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Since the first description of natural killer (NK) cells, the view on their role in innate immu-
nity has evolved considerably. In addition to first-line defense against transformed and 
pathogen-infected autologous cells, NK cells contribute to modulate adaptive immune 
responses and in some cases acquire specialized functions, including exhausted, adap-
tive, and decidual NK cells. NK cells derive from CD34+ progenitors, in vivo and in vitro; 
however, it is unclear whether the high phenotype diversity in vivo may be generated 
from these precursors alone. The recent characterization of a novel CD34+DNAM-
1brightCXCR4+ precursor giving rise to apparently licensed and functional maturing 
NK cells may suggest the possibility for a higher than expected common lymphocyte 
precursor diversity and a consequently higher peripheral NK cell phenotype variability. 
Here, we review the evidences on NK  cell central and peripheral development from 
CD34+ precursors and propose a possible updated reading frame based on the char-
acterization of CD34+DNAM-1brightCXCR4+ cell progenies, which favors the possibility of 
concurrent NK cell maturation from different CD34+ precursors.

Keywords: natural killer, NK cell development, cD34, DNAM-1, common lymphoid progenitors

iNtrODUctiON

Natural killer (NK) cells, are a central component of the innate immune response (1) and constitute 
the first line of defense against a variety of tumors and microbial pathogens (2–5).

Over recent years, it has become clear that their role exceeds the boundaries of the original assign-
ment to patrol the tissues as a first line of defense and rather also includes regulatory and editing 
functions of the innate and adaptive immune response.

Opposite to T or B cells, NK cells do not undergo somatic rearrangement of genes coding for 
antigen-specific receptors. Their functional characteristics include production and release of IFNγ 
and TNFα and also G-CSF. In addition they may produce chemokines and IL-8, and under special-
ized and limited conditions also IL-10, IL-6, and IL-1. Following the identification and characteriza-
tion of innate lymphoid cells (ILCs) into at least three lineages characterized by different phenotype, 
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homing, and function (6, 7), NK cells have been proposed to be 
included into group 1 ILC (1) based on their expression of NFIL3, 
Tbet, and Eomes transcription factors (1, 8).

Human NK  cells normally constitute 5–15% of peripheral 
blood (PB) lymphocytes. The majority of NK cells, are present in 
relative abundance in bone marrow (BM), liver, uterus, spleen, 
and lungs, as well as to a lesser extent in secondary lymphoid tissue 
(SLT), mucosa-associated lymphoid tissue, and the thymus. The 
classical description of NK cell phenotypes relies on CD56 and 
CD16 expression with the distinction of three broad phenotypes 
which include CD16+/−CD56bright cells representing a minority 
of circulating and the majority of tissue-associated NK  cells, 
CD16+CD56dim cells that constitute the majority of circulating 
NK  cells and are viewed as effectors cells, and CD16+CD56− 
exhausted NK cells that are poorly functional express low levels 
of natural cytotoxicity receptors (NCRs) and may become more 
abundant in PB during chronic infections, such as HIV-1 infec-
tion. A peripheral development of NK cells has been shown to 
take place beyond BM and lymphnode niches. NK cells undergo 
a progressive development of CD56bright into CD56dim NK  cells 
with a progressive loss of NKG2A and concomitant progressive 
expression of KIRs, CD57, and NKG2C into terminally differenti-
ated NK cells (9–11).

The original view encompassing a tripartite subset characteri-
zation has recently been updated in view of NK cell phenotype 
diversity. Using mass cytometry, it has become evident that in 
healthy adult humans a much larger number of distinct NK cell 
phenotypes are simultaneously present at any time. From 6,000 
to 30,000 different NK cell phenotypes have been identified by 
mass in a single donor, and in any small group of persons up to 
100,000 different NK cell phenotypes may be detected (12). In 
addition, by computer-assisted flow-cytometric analysis, at least 
5–8 distinct subsets may be identified using a set of three NK cells 
specific monoclonal antibodies beyond CD16 and CD56 (11). 
This abundance of NK cell phenotype diversity is determined by 
combinatorial expression of the multitude of receptors and co-
receptors present on their surface. In this regard, there are both 
evidences for an inherent intrinsic or genetically determined 
driver for the persistence of some phenotypes (mostly account-
ing for KIR variability), and for an extrinsic or environmental 
influence on the prevalence of other phenotypes supported by 
foreign antigenic stimulation supporting the diversity for NCR 
representation and expression (12).

