016/j.cellimm.2015.01.007 

76. Abdollahi-Roodsaz S, Joosten LA, Helsen MM, Walgreen B, van Lent PL, van 
den Bersselaar LA, et al. Shift from toll-like receptor 2 (TLR-2) toward TLR-4 
dependency in the erosive stage of chronic streptococcal cell wall arthritis 
coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum 
(2008) 58:3753–64. doi:10.1002/art.24127 

77. Liu X, Ukai T, Yumoto H, Davey M, Goswami S, Gibson FC III, et  al. 
Toll-like receptor 2 plays a critical role in the progression of atherosclerosis 
that is independent of dietary lipids. Atherosclerosis (2008) 196:146–54. 
doi:10.1016/j.atherosclerosis.2007.03.025 

78. Hayashi C, Madrigal AG, Liu X, Ukai T, Goswami S, Gudino CV, et  al. 
Pathogen-mediated inflammatory atherosclerosis is mediated in part via 
toll-like receptor 2-induced inflammatory responses. J Innate Immun (2010) 
2:334–43. doi:10.1159/000314686 

79. Hayashi C, Gudino CV, Gibson FC III, Genco CA. Review: pathogen-in-
duced inflammation at sites distant from oral infection: bacterial persistence 
and induction of cell-specific innate immune inflammatory pathways. Mol 
Oral Microbiol (2010) 25:305–16. doi:10.1111/j.2041-1014.2010.00582.x 

80. Hayashi C, Papadopoulos G, Gudino CV, Weinberg EO, Barth KR, Madrigal 
AG, et al. Protective role for TLR4 signaling in atherosclerosis progression 
as revealed by infection with a common oral pathogen. J Immunol (2012) 
189:3681–8. doi:10.4049/jimmunol.1201541 

81. Papadopoulos G, Weinberg EO, Massari P, Gibson FC III, Wetzler LM, 
Morgan EF, et  al. Macrophage-specific TLR2 signaling mediates patho-
gen-induced TNF-dependent inflammatory oral bone loss. J Immunol (2013) 
190:1148–57. doi:10.4049/jimmunol.1202511 

82. Chow SC, Gowing SD, Cools-Lartigue JJ, Chen CB, Berube J, Yoon HW, et al. 
Gram negative bacteria increase non-small cell lung cancer metastasis via 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/ismej.2010.92
https://doi.org/10.1053/j.gastro.2014.02.009
https://doi.org/10.1186/s13073-016-0299-7
https://doi.org/10.1186/s40168-016-0206-x
https://doi.org/10.1053/j.gastro.2010.08.049
https://doi.org/10.1136/gut.2010.223263
https://doi.org/10.1002/ibd.21899
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.1080/19490976.2016.1190073
https://doi.org/10.1159/000441768
https://doi.org/10.1136/gutjnl-2016-312135
https://doi.org/10.1136/gutjnl-2016-312135
https://doi.org/10.1089/biores.2016.0028
https://doi.org/10.1186/1471-2180-12-144
https://doi.org/10.1186/s13073-016-0368-y
https://doi.org/10.1186/s13073-016-0368-y
https://doi.org/10.1038/4441022a
https://doi.org/10.1371/journal.pone.0025792
https://doi.org/10.1186/1741-7015-11-46
https://doi.org/10.2337/db12-0526
https://doi.org/10.7554/eLife.01202
https://doi.org/10.1038/nm.3914
https://doi.org/10.1136/gutjnl-2016-312580
https://doi.org/10.1136/gutjnl-2016-312580
https://doi.org/10.1161/JAHA.115.002699
https://doi.org/10.1086/314855
https://doi.org/10.1161/01.ATV.0000082462.26258.FE
https://doi.org/10.1128/IAI.74.2.1376-1380.2006
https://doi.org/10.1128/IAI.74.2.1376-1380.2006
https://doi.org/10.4049/jimmunol.181.10.7176
https://doi.org/10.1016/j.atherosclerosis.2010.12.009
https://doi.org/10.1186/ar4376
https://doi.org/10.1007/s00774-014-0575-9
https://doi.org/10.1007/s00774-014-0575-9
https://doi.org/10.18632/oncotarget.3328
https://doi.org/10.1016/j.cellimm.2015.01.007
https://doi.org/10.1002/art.24127
https://doi.org/10.1016/j.atherosclerosis.2007.03.025
https://doi.org/10.1159/000314686
https://doi.org/10.1111/j.2041-1014.2010.00582.x
https://doi.org/10.4049/jimmunol.1201541
https://doi.org/10.4049/jimmunol.1202511


