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Chronic pain is a debilitating condition that still is challenging both clinicians and 
researchers. Despite intense research, it is still not clear why some individuals develop 
chronic pain while others do not or how to heal this disease. In this review, we argue for 
a multisystem approach to understand chronic pain. Pain is not only to be viewed simply 
as a result of aberrant neuronal activity but also as a result of adverse early-life experi-
ences that impact an individual’s endocrine, immune, and nervous systems and changes 
which in turn program the pain system. First, we give an overview of the ontogeny of 
the central nervous system, endocrine, and immune systems and their windows of 
vulnerability. Thereafter, we summarize human and animal findings from our laboratories 
and others that point to an important role of the endocrine and immune systems in 
modulating pain sensitivity. Taking “early-life history” into account, together with the past 
and current immunological and endocrine status of chronic pain patients, is a necessary 
step to understand chronic pain pathophysiology and assist clinicians in tailoring the 
best therapeutic approach.

Keywords: psychoneuroimmunology, lipopolysaccharide, inflammation, pain, neuroimmunology, 
neuroendocrinology, hypothalamo–pituitary–adrenal axis, stress

iNTRODUCTiON

The pain system is modulated by neuroimmune and neuroendocrine mechanisms from embryonic 
development throughout life. Unlike the traditional reductionist view that posits that pain is solely 
due to aberrant spinal and supraspinal neuronal activity, we now understand pain in the context 
of a complex multisystem comprising well-organized interactions between neuroendocrine and 
neuroimmune systems (1). The changes in the nervous system induced by the immune system and 
the endocrine system are of both structural and functional character and are a part of the normal, 
adaptive development of the pain system. However, an adaptation that is advantageous in one situ-
ation may pose a risk factor in another. Exposure to a wide range of stressors, from physical injury 
(such as incision) to infection and inflammation [as induced by, e.g., lipopolysaccharide (LPS)], 
activates the hypothalamo–pituitary–adrenal (HPA) axis as well as peripheral and central immune 
responses and reorganizes the sensitivity of the pain system (2–5). The HPA axis and neuroimmune 
activation are of importance in determining long-term pathological states such as chronic pain.

Treating chronic pain is complicated by the wide individual differences in symptoms and treat-
ment response. Chronic pain is also associated with a high incidence of psychiatric comorbidity 
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(6) and is often present with other primary diagnoses, such as 
inflammatory disease. Furthermore, stress is often directly tar-
geted in behavioral treatment strategies for chronic pain (7), as 
part of an integrated treatment approach (8, 9). In this study, we 
explore some of the biological mechanisms that may form the 
foundations of the complexity seen in clinical pain.

This review focuses on some of the mechanisms involved in 
the maturation of the nervous system, which define the function 
of the pain system later in life. We highlight the importance of 
neuroimmune and neuroendocrine interactions very early in life 
in the programming of the pain system. We also discuss how the 
immune system and the endocrine system continue to modulate 
pain processing throughout life and about the significance of 
these interactions for chronic pain.

ONTOGeNY OF THe CeNTRAL NeRvOUS 
SYSTeM (CNS) DURiNG THe PReNATAL 
AND POSTNATAL PeRiOD

Neuronal circuits are forged by sensory experiences. Exposure to 
environmental stressors during a critical period of brain ontog-
eny, when neuronal circuits are particularly sensitive to modifica-
tion by experience, can have long-term consequences on neural 
circuits, ultimately affecting behavior (10). Although our genetic 
makeup determines much of the structure and function of the 
nervous system, the environment where the individual is born, 
as well as the environmental conditions that will accompany the 
individual throughout his/her life, plays a crucial role in tailoring 
the neuronal properties. The postnatal developing nervous system 
responds to the external world to shape its neural circuits in order 
to subserve a particular function (i.e., vision, auditory, touch, etc.). 
In normal conditions (i.e., in the absence of any adverse events), 
non-stressful early experience specifies a neural trajectory to the 
best possible circuits of connectivity. In other words, non-efficient 
connections are eliminated and those that are functionally stable 
remain. However, if exposed to stress—whether it is of physical, 
physiological, psychological, or viral/bacterial nature—during a 
time when the brain is still undergoing fine-tuned maturation, the 
process of synaptic plasticity, or synaptic tuning can go seriously 
wrong, affecting the behavioral outcome.

early Development of the Human Brain
During the prenatal period, the brain produces approximately 
250,000 cells per minute (11). Neuronal migration occurs between 
gestational week (GW) 8 and 16 forming the subventricular zone 
(SVZ) (12). Around GW 16, neurons reach their final target and 
begin to form connections among brain regions (13). Synapse 
formation in both the auditory and prefrontal cortices begins 
around GW 27 (14). During the beginning of the third trimes-
ter, synaptogenesis occurs with a rate of approximately 40,000 
synapses per minute (15). Subsequently, myelination as well as 
proliferation and differentiation of oligodendrocytes (cells that 
produce myelin) take place. After birth, the size of the brain con-
tinues to increase dramatically, with intense metabolic changes 
associated with synapse formation and axonal growth during the 
first 3 months of postnatal life (16). The way the complex human 

brain develops and matures is through a significant increase in 
volume due to overproduction of synapses, myelination, and 
connections during infancy, followed by the elimination of less 
efficient synapses via pruning (17). Most importantly, the devel-
opmental trajectory of the neocortex is different depending on 
brain regions. For instance, the primary visual cortex undergoes 
significant maturation during the first 3 months of life, whereas 
the primary auditory cortex continues to mature over the first 
3  years of life (18). The bilateral thalamic connectivity to the 
prefrontal cortex (PFC) is increased gradually from childhood 
to late teens (19), and synaptic pruning in the PFC continues to 
occur in mid-adolescence (14). The relatively late maturation of 
thalamo–PFC synaptic connections implies that key connections 
involved in complex cognitive functions, including pain, are 
still undergoing fine-tuned maturation in early postnatal life. 
Consequently, exposure to stressful events such as viral/bacte-
rial infections during postnatal life is likely to be able to alter 
key neural circuits involved in pain processing. This may lead to 
altered pain responses later in life. At present, there is a paucity of 
research tackling this question, and further studies investigating 
the impact of early-life stress on neural circuits involved in pain 
processing are needed.