cD34 NK ceLL PrecUrsOrs

Similar to other blood cells, NK cells derive from hematopoietic 
stem cells (HSCs) and can be grown in  vitro from lymphoid-
restricted multipotent progenitors that may retain B and/or 
T  lymphocyte developmental potential (13–15). The classical 
model of hematopoiesis postulates that the earliest fate decision 
toward NK  cells downstream of HSCs is represented by the 
divergence of lymphoid and myeloid lineages. Erythroid and 
megakaryocyte lineages branch off before the lymphoid–myeloid 
split. This step is followed by myeloid–lymphoid divergence 
where common lymphoid progenitors (CLPs), and common 

myeloid progenitors (6) are generated. Accordingly, the CLP 
group would not include cell progenitors with myeloid potential. 
In contrast to mouse hematopoiesis, definitive evidence for a 
comprehensive model that best describes human hematopoiesis 
is still to be completely defined (16). Recently, a different pattern 
of cell maturation has been proposed following ex vivo and in vivo 
results in humans. Analysis of human cord blood (CB) and BM 
using seven distinct markers, including CD45RA, CD135 (Flt3), 
CD7, CD10, CD38, and CD90, allowed the identification of seven 
distinct progenitor cell classes (17). In this setting, some cells are 
described as multi-lymphoid progenitors (MLPs), defined by 
CD34+CD38−Thy-1neg–lowCD45RA+, belong to the CLP group and 
are able, in specific culture conditions, to give rise to all lymphoid 
cells as well as monocytes, macrophages, and dendritic cells 
(DCs) (18, 19). Among these MLPs included in this last model, 
NK  cells derive from CD34+ hematopoietic stem cells (HPC) 
precursors originally identified in BM (20). However, CD34+ 
cells giving rise to NK cell progeny have been detected also in 
PB, thymus, lymphnodes, CB, GALT, and decidua (21, 22). In 
addition, other reports indicate that T and NK cells are generated 
from non-characterized bipotent T/NK common progenitors, 
which may circulate in PB of healthy donors (HDs), albeit at very 
low frequencies (23, 24). While it is agreed that CD34+ NK cell 
progenitors reside in the BM, there is a less clear view on whether 
seeding of these cells into other organs generates organ-specific 
NK cell maturation, or whether a predefined CLP or MLP with 
specific developmental and homing characteristics would exit 
under certain conditions from the BM and specifically seed into 
the final sites of maturation.

NK ceLL MAtUrAtiON

Distinct stages of development of NK cells from HPC have been 
described with an orderly and staged acquisition of NK  cell 
markers, and distinct maturational stages (1). Five stages of 
human NK cell development have been described (25). Stage 1–2 
CD34+CD45RA−/+Cd10+/−CD117−/+ cells have been observed in 
human SLT and retain non-NK cell lineage potential since under 
optimal in vitro conditions they can develop into T and DC cells. 
This development potential is lost in the third stage in which may 
identify committed immature NK (iNK) cells.

The acquisition of the interleukin 15 (IL-15R) receptor beta 
chain (CD122) marks an important step of NK cell differentiation, 
since IL15 promotes NK cell differentiation, functional matura-
tion, and survival in both mouse and human (26). Thus, IL-15R 
expression identifies an NK  cell precursor subset defined by 
developmental potential in response to IL-15, by lack of functional 
immunophenotype observed in mature NK cells and by lack of 
other Lineage specific surface antigen as CD3, CD14, and CD19. 
Two populations of IL-15-responsive Lin−CD94−NK differentiat-
ing intermediates have been identified (Lin−CD34dimCD45RA+ 
alpha4beta7brightCD117+CD161+/−CD94− stage 2 and Lin−CD34− 
alpha4beta7−CD117+CD161+CD94− stage 3). They are enriched 
in the interfollicular T  cell-rich areas of secondary lymphoid 
organs where their putative progeny, CD56brightCD94+ NK cells, 
also resides (25, 27, 28). This anatomical localization has been 
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attributed to specific trafficking of BM derived NK cell precur-
sors to SLT via high endothelial venules and would be mediated 
by high expression of CD62L on circulating Lin−CD94−NK 
differentiating intermediates (28). NK  cell differentiation then 
progresses by orderly acquisition of CD161, CD56, CD94/
NKG2A, NKp46, NKG2D, KIRs and functional receptors CD16 
(27, 29, 30). The role of CD56 during NK  cell development is 
yet undefined while acquisition of CD94, which then persists 
on PB CD56bright NK cells and is needed for surface expression 
of NKG2A or NKG2C, signals the transition to stage 4 in SLT 
and NK cell maturation is completed with transition from stage 
4 CD56brightCD16+/− to stage 5 in CD56dimCD16+ NK cells (9, 31).  
A source of possible confusion is represented by work showing 
that cells of myeloid lineage may, under certain specific condi-
tions, generate NK cells in vitro (32). This work concentrates only 
on cord-blood CD34+ cells under particular conditions (32). The 
view that NK cells may be derived in vitro together with myelo-
monocytes without evidence for T cell growth reflects work by 
other groups as well (27, 33).