9

Kramer and Genco Microbiota, Immune Subversion, and Chronic Inflammation

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 255

toll-like receptor 4 activation and mitogen-activated protein kinase phos-
phorylation. Int J Cancer (2015) 136:1341–50. doi:10.1002/ijc.29111 

83. Janeway CA Jr. Approaching the asymptote? Evolution and revolution 
in immunology. Cold Spring Harb Symp Quant Biol (1989) 54(Pt 1):1–13. 
doi:10.1101/SQB.1989.054.01.003 

84. Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity (2010) 
32:305–15. doi:10.1016/j.immuni.2010.03.012 

85. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, et al. 
Cell activation and apoptosis by bacterial lipoproteins through toll-like 
receptor-2. Science (1999) 285:736–9. doi:10.1126/science.285.5428.736 

86. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, 
et al. Host defense mechanisms triggered by microbial lipoproteins through 
toll-like receptors. Science (1999) 285:732–6. doi:10.1126/science.285. 
5428.732 

87. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- 
and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 
2. J Biol Chem (1999) 274:17406–9. doi:10.1074/jbc.274.25.17406 

88. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, 
et al. The toll-like receptor 2 is recruited to macrophage phagosomes and dis-
criminates between pathogens. Nature (1999) 401:811–5. doi:10.1038/44605 

89. Massari P, Visintin A, Gunawardana J, Halmen KA, King CA, Golenbock 
DT, et  al. Meningococcal porin PorB binds to TLR2 and requires TLR1 
for signaling. J Immunol (2006) 176:2373–80. doi:10.4049/jimmunol.176. 
4.2373 

90. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective 
LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. 
Science (1998) 282:2085–8. doi:10.1126/science.282.5396.2085 

91. Qureshi ST, Larivière L, Leveque G, Clermont S, Moore KJ, Gros P, et  al. 
Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp 
Med (1999) 189:615–25. Erratum in: J Exp Med (1999) 189:1518. doi:10.1084/
jem.189.4.615 

92. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting 
edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to 
lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 
(1999) 162:3749–52. 

93. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 com-
plexes. Exp Mol Med (2013) 45:e66. doi:10.1038/emm.2013.97 

94. Takeda K, Akira S. TLR signaling pathways. Semin Immunol (2006) 16:3–9. 
doi:10.1016/j.smim.2003.10.003 

95. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples 
endocytosis of toll-like receptor 4 to the induction of interferon-beta. Nat 
Immunol (2008) 9:361–8. doi:10.1038/ni1569 

96. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated 
molecular pattern that initiates innate immune responses. Nat Rev Immunol 
(2004) 4:469–78. doi:10.1038/nri1372 

97. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med (2000) 343:338–44. 
doi:10.1056/NEJM200008033430506 

98. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol (2004) 
4:499–511. doi:10.1038/nri1391 

99. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. 
Cell (2006) 124:783–801. doi:10.1016/j.cell.2006.02.015 

100. Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of toll-like 
receptor-mediated immune responses. Nat Rev Immunol (2005) 5:446–58. 
doi:10.1038/nri1630 

101. Kluwe J, Mencin A, Schwabe RF. Toll-like receptors, wound healing, 
and carcinogenesis. J Mol Med (Berl) (2009) 87:125–38. doi:10.1007/
s00109-008-0426-z 

102. Ospelt C, Gay S. TLRs and chronic inflammation. Int J Biochem Cell Biol 
(2010) 42:495–505. doi:10.1016/j.biocel.2009.10.010 

103. Becker CE, O’Neill LA. Inflammasomes in inflammatory disorders: the 
role of TLRs and their interactons with NLRs. Semin Immunopathol (2007) 
29:239–48. doi:10.1007/s00281-007-0081-4 

104. Mogensen TH. Pathogen recognition and inflammatory signaling in innate 
immune defenses. Clin Microbiol Rev (2009) 22:240–73. doi:10.1128/
CMR.00046-08 

105. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature (2003) 
423:356–61. doi:10.1038/nature01661 

106. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. 
J Intern Med (2015) 278:483–93. doi:10.1111/joim.12406 

107. Axelrad JE, Lichtiger S, Yajnik V. Inflammatory bowel disease and cancer: 
the role of inflammation, immunosuppression, and cancer treatment. World 
J Gastroenterol (2016) 22:4794–801. doi:10.3748/wjg.v22.i20.4794 

108. Slocum C, Coats SR, Hua N, Kramer C, Papadopoulos G, Weinberg EO, et al. 
Distinct lipid a moieties contribute to pathogen-induced site-specific vas-
cular inflammation. PLoS Pathog (2014) 10:e1004215. doi:10.1371/journal.
ppat.1004215 

109. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in 
innate immunity. Nat Rev Immunol (2011) 11:187–200. doi:10.1038/nri2918 

110. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, 
et  al. Reduced atherosclerosis in MyD88-null mice links elevated serum 
cholesterol levels to activation of innate immunity signaling pathways. Nat 
Med (2004) 10:416–21. doi:10.1038/nm1008 

111. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack 
of toll-like receptor 4 or myeloid differentiation factor 88 reduces athero-
sclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. 
Proc Natl Acad Sci U S A (2004) 101:10679–84. doi:10.1073/pnas.0403249101 

112. Curtiss LK, Tobias PS. The toll of toll-like receptors, especially toll-like 
receptor 2, on murine atherosclerosis. Curr Drug Targets (2007) 8:1230–8. 
doi:10.2174/138945007783220605 

113. den Dekker WK, Cheng C, Pasterkamp G, Duckers HJ. Toll like receptor 4 in 
atherosclerosis and plaque destabilization. Atherosclerosis (2010) 209:314–20. 
doi:10.1016/j.atherosclerosis.2009.09.075 

114. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. 
Nature (1993) 362:801–9. doi:10.1038/362801a0 

115. Feghali C, Wright T. Cytokines in acute and chronic inflammation. Front 
Biosci (1997) 2:12–26. doi:10.2741/A171 

116. Ishii KJ, Uematsu S, Akira S. ‘Toll’ gates for future immunotherapy. Curr 
Pharm Des (2006) 12:4135–42. doi:10.2174/138161206778743484 

117. Monaco C, Gregan SM, Navin TJ, Foxwell BM, Davies AH, Feldmann 
M. Toll-like receptor-2 mediates inflammation and matrix degradation 
in human atherosclerosis. Circulation (2009) 120:2462–9. doi:10.1161/
CIRCULATIONAHA.109.851881 

118. Lu Z, Zhang X, Li Y, Lopes-Virella MF, Huang Y. TLR4 antagonist attenuates 
atherogenesis in LDL receptor-deficient mice with diet-induced type 2 dia-
betes. Immunobiology (2015) 220:1246–54. doi:10.1016/j.imbio.2015.06.016 

119. Moran AP, Lindner B, Walsh EJ. Structural characterization of the lipid A 
component of Helicobacter pylori rough- and smooth-form lipopolysac-
charides. J Bacteriol (1997) 179:6453–63. doi:10.1128/jb.179.20.6453-6463. 
1997 

120. SenGupta S, Hittle LE, Ernst RK, Uriarte SM, Mitchell TC. A Pseudomonas 
aeruginosa hepta-acylated lipid A variant associated with cystic fibrosis 
selectively activates human neutrophils. J Leukoc Biol (2016) 100:1047–59. 
doi:10.1189/jlb.4VMA0316-101R 

121. Coats SR, Berezow AB, To TT, Jain S, Bainbridge BW, Banani KP, et al. The 
lipid A phosphate position determines differential host toll-like receptor 4 
responses to phylogenetically related symbiotic and pathogenic bacteria. 
Infect Immun (2011) 79:203–10. doi:10.1128/IAI.00937-10 

122. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW, To TT, et  al. 
Human toll-like receptor 4 responses to P. gingivalis are regulated by lipid 
A 1- and 4’-phosphatase activities. Cell Microbiol (2009) 11:1587–99. 
doi:10.1111/j.1462-5822.2009.01349.x 