what Animal Models Reveal about 
Neurogenesis and Synaptic Plasticity
The traditional dogma posits that the postnatal brain (including 
adult brain) possesses a fixed number of neurons that are gener-
ated from birth and that no neurogenesis or synaptic plasticity 
is possible in the adult brain (20). However, it is now clear that 
neurogenesis and synaptic plasticity continue to occur in the 
adult brain, although at a lower rate. Findings from studies 
that used standard neuronal markers, such as NeuN and bro-
modeoxyuridine (BrdU), have detected postnatal neurogenesis 
both in primates and rodents. NeuN+/BrdU+ cells were detected 
particularly in two regions: the SVZ–olfactory bulb and the 
subgranular zone (SGZ)–hippocampal granule cell layer (21–25). 
Regarding synaptic plasticity in the adult brain, pioneer studies 
by Merzenich et al. demonstrated that amputation of one finger 
in adult monkeys resulted in deafference of the devoted territory 
within the somatosensory cortex and that this region compen-
sated by receiving inputs from neighboring fingers (26). Later 
on, Robertson and Irvine showed that similar compensatory 
mechanisms and cortical rearrangement occurred in the auditory 
cortex following lesion of the cochlea (27).

In rats, PFC neural circuits undergo significant changes during 
the perinatal period. The myelination of the medial PFC (mPFC) 
is very low at P7, increases gradually over the period P21–P50, 
and reaches peak level at P90 (28). The ontogenic development 
of the PFC implies that this region, which plays a critical role 
in cognitive functioning and pain processing (29), is particularly 
susceptible to environmental stimuli during the neonatal period. 
Consequently, exposure to stressful events during this period 
is likely to alter the neural circuits within the PFC—and con-
sequently pain processing later in life. Indeed, sensory, painful, 
or stressful experience has been shown to change the dendritic 
and spine morphology in this area. A combination of prenatal 
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stress (E14–E21) and maternal separation (P2–P21) resulted in 
increased c-Fos expression in the mPFC and reduced dendritic 
length and dendritic spines of mPFC neurons (30). A recent study 
has found that pyramidal neurons from the mPFC of spared 
nerve injury (SNI) rats are characterized by longer basal dendrites 
and increased spine density compared to sham-operated animals 
(29). Electrophysiological recording of mPFC pyramidal neurons 
from SNI rats revealed increased NMDA/AMPA ratio in currents 
evoked by stimulation of layer 5 (29). However, convincing data 
linking directly altered PFC neural circuits following early-life 
stress to future pain responses are still lacking.

Taken together, these data suggest that the perinatal, up to and 
including the early childhood period, is a time of high plasticity 
for the brain and adverse events occurring during this critical 
period of cellular proliferation, differentiation, and maturation 
can interfere with the normal developmental trajectory of the 
brain, resulting in structural and/or functional changes in cells, 
tissues, or organ systems. These changes are proposed to poten-
tially lead to increased susceptibility to neurodevelopmental 
disorders in later life (31–33) and may also be critical for deter-
mining adult pain responses and potentially the susceptibility to 
develop chronic pain.

early-Life Development  
of the Pain System
One of the neuronal systems that undergo significant malle-
ability during the perinatal period is the nociceptive system. For 
instance, at embryonic day (E) 15–17 myelinated A fibers are the 
first to penetrate the spinal lumbar cord before the subsequent 
projection of C fibers into the substantia gelatinosa (lamina II, 
superficial dorsal horn that contains nociceptive-specific neurons) 
at E19 (34). During the neonatal period, lamina II is innervated 
by both A- and C fibers. During the first 3 weeks of postnatal age, 
a withdrawal of A fiber primary afferents into deeper laminae is 
noticed, and C fibers exclusively innervate lamina II at the adult 
stage (35). This developmental pattern of nociceptive fibers is of 
particular relevance to the concept that early-life insults are able to 
alter the neuroanatomical components of nociception (including 
nociceptive fibers), leading to altered pain responses later in life. 
For instance, skin wound during the neonatal period is associated 
with hyperinnervation of the wounded area by both Aδ and C 
fibers (36, 37). This hyperinnervation of nociceptive fibers can 
lead to peripheral sensitization and increased pain sensitivity 
(i.e., hyperalgesia). Despite the apparent lack of maturity of the 
nociceptive system, overall, younger animals are markedly more 
sensitive to noxious stimuli than their adult counterparts (38). 
Their behavioral output may, however, differ from adult animals. 
The withdrawal threshold from heat stimuli is lower in young 
animals compared to adults, and neonatal rats are significantly 
more (i.e., 10-fold higher) sensitive to formalin injection than 
preadolescent rats who require higher formalin doses to elicit the 
formalin-induced behavioral responses (38). For example, until 
P10, injection of formalin into the hind paw elicits predominantly 
non-specific whole body movement (i.e., jerking), whereas the 
formalin-induced specific behaviors such as hind paw shaking, 
flexion, and licking appears only after P10 (39). Of particular 