Some caution is needed when considering these models, 
which are nevertheless useful to provide a general scaffolding 
to understand NK  cell peripheral maturation. Opposite to the 
model of peripheral T  cell maturation from which it has been 
shifted for practical purposes, NK  cell maturative migration 
between stages is not a one-way process. For example, NK cells 
may revert form terminal differentiation and, under favorable 
conditions in vitro (e.g., IL18 supplementation), may modify sur-
face receptor expression with upregulation of CCR7, CD83, and 
CD25 and downregulation of CD16 (34). Furthermore, in vivo, 
NK cell education, epistatic interaction with KIR genes and viral 
infection or other environmental stimuli have a marked bearing 
on NK cell repertoire phenotype and activating and inhibitory 
receptor expression (35, 36).

An additional layer of entanglement to a linear model of 
NK cell development has been represented by the suggestion that 
NK cells may represent a subset of ILC (37). ILC have been shown 
in vitro derived from CD34+ cells isolated preferentially from the 
CB compared to PB (38). Indeed, the recent demonstration of 
the possibility of an elective ILC deficiency in humans without 
NK  cell deficiency shows that ILCs might be dispensable in 
natural conditions and that developmental pathways for NK cell 
and ILC development are distinct (37).

OUtLiers tO A LiNeAr siNGLe-ceLL 
MODeL OF NK ceLL DeveLOPMeNt

There are additional outliers to a model of sequential NK  cell 
development that cannot be apparently reconciled with a single-
cell maturation scheme for NK  cells, so far. These include the 
observation of adaptive or memory-like NK cell responses, the 
appearance of CD56−CD16+ exhausted NK cells in some clinical 
conditions, and the origin of NK cells in decidua.

In mice, infection with MCMV determines the expansion of 
specific NK cell subsets (39–41), which maintain for prolonged 
periods of time the ability to produce increased amounts of TNFα 
and IFNγ. This observation is reminiscent of memory T  cell 

function thus suggesting a possible memory-like or adaptive fea-
ture of NK cells. This pattern has been observed also in humans 
and predominantly relates to HCMV previous infection (42–45). 
Human adaptive NK cell expansions are monomorphic. Indeed, 
only increased proportions of NKG2C+ cells appear in PB, irre-
spective of the different invading pathogens that have been so 
far able to induce such NK cell expansions, including HCMV or 
Hantavirus or Chikungunya (46, 47). NKG2C+ NK cells expan-
sions persist (48) after acute HCMV infection into latency, and 
may be observed also after BM transplantation (48, 49). Similar 
to virus-induced adaptive NK cells (50, 51), NKG2C+ NK cells 
may be obtained after cytokine induction (52). Active research 
in this area so far did not reach conclusive evidence that these 
memory-like NK cell expansions occur as a single terminal event 
along the previously described pathway of peripheral NK  cell 
development. Additional work and efforts are needed to directly 
answer some crucial questions in this area. Specific trials and 
work will need to be designed to understand (a) whether the 
increase in adaptiveNKG2C+ NK cells during Hantavirus or other 
RNA virus infections represents an HCMV-independent event, 
or rather reflects a recall response of NKG2C+ adaptive NK cells 
in HCMV+ patients with latent infection, (b) whether only 
viruses or rather other pathogens may associate with NKG2C+ 
NK  cell expansions, (c) why only NKG2C+ adaptive NK  cells 
represent a recall response to invading viruses with different 
antigenic and PAMP characteristics (e.g., HCMV is a DNA-virus, 
Chikungunya is a RNA virus, no shared molecular patterns have 
been described), and (d) what is the advantage in terms of virus 
control or host survival provided by this quite specific HCMV-
associated adaptive NK cell response.