123. Paciello I, Silipo A, Lembo-Fazio L, Curcurù L, Zumsteg A, Noël G, et al. 
Intracellular Shigella remodels its LPS to dampen the innate immune recog-
nition and evade inflammasome activation. Proc Natl Acad Sci U S A (2013) 
110:E4345–54. doi:10.1073/pnas.1303641110 

124. Steeghs L, Keestra AM, van Mourik A, Uronen-Hansson H, van der Ley P, 
Callard R, et al. Differential activation of human and mouse toll-like receptor 
4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infect Immun 
(2008) 76:3801–7. doi:10.1128/IAI.00005-08 

125. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M. Modification 
of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide 
by growth temperature. Infect Immun (2002) 70:4092–8. doi:10.1128/
IAI.70.8.4092-4098.2002 

126. Sandström G, Sjöstedt A, Johansson T, Kuoppa K, Williams JC. Immunogenicity 
and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS 
Microbiol Immunol (1992) 5:201–10. doi:10.1111/j.1574-6968.1992.tb05902.x 

127. Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. 
Helicobacter pylori versus the host: remodeling of the bacterial outer 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1002/ijc.29111
https://doi.org/10.1101/SQB.1989.054.01.003
https://doi.org/10.1016/j.immuni.2010.03.012
https://doi.org/10.1126/science.285.5428.736
https://doi.org/10.1126/science.285.5428.732
https://doi.org/10.1126/science.285.5428.732
https://doi.org/10.1074/jbc.274.25.17406
https://doi.org/10.1038/44605
https://doi.org/10.4049/jimmunol.176.4.2373
https://doi.org/10.4049/jimmunol.176.4.2373
https://doi.org/10.1126/science.282.5396.2085
https://doi.org/10.1084/jem.189.4.615
https://doi.org/10.1084/jem.189.4.615
https://doi.org/10.1038/emm.2013.97
https://doi.org/10.1016/j.smim.2003.10.003
https://doi.org/10.1038/ni1569
https://doi.org/10.1038/nri1372
https://doi.org/10.1056/NEJM200008033430506
https://doi.org/10.1038/nri1391
https://doi.org/10.1016/j.cell.2006.02.015
https://doi.org/10.1038/nri1630
https://doi.org/10.1007/s00109-008-0426-z
https://doi.org/10.1007/s00109-008-0426-z
https://doi.org/10.1016/j.biocel.2009.10.010
https://doi.org/10.1007/s00281-007-0081-4
https://doi.org/10.1128/CMR.00046-08
https://doi.org/10.1128/CMR.00046-08
https://doi.org/10.1038/nature01661
https://doi.org/10.1111/joim.12406
https://doi.org/10.3748/wjg.v22.i20.4794
https://doi.org/10.1371/journal.ppat.1004215
https://doi.org/10.1371/journal.ppat.1004215
https://doi.org/10.1038/nri2918
https://doi.org/10.1038/nm1008
https://doi.org/10.1073/pnas.0403249101
https://doi.org/10.2174/138945007783220605
https://doi.org/10.1016/j.atherosclerosis.2009.09.075
https://doi.org/10.1038/362801a0
https://doi.org/10.2741/A171
https://doi.org/10.2174/138161206778743484
https://doi.org/10.1161/CIRCULATIONAHA.109.851881
https://doi.org/10.1161/CIRCULATIONAHA.109.851881
https://doi.org/10.1016/j.imbio.2015.06.016
https://doi.org/10.1128/jb.179.20.6453-6463.1997
https://doi.org/10.1128/jb.179.20.6453-6463.1997
https://doi.org/10.1189/jlb.4VMA0316-101R
https://doi.org/10.1128/IAI.00937-10
https://doi.org/10.1111/j.1462-5822.2009.01349.x
https://doi.org/10.1073/pnas.1303641110
https://doi.org/10.1128/IAI.00005-08
https://doi.org/10.1128/IAI.70.8.4092-4098.2002
https://doi.org/10.1128/IAI.70.8.4092-4098.2002
https://doi.org/10.1111/j.1574-6968.1992.tb05902.x


10

Kramer and Genco Microbiota, Immune Subversion, and Chronic Inflammation

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 255

membrane is required for survival in the gastric mucosa. PLoS Pathog (2011) 
7:e1002454. doi:10.1371/journal.ppat.1002454

128. Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, 
et al. Gut microbiota. Antimicrobial peptide resistance mediates resilience of 
prominent gut commensals during inflammation. Science (2015) 347:170–5. 
doi:10.1126/science.1260580 

129. Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ. Variation in lipid 
A structure in the pathogenic yersiniae. Mol Microbiol (2004) 52:1363–73. 
doi:10.1111/j.1365-2958.2004.04059.x 

130. Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F, Conlon JE, 
et al. Virulence factors of Yersinia pestis are overcome by a strong lipo-
polysaccharide response. Nat Immunol (2006) 7:1066–73. doi:10.1038/
ni1386 

131. Vinogradov E, Perry MB, Conlan JW. Structural analysis of Francisella 
tularensis lipopolysaccharide. Eur J Biochem (2002) 269:6112–8. 
doi:10.1046/j.1432-1033.2002.03321.x 

132. Phillips NJ, Schilling B, McLendon MK, Apicella MA, Gibson BW. Novel 
modification of lipid A of Francisella tularensis. Infect Immun (2004) 
72:5340–8. doi:10.1128/IAI.72.9.5340-5348.2004 

133. Ameriso SF, Fridman EA, Leiguarda RC, Sevlever GE. Detection of 
Helicobacter pylori in human carotid atherosclerotic plaques. Stroke (2001) 
32:385–91. doi:10.1161/01.STR.32.2.385 

134. Belland RJ, Ouellette SP, Gieffers J, Byrne GI. Chlamydia pneumoniae and athero-
sclerosis. Cell Microbiol (2004) 6:117–27. doi:10.1046/j.1462-5822.2003.00352.x 

135. Barth K, Remick DG, Genco CA. Disruption of immune regulation by 
microbial pathogens and resulting chronic inflammation. J Cell Physiol 
(2013) 228:1413–22. doi:10.1002/jcp.24299 

136. Tabeta K, Yamazaki K, Akashi S, Miyake K, Kumada H, Umemoto T, 
et  al. Toll-like receptors confer responsiveness to lipopolysaccharide from 
Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun (2000) 
68:3731–5. doi:10.1128/IAI.68.6.3731-3735.2000 

137. Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. Lipopolysaccharides 
from periodontopathic bacteria Porphyromonas gingivalis and Capnocyto-
phaga ochracea are antagonists for human toll-like receptor 4. Infect Immun 
(2002) 70:218–25. doi:10.1128/IAI.70.1.218-225.2002 

138. Coats SR, Reife RA, Bainbridge BW, Pham TT, Darveau RP. Porphyromonas 
gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide 
at toll-like receptor 4 in human endothelial cells. Infect Immun (2003) 
71:6799–807. doi:10.1128/IAI.71.12.6799-6807.2003 

139. Reife RA, Coats SR, Al-Qutub M, Dixon DM, Braham PA, Billharz RJ, 
et  al. Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: 
differential activities of tetra- and penta-acylated lipid A structures on 
E-selectin expression and TLR4 recognition. Cell Microbiol (2006) 8:857–68. 
doi:10.1111/j.1462-5822.2005.00672.x 

140. Kumada H, Haishima Y, Watanabe K, Hasegawa C, Tsuchiya T, Tanamoto K, 
et al. Biological properties of the native and synthetic lipid A of Porphyromonas 
gingivalis lipopolysaccharide. Oral Microbiol Immunol (2008) 23:60–9. 
doi:10.1111/j.1399-302X.2007.00392.x 

141. Bostanci N, Allaker RP, Belibasakis GN, Rangarajan M, Curtis MA, Hughes 
FJ, et al. Porphyromonas gingivalis antagonises Campylobacter rectus induced 
cytokine production by human monocytes. Cytokine (2007) 39:147–56. 
doi:10.1016/j.cyto.2007.07.002 

142. Coats SR, Do CT, Karimi-Naser LM, Braham PH, Darveau RP. Antagonistic 
lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 
via interaction with the human MD-2 lipopolysaccharide binding site. Cell 
Microbiol (2007) 9:1191–202. doi:10.1111/j.1462-5822.2006.00859.x 

143. Pulendran B. Variegation of the immune response with dendritic cells and 
pathogen recognition receptors. J Immunol (2005) 174:2457–65. doi:10.4049/
jimmunol.174.5.2457 

144. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic 
cells. Nat Rev Immunol (2012) 12:557–69. doi:10.1038/nri3254 

145. Alloatti A, Kotsias F, Pauwels AM, Carpier JM, Jouve M, Timmerman E, et al. 
Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome 
fusion and promotes cross-presentation of antigens. Immunity (2015) 
43:1087–100. doi:10.1016/j.immuni.2015.11.006 

146. Mullarkey M, Rose JR, Bristol J, Kawata T, Kimura A, Kobayashi S, et  al. 
Inhibition of endotoxin response by e5564, a novel toll-like receptor 
4-directed endotoxin antagonist. J Pharmacol Exp Ther (2003) 304:1093–102. 
doi:10.1124/jpet.102.044487 

147. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), 
a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds 
selectively to TLR4 and interferes with interactions between TLR4 and its 
adaptor molecules. Mol Pharmacol (2011) 79:34–41. doi:10.1124/mol.110. 
068064 

148. Wang D, Tao K, Xion J, Xu S, Jiang Y, Chen Q, et al. TAK-242 attenuates acute 
cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/
NF-κB signaling pathway. Biochem Biophys Res Commun (2016) 472:508–15. 
doi:10.1016/j.bbrc.2016.03.001 

149. Munford RS. Sensing Gram-negative bacterial lipopolysaccharides: a 
human disease determinant? Infect Immun (2008) 76:454–65. doi:10.1128/
IAI.00939-07 

150. Meng D, Zhu W, Ganguli K, Shi HN, Walker WA. Anti-inflammatory effects 
of Bifidobacterium longum subsp infantis secretions on fetal human entero-
cytes are mediated by TLR-4 receptors. Am J Physiol Gastrointest Liver Physiol 
(2016) 311:G744–53. doi:10.1152/ajpgi.00090.2016 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Kramer and Genco. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s) 
or licensor are credited and that the original publication in this journal is cited, in 
accordance with accepted academic practice. No use, distribution or reproduction is 
permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1371/journal.ppat.1002454
https://doi.org/10.1126/science.1260580
https://doi.org/10.1111/j.1365-2958.2004.04059.x
https://doi.org/10.1038/ni1386
https://doi.org/10.1038/ni1386
https://doi.org/10.1046/j.1432-1033.2002.03321.x
https://doi.org/10.1128/IAI.72.9.5340-5348.2004
https://doi.org/10.1161/01.STR.32.2.385
https://doi.org/10.1046/j.1462-5822.2003.00352.x
https://doi.org/10.1002/jcp.24299
https://doi.org/10.1128/IAI.68.6.3731-3735.2000
https://doi.org/10.1128/IAI.70.1.218-225.2002
https://doi.org/10.1128/IAI.71.12.6799-6807.2003
https://doi.org/10.1111/j.1462-5822.2005.00672.x
https://doi.org/10.1111/j.1399-302X.2007.00392.x
https://doi.org/10.1016/j.cyto.2007.07.002
https://doi.org/10.1111/j.1462-5822.2006.00859.x
https://doi.org/10.4049/jimmunol.174.5.2457
https://doi.org/10.4049/jimmunol.174.5.2457
https://doi.org/10.1038/nri3254
https://doi.org/10.1016/j.immuni.2015.11.006
https://doi.org/10.1124/jpet.102.044487
https://doi.org/10.1124/mol.110.068064
https://doi.org/10.1124/mol.110.068064
https://doi.org/10.1016/j.bbrc.2016.03.001
https://doi.org/10.1128/IAI.00939-07
https://doi.org/10.1128/IAI.00939-07
https://doi.org/10.1152/ajpgi.00090.2016
http://creativecommons.org/licenses/by/4.0/

	Microbiota, Immune Subversion, 
and Chronic Inflammation
	Introduction
	Microbiota and Chronic Inflammatory Diseases
	Association of Microbiota with Local Inflammation
	Association of Microbiota with Systemic Inflammation at Sites Distant from Infection

	Innate Immune Mechanisms Linking Specific Microorganisms to Chronic Inflammation and Immunopathology
	Innate Immune Subversion
	Dysregulation of Adaptive Immunity and Chronic Inflammation
	Implications for Future Therapies
	Author Contributions
	Acknowledgments
	Funding
	References