interest, recent studies predominantly from Hathway et  al. 
elegantly demonstrated that the descending inhibitory control of 
spinal nociceptive reflexes from the periaqueductal gray (PAG) 
to rostroventral medullar (RVM) in rats undergoes an important 
developmental switch from facilitatory in young rats to inhibitory 
in adult rats (40–42). This developmental switch was found to be 
driven by opioid actions on RVM, as microinjection of the μ-opioid 
agonist [d-Ala2, N-MePh4, glycol]-enkephalin (DAMGO) into 
RVM facilitates spinal nociceptive reflexes in preadolescent rats 
(P21), but elicited antinociceptive actions in adult rats (42), and 
similar response pattern has also been recently shown to occur at 
the PAG level (41).

Overall, a number of neural systems, including those involved 
in pain modulation, are characterized by significant malleability 
illustrated by major structural and functional rearrangements in 
neural circuits following insult. This injury-induced plasticity 
renders the nociceptive system more vulnerable to future chal-
lenges. Why certain patients develop chronic pain while others 
do not might in fact result from different early-life experiences 
in these patients, which may have programmed the pain system 
differently later in life. Therefore, taking “early-life history” 
into account is a necessary step to understand chronic pain 
pathophysiology and developing individual-based therapeutic 
strategies (43).

ONTOGeNY OF THe HPA AXiS  
DURiNG THe PeRiNATAL PeRiOD

Prenatal Development
The experience of stress, from an evolutionary perspective, is very 
important in promoting survival of an organism. A fundamental 
system that is subjected to programming by early-life events is the 
neuroendocrine axis that mediates the stress response, the HPA 
axis (44, 45). Activation of this system starts with the recruitment 
of neurons within the paraventricular nucleus of the hypothala-
mus (PVN), and the end product is the release from the adrenal 
cortex of corticosterone for rodents or cortisol for humans, 
via the release of corticotropin-releasing hormone (CRH) and 
adrenocorticotropic hormone (ACTH) [the HPA axis has been 
extensively reviewed elsewhere, please see Ref. (46)]. During 
pregnancy, there is an increase in CRH production in the placenta 
and fetal membranes. The gradual increase in maternal HPA axis 
activity during this period leads to maternal hypercortisolemia 
(47, 48). The fetus has much lower levels of glucocorticoids than 
its mother although endogenous glucocorticoids can cross the 
placenta easily. A total of 10–20% of cortisol present in the amni-
otic liquid is from maternal origin, while the remaining 80–90% 
gets converted into inactive cortisone by an enzyme, 11β-HSD2, 
to protect the fetus’s brain from excess glucocorticoids, which can 
be neurotoxic (49). During the third trimester, fetal 11β-HSD2 
levels decrease, and the fetus is exposed to high levels of CRH and 
cortisol. This rise in CRH and cortisol levels is thought to play an 
important role in the maturation of organs and preparation of the 
fetus to the ex utero environment (50). The hippocampus plays a 
key role in regulating homeostatic levels of glucocorticoids under 
conditions of stress, and CRF has been shown to modulate the 
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electrical activity of hippocampal neurons (51). Glucocorticoid 
receptor (GR) mRNAs were detected in human fetal hippocam-
pus at 24 GWs (52). Additionally, fibers expressing CRH have 
been detected in humans by GW16 (53), and the release of CRH 
into the pituitary has been reported to occur at GW11.5 (54). At 
the pituitary, a basic adenohypophysis can be detected at GW6 
(55), and by GW8 the pituitary reaches mature stage and can 
release ACTH (56).

In rodents, GR mRNA can be detected in the telencephalon 
as early as E12.5 with high expression seen in the anterior hypo-
thalamus, pons, spinal cord, and pituitary gland (57). At E14.5, 
the expression of GR mRNA significantly increases in the ventral 
spinal cord and the thalamus and undergoes a moderate decrease 
in these regions by E15.5. An increase in GR mRNA levels is 
observed at the same time point in other regions including the 
neocortex, cerebellum, and basal ganglia (57). In the PVN, GR 
mRNA can be visible at E16, although it is not clear whether this 
PVN GR is functional at this stage (58). During the late gestation 
(E17–E19), GR mRNA is localized in the hippocampus, thala-
mus, and the amygdala (58). Mineralocorticoid receptors (MR) 
ontogenetic expression, however, follows a different pattern in 
rodents. MR mRNA expression cannot be detected before E15.5 
when a moderate expression is observed in pituitary gland, 
brain stem, tegmentum, and neuroepithelium of the septum 
and pallidum (57). MR mRNA expression is first seen in the 
hypothalamus at E17.5 and by E19.5 there is a dramatic increase 
in MR mRNA expression in the hippocampus, septum, anterior 
hypothalamus, PAG area, and brainstem neuroepithelium (57). 
Regarding the ontogeny of 11β-HSD2 mRNA (encoding an 
enzyme that converts corticosterone into its inactive form) in 
rodents, the expression of 11β-HSD2 mRNA is observed at E11.5 
on hippocampal and subicular regions, neocortex, septum, and 
posterior hypothalamic area. At E14.5, the expression intensity 
of 11β-HSD2 mRNA starts to decline in the neocortex, pallidal 
area, and spinal cord, and by E15.5 11β-HSD2 mRNA is restricted 
to the thalamus, midbrain, striatum, cerebellum, hypothalamus, 
medulla, and pallidum (57).