Another apparent outlier to sequential NK cell subset devel-
opment is represented by CD56negCD16+ exhausted NK  cells, 
which have been described for the first time over 20 years ago 
(53). These cells may represent up to 20–40% of all NK cells or 
3–6% of all lymphocytes in HIV+ patients while they represent a 
rare population in the PB of HDs. Immunophenotypic analyses 
revealed that cell surface receptors expressed on CD56negCD16+ 
cells overlap with that of so-called “stage 3” iNK  cells and are 
able, albeit to a reduced extent, to kill target cells and produce 
chemokines (54). Thus, it appears unlikely that CD56neg NK cells 
represent the progeny of iNK cells. Effector molecule expression 
by CD56neg NK cells further support the possibility that these cells 
are more closely related to and share characteristics with more 
highly differentiated CD56dim NK cells. Additional comprehen-
sive studies of this subset are needed, in order to clarify when and 
under which stimuli aberrant differentiation into CD56negCD16+ 
NK cells occurs as well as whether it is reversible or not.

Natural killer cells also localize in differentiated tissues 
including non-pregnant endometrium (55). Following embryo 
implantation, decidualization of human endometrium is associ-
ated with a massive recruitment of NK  cells that will build up 
and may represent as many as 50–90% of lymphoid cells present 
in decidual tissue. Decidual NK cells (dNK) numbers progres-
sively decrease from mid-gestation onwards (56). dNK cells have 
unique phenotypic properties and functional profile and are 
CD56brightCD16+/− KIR+ cells.
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Analysis of gene expression in dNK revealed relevant differ-
ences with both CD56bright and CD56dim peripheral NK cell subset. 
CD9, galectin, alpha-1 integrin, and other adhesion molecules 
are over-expressed in dNK (57), express major activating NK 
receptors, including NKp46, NKp30, NKG2D, and DNAM-1, 
and contain high levels of perforin and granzymes (compara-
ble to CD56dim peripheral NK cells), but have a poor ability to 
kill classical NK target cells (22, 58–60). dNK cells are able to 
release high amounts of cytokines and chemokines (including 
IL-8, VEGF, SDF-1, and IP-10), which are involved in tissue 
remodeling, trophoblast migration, and/or neo-angiogenesis 
and placentation. Thus, dNK cells appear to play an unexpected 
role in vessel formation and tissue building rather than their 
classical defensive role and these findings further underline 
the plasticity of NK  cells, possibly induced by the particular 
microenvironment. Whether dNK  cells represent a peripheral 
differentiation of other NK subsets or whether they represent 
a specific lineage derivation from a common precursor is so far 
poorly understood.

A NOveL cD34+ PrecUrsOr AND A 
NeW PersPective

Recently, a novel, previously uncharacterized CLP has been 
identified and is defined by Lin−CD34+ DNAM-1brightCXCR4+ 
markers (60). These precursors were found enriched in PB of 
patients with chronic inflammatory conditions of either infec-
tious or non-infectious origin. Based on available data on CD34+ 
cell maturation niches (61–64), the phenotype of these cells sug-
gest that they represent recent migrants from BM that still retain 
CXCR4 and DNAM-1, which are derived from endosteal niches 
following bone remodeling during chronic inflammation (65, 
66). In HSC, BM donor Lin−CD34+DNAM-1bright cells represent 
only a fraction (15%) of mobilized CD34+ cells. A comparison 
of chemokine receptor expression provided clues to a differ-
ent end-organ circulation of these cells compared to classical 
CD34+DNAM− progenitors. Lin−CD34+DNAM-1brightCXCR4+ 
cells appear to have the potential of trafficking not only into lym-
phnodes or GALT via CD62L/L interactions, but also (or rather) 
to peripheral inflamed tissues along fractalkine or IL-8 in view 
of their higher expression of CX3CR1+ and CXCR1+ and lower 
proportion of CD62L.