Postnatal Modulation
There is a particular period called “the stress hyporesponsive 
period” (SHRP) from P4 to P14 in rats and from P2 to P12 in 
mice during which corticosterone levels, as well as ACTH, are 
maintained at low levels even in the presence of mild stress (59). 
Although, it is generally accepted that pups do not respond to 
stress with an elevated HPA axis activity during the SHRP period, 
it has been reported that 12 day-old pups that were separated from 
their mothers for 24 h with no access to food or water showed 
a significant increase in both basal and stress-induced corti-
costerone and ACTH secretion (59, 60). These results indicate 
that the HPA axis is particularly sensitive to maternal care even 
during the SHRP. During this period, high expression of CRH 
is observed in the PVN, whereas hippocampal GR expression is 
low at birth and increases gradually during the SHRP (61). In situ 
hybridization studies in marmoset showed that the ontogenetic 
profile of MR and GR is different during the postnatal period. 
Although GR mRNA expression in the dentate gyrus is higher 
in 4–6 week-old marmoset than in neonates (P1–P2), juveniles 

(4–5  months), and adult (3–6  years), MR mRNA expression 
was developmentally consistent in the hippocampus and PVN 
throughout life (62).

Although we need to proceed with caution when extrapolating 
from animal studies to humans, the development of the brain in 
terms of synapse formation and brain growth rate in a P6 rat is 
relatively equivalent to 38–40 weeks of gestation in humans (63, 
64). For obvious ethical and methodological reasons, human data 
regarding the ontogenetic development of HPA axis are lacking. 
However, we can conclude from the abovementioned animal 
data that the prenatal period together with the first 2 weeks of 
postnatal life constitute a window of significant plasticity for the 
neuroendocrine system. Homeostasis of the neuroendocrine 
function, and consequently any physiological system that is 
under the influence of this system (e.g., pain), is needed for 
normal neuroendocrine development. Excessive stress that may 
challenge or perturb the neuroendocrine system when it is still 
developing could potentially have far-reaching consequences. 
This way, early-life stress may alter pain, neuroimmune, and 
neuroendocrine responses for life (4, 65–69).

eARLY DeveLOPMeNT OF THe  
iMMUNe SYSTeM

immaturity of the Neonatal immune 
System and Susceptibility to infection
Infant mortality due to infection is high particularly in develop-
ing countries with a high prevalence of infection during the 
neonatal period (70). This high susceptibility of neonates and 
preterm infants to infection is thought to be due to immaturity 
of the neonatal immune system. Analysis of umbilical cord 
from preterm infants revealed fewer naïve CD8+ T  cells and 
regulatory CD31 expression compared to full-term neonates 
(71). T cells play an important role in the control of intracellular 
infections. Both human and murine neonates lack mucosally 
distributed memory CD8+ T cells. Although T cell and cytokine 
mRNA levels [i.e., interleukin (IL)-1β, IL-6, and IFN-δ] can be 
detected in the thymus of mice from GD15 (72), neonatal mouse 
macrophages do not react in an adequate way early in life. For 
example, T-cells are characterized by lower IFN-δ responses fol-
lowing stimulation (73, 74). Ex vivo stimulation with the bacterial 
mimetic LPS in mice produced much less pro-inflammatory and 
anti-inflammatory cytokines response in neonates compared to 
adult mice (75). The same trend was observed in a human study 
whereby neonatal monocytes and dendritic cells produced less 
tumor necrosis factor (TNF)-alpha, IL-12, and IL-6 following LPS 
stimulation (76). When stimulated with an anti-CD3 antibody, 
neonatal T  cell proliferation significantly decreased compared 
to adult T cell proliferation. This attenuation of proliferation in 
neonatal T cells was restored to adult levels following the addi-
tion of exogenous IL-2 (77). Furthermore, the total cell number 
of T cell subtypes (CD4+, CD8+, and Thy1+) is markedly lower 
in the spleen and lymphoid nodes in P4 mice compared to adult 
mice (78). Similarly, the function of antigen-presenting cells 
(APCs) is markedly decreased in human and murine neonates 
compared to adults (78). Treatment of both immunocompetent 
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and immunodeficient mice with IL-12, a cytokine produced by 
APCs (79), prior to inoculation with the parasite Cryptosporidium 
parvum oocysts markedly reduced the severity of infection (80). 
Additionally, neonatal mice exhibited reduced levels of periph-
eral IL-12, and mice treated with IL-12 24 h after birth displayed 
increased levels of IFN-δ and IL-10 mRNA in the spleen (81). 
Adult humans exhibited much higher levels of granzyme B+ effec-
tor differentiated memory CD8+ T cells, which are thought to be 
the first responders to infections (82), than human neonates (83).

The incidence of sepsis, defined as a systemic inflammatory 
condition that occurs following exposure to pathogenic microor-
ganisms or their toxins, is more than 25 times higher in infants 
less than 1 year compared to children from 1 to 14 years of age 
and constitutes a major risk of mortality and morbidity in the 
pediatric population (84). The incidence of infections is particu-
larly high during the first postnatal weeks and rapidly decreases 
thereafter (85). Common causes of infections in neonates include 
commensal bacteria such as Escherichia coli (85). Both adaptive 
and innate neonatal immune responses are relatively immature 
as indicated by a lack of preexisting memory and decreased Th1-
type responses (86, 87) as well as impaired production of TNFα 
following exposure to LPS (88, 89). Neonatal monocyte dendritic 
cells (moDC) also showed decreased production of interferon-β 
(IFN-β) in response to in vitro stimulation with LPS compared to 
mature adult moDC (89, 90). Additionally, whole blood neutro-
phil concentrations in 1-month children are shown to be lower 
than those in adults (91).

This immaturity of the immune system during neonatal life 
may thus predispose the neonatal immune system to infection, 
both of intra- and extracellular types. Overall, bacterial infection 
is considered the number one cause of perinatal infection in new-
borns worldwide (92, 93), which results in increased infant mor-
tality particularly in developing countries (92, 94). In the coming 
sections, we argue that this sensitivity of the immune system early 
in life may have long-lasting effects in the adult organism.

infection As a Perinatal Stressor
Exposure to pathogens early in life is a common event and is 
considered to play a crucial role in priming the neuroendocrine–
neuroimmune interface (95). An infection may not only be 
life-threatening to an infant but may also reorganize the function 
of the nervous system, due to the tight interplay between the 
nervous and immune systems. Human and animal studies have 
demonstrated that perinatal exposure to an immune challenge 
can produce changes in the CNS structure and function, leading 
to an increased risk of developing behavioral and psychopatho-
logical alterations later in life (66, 96–100). For instance, offspring 
from mothers exposed to infections such as influenza, LPS, and 
viral RNA (Poly I:C) during pregnancy have higher risk of devel-
oping schizophrenia and autism (101–106). A significant number 
of human and animal studies have also indicated that perinatal 
infection can alter immune (97, 107–110), metabolic (111, 112), 
reproductive (113, 114), endocrine (95, 115, 116), neurological 
(117, 118), and cognitive and behavioral responses later in life 
(98, 119, 120). Interestingly, exposure to LPS in rodents and 
humans can also cause pain facilitation such as thermal hyper-
algesia, mechanical allodynia, and hyperalgesia (121–125). Such 

behavioral findings appear to be the result of altered peripheral 
and central cytokine activity (122, 126–128). Increased levels 
of pro-inflammatory cytokines, including IL-1β, TNF-α, and 
IL-6 produced by the maternal or fetal immune system, have 
been linked to abnormal brain development and increased risk 
of developing psychopathology (96, 98–100). Moreover, higher 
amounts of IL-6 in the amniotic fluid following bacterial infec-
tion during pregnancy have been previously reported to strongly 
correlate with increased mortality rates and brain injury (129).

Taken together, these findings highlight the fundamental role 
of the microbial environment in programming behavioral and 
neural responses. In order to understand the mechanisms of 
perinatal neuroendocrine–neuroimmune interaction, research-
ers employ experimental models that mimic the antigenic actions 
of infection.

LPS AS AN eXPeRieMeNTAL 
iMMUNOLOGiCAL STReSSOR

Lipopolysaccharide, a complex glycolipid that is the major compo-
nent of Gram-negative cell wall usually derived from Salmonella 
enteritidis or E. coli, is a powerful activator of innate immune 
responses and induces behavioral symptomatology in the host 
largely identical to those induced by live bacterial infection (130, 
131). LPS-induced inflammation model presents well-known 
advantages, the primary one being that LPS does not replicate, 
allowing tight control of dosage and limiting the confounding 
nature of infection as compared to live bacteria models. LPS is 
commonly used to understand the complexities of the neuroim-
mune–neuroendocrine relationship and has been demonstrated 
to be a reliable activator of innate immune responses (97, 108) 
and HPA axis (66, 95, 108, 116, 132). Thus, LPS acts as an experi-
mental systemic immunological stressor (133).

Lipopolysaccharide activates toll-like receptors and initiates 
a cascade of signalization leading to cytokine production that 
is crucial for infection clearance (134). Monocytes, neutrophils, 
macrophages, dendritic cells, and mast cells all express TLR4 
at their surface membrane (135–137). Upon activation of the 
TLR4/MD2 complex by LPS, a series of phosphorylation steps 
are activated, leading to the phosphorylation of inhibitory (I)κB, 
which releases nuclear factor (NF)-κB from its complex (138). 
NF-κB is subsequently translocated into the nucleus where it 
activates the transcription of pro-inflammatory cytokines such 
as IL-1β, TNFα, and IL-6, as well as anti-inflammatory cytokines 
such as IL-1 receptor antagonist (IL-1ra) and IL-10 (139, 140). 
Cytokines released in the blood stream are able to activate the 
release of cyclooxygenase (COX)-2 from the hypothalamus to 
induce hyperalgesia (141). COX-2 also stimulates the conversion 
of arachidonic acid into prostaglandins (PGE2), which acts in the 
vascular organ of the lamina terminalis and in the ventromedial 
preoptic area of the anterior hypothalamus to stimulate heat 
conservation via cutaneous vasoconstriction and attenuation of 
sweating, and heat production via increases in the metabolism 
of brown adipose tissue (142). Circulating IL-1β is also known 
to directly activate hypothalamic PVN to stimulate the release 
of corticosterone from adrenal cortex (143, 144). LPS activation 
of Kupffer cells in the liver is also known to activate the release 
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of IL-1β that can contribute to hyperalgesia via vagal afferences 
(145), as vagotomy abolishes the LPS-induced hyperalgesia (145).