Analysis of transcription factors of these novel CD34+ cells 
showed that, they have a different array of transcription factors, 
including Tbet and FoxP3 in addition to Id2, E4BP4, which are 
expressed in classical CD34+DNAM−CXCR4− cells purified from 
CB. A wide difference in transcriptional signature was further 
confirmed and expanded by microarray analysis of purified 
CD34+ cells. Interestingly, their abundant transcription of metal-
loproteases supports the idea of a direct exit in areas of osteoclast 
resorption. Further, and in line with previous reports that failed 
to pinpoint the exact nature of the progenitor cells (29, 67), this 
novel CLP could give rise to NK and T cells but not to myelo-
monocytes. On the contrary, CB-derived CD34+ cells give rise 
in vitro only to NK cells and myelomonocytes but not to T cells 
or NKT cells.

Interestingly, when considering the characteristics of 
NK cells in vitro derived from these precursors, some remark-
able differences are evident in comparison to NK  cells derived 
from CD34+DNAM−CXCR4− progenitors. Lin−CD34+DNAM-
1brightCXCR4+ derived maturing NK cells appear to have a much 
more mature and licensed phenotype, as they express KIRs and 
perforin, high levels of NCRs, DNAM-1 and NKG2D and also 
produce IFNγ when triggered. These characteristics are unseen 
in maturing NK cells derived from CD34+ CB cells, which under 
the same culture conditions do not produce IFNγ, and are NCR 
low, KIR−, DNAM-1+/−, and NKG2Dlow/neg.

The question remains open on where Lin−CD34+DNAM-
1brightCXCR4+ cells fit with the classical known human NK cell 
progenitor hierarchy (18, 19) and why only very low levels of 
circulating CLP are detectable in HDs (16), while they may be 
greatly increased during systemic inflammation. According 
to the study by Doulatov et  al. (19), Lin−CD34+DNAM-
1brightCXCR4+ cells would (surprisingly) fit in the group 
of megakaryocyte/erythroid precursors, characterized by 
the CD38+CD10−CD7−Flt3 phenotype similar to that of 
Lin−CD34+DNAM-1bright cells. In the absence of experiments 
carried out with culture conditions favoring different pathways 
for precursor differentiation, one cannot exclude that different 
progenies might be obtained.

Lin−CD34+DNAM-1brightCXCR4+ NK  cell progeny includes 
a full array of the classical phenotypes, including CD56bright, 
CD56dull, and CD56−CD16+ NK cells subsets in addition to NKT 
CD3+CD56+ cells and to T cells but no cells of monocyte/myelo-
monocytic lineage (68). In view of the quite different phenotype 
of maturing NK cells derived from these precursors in vitro as 
compared to NK cells maturing from CD34+DNAM-1−CXCR4− 
CB cells, it is tempting to hypothesize that the so far acknowledged 
model for NK cell differentiation and maturation from a single 
progenitor into all the known phenotypes and subsets may need 
renewed evaluation (Figures 1A,B).

Since an until recently uncharacterized CD34 precursor 
with distinct transcriptional signature and phenotype gives 
rise to NK  cells with different phenotypic and functional 
characteristics, the hypothesis may be proposed that a parallel 
development of some NK cell phenotypes may take place in vivo 
from two different CD34+ precursors (i.e., Lin−CD34+DNAM-
1brightCXCR4+ and CD34+DNAM-1−CXCR4−). It is, therefore, 
possible that a good number of the diverse NK cell phenotypes 
observed by mass cytometry (12) and possibly also some of the 
special subsets of NK  cells observed in  vivo may derive from 
different developmental stages of the two CD34 precursors. 
This view could be in line with the data by Doulatov et al. and 
Laurenti et al. (18, 19) where different CLP may give rise to dif-
ferent progenies but the same progeny may derive from different 
CLPs (17, 18). In addition, it should be underscored that recent 
work by Wu and colleagues (69) in elegant experiments of clonal 
tracking has identified a quite surprising origin of NK cells in 
macaques. Barcoding experiments show that in these animals, 
a progenitor different from B/T/Myeloid lineage stem cells gives 
rise to CD16+CD56− NK  cell progeny, and more importantly, 
parallel development of different NK  cell phenotypes derive 
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from different progenitors. Given the difficulties in defining 
CD56bright and CD56dim NK  cell subsets in chimpanzees and 
macaques (70), the possible correlate of these findings on clonal 
tracking in macaques (69) needs to be evaluated with caution 
and may deserve evaluation also in other non-human primates. 

Overall, the identification of a novel CD34+ cell, giving rise to 
NK  cells with distinct characteristics may represent a parallel 
and concurrent reading frame for the established model of 
NK cell development from CD34+ cells to CD56bright to CD56dim 
NK cells (9, 10).
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