Neonatal LPS exposure Changes immune 
Responses Later in Life
Several lines of evidence from clinical and animal work suggest 
that exposure to LPS during the neonatal period is associated 
with altered immune responses later in life (66, 97, 109, 146–150). 
Most importantly, long-term inflammatory responses within the 
CNS are greatly influenced by immunological stressors early in 
life. Incubation of cord blood from 1-month old children with 
LPS for 5 h resulted in increased mRNA expression of IL-6 and 
TNFα compared to cord blood from the same age incubated with 
medium (146). In rats, neonatal LPS exposure produces immedi-
ate upregulation of gene expression of chemokines and cytokines 
within the neonatal brain, as indicated by upregulation of mRNA 
levels of Ccl7, Cxcl1, Cxcl10, IL-1β, and IL-6 in the hippocampus 
2 h following LPS exposure in rat pups at PND 4 (151). The effect 
of neonatal LPS exposure on cytokine levels in limbic areas can 
persist into adulthood. Our laboratory has previously shown that 
neonatal LPS exposure at PNDs 3 and 5 results in increased IL-1β 
and TNFα protein levels in the hippocampus following exposure 
to restraint stress in adulthood (66). Recent investigations point 
toward a critical role played by the hippocampus in modulating 
pain via upregulation of IL-1β expression (152). del Rey et  al. 
documented a strong correlation between increased hippocampal 
IL-1β transcripts and mechanical allodynia in chronic constric-
tion injury and spared nerve injury (SNI) models (152). However, 
it is not known whether changes in protein levels of IL-1β in the 
hippocampus contribute to increased pain sensitivity in inflam-
matory pain models (i.e., formalin test). Neonatal immune 
challenge has also been reported to alter febrile responses later in 
life (147, 148, 150). Fever is considered an important component 
of the innate immune response and is thought to play a crucial 
role in survival through its ability to efficiently clear the pathogen 
while limiting the extent of inflammatory damage (153, 154). 
Animals prevented from developing fever have higher risk of 
morbidity and mortality than animals that are allowed to develop 
fever (155). Rats exposed to LPS at P14 exhibited attenuated fever 
responses following a subsequent LPS challenge (147, 149) or 
stress (150) in adulthood. The effect of neonatal LPS exposure 
on adult febrile responses is thought to be mediated by pro-
inflammatory cytokines, as neonatally LPS-treated rats displayed 
significantly reduced plasma levels of TNFα and IL-6 following 
subsequent LPS exposure in adulthood. This reduction in turn 
was strongly correlated with the observed attenuated febrile 
responses in LPS animals (147). Interestingly, basal maintenance 
of body temperature in adult rats was not affected by neonatal 
LPS administration (110). This finding implies that a single LPS 
exposure is not able to alter febrile responses later in life, but 
that a “second hit” is necessary to “unmask” the altered febrile 
responses following a neonatal immune challenge. Central levels 
of PGE2 and specifically in the preoptic region, a region involved 
in the febrigenic thermoeffector pathways (156, 157), have also 
been targeted as potential mechanisms mediating the attenuated 
febrile responses following a neonatal immune challenge. For 

instance, PGE2 levels in the preoptic area were increased in rats 
exposed to LPS at P14 (150). Additionally, glucocorticoids play 
a critical role in inducing the febrile response, as adrenalectomy 
or blockade of GRs using the GR antagonist RU-486 abolished 
the fever induced by neonatal exposure to LPS (147). Finally, our 
laboratory has previously demonstrated that rats exposed to LPS 
at PNDs 3 and 5 displayed increased susceptibility to tumor and 
lung metastases following exposure to stress in adulthood (97, 
108). Moreover, neonatal immune challenge produced reduced 
NK  cell activity and increased neuroendocrine responsivity to 
restraint stress in adulthood (97, 108).

Taken together, an early immunological stressor has profound 
effects on the immunological reaction pattern later in life, lead-
ing to altered neuroimmune function at subsequent exposures to 
immunological challenges. This implies that what the immune 
system of an organism has been exposed to very early in life will 
in fact define its capacity to defeat pathogens later in life.

impact of Neonatal LPS exposure on 
endocrine Function
Microbial microbiota can affect the postnatal development of 
HPA axis, and an increasing body of evidence has demonstrated 
that neonatal exposure to LPS is associated with long-term 
alterations in HPA axis activity (66, 97, 116, 149, 158). Neonatal 
exposure to LPS during P3 and 5 has been reported to increase 
circulating levels of corticosterone at both time points (66, 132, 
159), suggesting that neonatal LPS exposure is capable of alter-
ing HPA axis function during the SHRP. This alteration in HPA 
axis function following a neonatal immune challenge persists 
throughout the life of the animal. Adult rats treated with LPS as 
neonates displayed enhanced plasma corticosterone and ACTH 
levels in response to restraint stress, noise stress, or in response to 
a second LPS hit in adulthood (66, 95, 97, 116, 132). This altered 
peripheral endocrine response was also accompanied by central 
neuroendocrine changes, as indicated by increased CRH mRNA 
levels in the PVN and decreased GR density in the hypothalamus, 
hippocampus, and frontal cortex following exposure to stress in 
adulthood (95). These structures are known to mediate the inhibi-
tory effects of glucocorticoids on CRH synthesis in the PVN and 
the release of ACTH following stress (160, 161), suggesting a 
decreased negative feedback sensitivity to glucocorticoids and, 
thus, an enhanced HPA responsiveness to stress following a neo-
natal immune challenge. We have demonstrated in our laboratory 
that dual exposure to LPS during P3 and P5 in rats is associated 
with increased circulating corticosterone at P7 and P22, but not 
P13, 1 h following injection of formalin into the hind paw (68). 
P22 rats neonatally treated with LPS also exhibited a trend toward 
decreased GR mRNA in the hypothalamus (68).

Overall, these data suggest that exposure to LPS during the 
neonatal period can reprogram the neuroendocrine axis. This 
reprogramming increases the reactivity of animals to a second 
physiological challenge later in life. Pain is an aversive experience 
and, therefore, capable of activating the HPA axis (162). Given 
that neonatal LPS exposure has been associated with increased 
release of peripheral and central pro-inflammatory cytokines 
later in life (66, 151) and considering the well-established role of 
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pro-inflammatory cytokines in producing hyperalgesia (145), it 
is reasonable to assume that neonatal LPS exposure is likely to be 
associated with increased pain sensitivity later in life.

impact of Neonatal exposure to  
LPS on Nociceptive Responses
The first postnatal week (P7–P10) of rodent’s life is equivalent 
to the last trimester in humans (36–40 GW) in terms of brain 
growth, gliogenesis, axonal and dendritic density, as well as 
consolidation of the immune system (11, 163–165). Preterm 
infants are, as discussed earlier, at high risk of infection during 
the neonatal period. Early-life infections in turn are known to be 
the cause of attenuated neurodevelopmental outcomes in these 
vulnerable infants (166). It is, therefore, important to address 
the impact of immune challenge on pain sensitivity later in life. 
Boisse et al found that administration of LPS at P14 in rats pro-
duced thermal and mechanical hyperalgesia that paralleled the 
enhanced expression of COX-2 protein levels in the lumbar spinal 
cord (141). Although this study did not directly demonstrate 
that the increased level of COX in the spinal cord contributed to 
the observed hyperalgesia in LPS-treated animals, it suggested 
a potential role of prostaglandins in mediating the LPS-induced 
hyperalgesia. Increased COX mRNA levels were also observed 
4 h following LPS injection in P3 and P21 rats (P0 is birth) (167). 
A number of studies from our laboratory have indicated that 
dual exposure of LPS during P3 and 5 in rats produced long-
term alterations in inflammatory pain responses later in life. 
Neonatal LPS administration evoked increased formalin-induced 
behavioral responses (i.e., flinching and licking) in P13, 22, and 
adult rats (4, 68, 168). The LPS-induced hyperalgesia observed 
in P22 rats coincided with altered HPA axis activity, as indicated 
by increased circulating corticosterone and decreased GR hypo-
thalamic mRNA 1  h postformalin injection, as well as altered 
immune responses following formalin injection as indicated 
by increased mast cell degranulation and increased circulating 
IL-1β (4, 68). Moreover, the LPS-induced hyperalgesia in pre-
adolescent rats was accompanied by altered spinal dorsal horn 
(SDH) intrinsic properties, as well as decreased neuronal activity 
(i.e., Fos expression) in the PAG (68, 168). LPS-treated adult rats 
exhibited hyperalgesia that coincided with central neuroimmune 
changes, as indicated by increased IL-1β in the hippocampus 1 h 
postformalin injection. No differences were observed in periph-
eral IL-1β release or mast cell degranulation (4). Although we 
reported enhanced hippocampal ILβ in LPS-treated adult rats, we 
do not know which immune cell releases this pro-inflammatory 
cytokine following neonatal immune challenge and subsequent 
inflammatory challenge. Of particular interest, hippocampal 
parenchyma astrocytes have been recently shown to produce the 
cytokine CCL2 24 h post-LPS injection in adult mice (169), sug-
gesting an important role of astrocytes in the neuroinflammation 
produced by systemic LPS injection.

Taken together, these data challenge the traditional concept that 
pain is originating solely from activation of neurons and suggest 
that components of the immune system play an imminent role in 
modulating pain sensitivity. Using LPS as a model of infection, 
LPS-induced hyperalgesia arises by both peripheral and central 

mechanisms. Peripherally, LPS triggers, e.g., macrophages to 
release pro-inflammatory cytokines that sensitize nociceptors 
(145, 170, 171). In fact, LPS can directly activate TRPA1-expressing 
neurons independent of TLR4 (172). Centrally, LPS can activate 
microglial cells in the spinal cord and astrocytes in brain regions 
such as the hippocampus and produce hyperalgesia (169, 173).

THe NeUROiMMUNe iNTeRFACe iN PAiN 
iN THe ADULT ORGANiSM

As discussed so far, the exposure to immunological stressors very 
early in development of an individual has far-reaching effects on 
neural structure and function as well as on the immune and HPA 
axis activity. We have also pointed to defining changes for the 
adult pain system. In the mature body, the systems are fully devel-
oped and less malleable. However, the immune system continues 
to affect the function of the nervous system in a manner that 
drives pain sensitivity, by inducing functional changes. In this 
section, we describe some acute neuroimmune interactions in 
pain perception. Such neuroimmune interaction may potentially 
be of importance for the transition from acute to chronic pain in 
a long-term perspective.

Animal Studies Demonstrate 
inflammation-induced Pain Sensitivity
The role of the immune system was traditionally viewed as protect-
ing the organism from invading pathogens. However, it is now well 
established that the bidirectional interaction between the immune 
and nervous systems plays a crucial role in pain modulation (125, 
174–177). Pro-inflammatory cytokines play an important role in 
this immune to brain bidirectional interaction (121, 145). When 
exposed to LPS, immune cells such as macrophages, monocytes, 
and mast cells release many pro-inflammatory cytokines such as 
IL-1β, TNF-α, and IL-6 into the circulation creating an “inflam-
matory soup” condition that enhances pain sensitivity by sensi-
tizing nociceptors (178–180). These pro-inflammatory cytokines 
also signal to the brain to induce a set of physiological responses 
including fever, lethargy, decreased social interaction, decreased 
sexual activity, and decreased food and water intake, increased 
circulating corticosterone, collectively known as sickness behav-
ior (181–183). Importantly, pain facilitation or hyperalgesia is 
considered to be an integral part of sickness behavior (121, 125). 
Peripheral inflammation can lead to central neuroinflammation 
via many different ways. First, through vagal afferences since sub-
diaphragmatic vagotomy reversed the hyperalgesia induced by 
IL-1β or LPS (145). Alternatively, cytokines can access the brain 
through areas that lack the blood–brain barrier (BBB) such as 
the organum vasculosum lamina terminalis (184). LPS produces 
IL-1β in the brain, which is initially restricted to choroid plexus 
and circumventricular organs, then diffuse to the brain side of 
BBB (185). Cytokines have also been suggested to enter the brain 
via active transport systems across the BBB (186, 187).

The first report on the impact of LPS exposure on pain 
responses was the study by Mason, who demonstrated that i.p. 
administration of LPS in adult rats significantly decreased tail 
flick latency, an effect that peaked at 1 h post-LPS administration 
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(123). The LPS-induced thermal hyperalgesia observed in 
adult rats was reversed following the administration of IL-1ra 
(188), indicating that IL-1β is an important mediator of this 
hyperalgesia. Pro-inflammatory cytokines released by immune 
cells are known to induce hyperalgesia when administered both 
peripherally and centrally, particularly IL-1β (145, 170, 189, 190). 
For instance, intracerebroventricular (ICV) administration of 
the recombinant human IL-1β (rhIL-1β) in rats induced thermal 
hyperalgesia (170), while ICV injection of the IL-1β antagonist 
IL-1ra abolished this hyperalgesia (170). Intraplantar injection 
of IL-1β has been associated with increased discharge of SDH 
neurons in response to non-noxious stimuli (190). Local admin-
istration of IL-1ra decreased the LPS-induced hyperalgesia (171).

Interleukin-1β is also known to contribute to flinching 
responses in the formalin test given that an intraplantar injection in 
rats of antisera anti-IL-1β prior to formalin injection significantly 
attenuated flinching responses in the formalin test (191). We have 
previously shown that rats exposed to LPS during the neonatal 
period displayed increased circulating IL-1β at P22 in response to 
formalin injection (4). Adult rats previously subjected to neonatal 
immune challenge also displayed enhanced hippocampal IL-1β 
that coincides with the LPS-induced hyperalgesia at this age (4). 
The source of this hippocampal IL-1β is not known, but it is highly 
probable that it is originating from astrocytes or microglial cells 
within the hippocampus. Interestingly, at the same age (i.e., PND 
22), and at the same time point following formalin injection (i.e., 
1 h postformalin injection), we observed altered intrinsic proper-
ties of SDH, lamina I, and lamina II neurons in LPS-treated rats 
as indicated by lower input resistance compared to saline-treated 
rats (68).

Spinal dorsal horn neurons are the first component of the CNS 
to receive incoming noxious sensory information, and their out-
put is determined by a combination of their synaptic inputs and 
intrinsic neuronal properties (192). Formalin injection is known 
to activate peripheral nerves, which results in turn in activation of 
dorsal horn neurons (193–195). Hind paw injection of formalin 
is associated with the release of numerous substances in the 
spinal cord, including prostaglandin E2 (196). Bath application 
of prostaglandin E2 results in changes in intrinsic properties of 
dorsal horn neurons including decreased input resistance (197). 
Since this change was only observed in LPS-treated preadolescent 
rats, it is possible that the neonatal exposure to LPS resulted in 
either an increase in pro-inflammatory cytokines within the 
spinal cord or an increased susceptibility of SDH neurons to pro-
inflammatory cytokines. This assumption is confirmed by the fact 
that intrathecal administration of IL-1ra has been reported to 
block formalin-induced hyperalgesia (198). The source of spinal 
hyperalgesia seems to involve microglia and astrocytes since 
intrathecal administration of fluorocitrate, an inhibitor of glial 
metabolic function, blocked the formalin-induced hyperalgesia 
(198).

Additionally, IL-1β has been documented to act supraspinally 
to induce hyperalgesia. For instance, microinjection of IL-1β into 
the preoptic area of the hypothalamus is sufficient to induce ther-
mal hyperalgesia (199). Of particular interest is the observation 
that IP or ICV administration of IL-1β has been documented to 
produce an increase in plasma levels of corticosterone and ACTH, 

an action that is mediated by the release of CRH from the PVN 
(144, 200). The neonatal immune challenge is likely to influence 
the generation of new neurons in the hippocampus. This assump-
tion is confirmed by the fact that an intraplantar injection of the 
nociceptive inflammatory agent Complete Freund’s Adjuvant at 
P8 results in more BrdU and doublecortin-labeled cells, both 
measures of newborn neurons, in the SGZ of the dentate gyrus 
(201). Whether such neurons release IL-1β in response to neona-
tal LPS exposure remains to be determined.

At the peripheral level, the enhanced IL-1β plasma levels 
observed at PND 22 in LPS-treated rats coincide with higher 
degree of mast cell degranulation, which was also accompanied 
by increased formalin-induced nociception (4). Mast cells are 
located in the vicinity of primary nociceptive neurons and vas-
culature and their degranulation has been reported to regulate the 
excitability of nociceptive nerve endings (202). Mast cell degranu-
lation can also produce thermal hyperalgesia via the production 
of nerve growth factor (203). Previous studies have documented 
an important role of mast cells in formalin-induced nociception. 
Blocking mast cell activity using the mast cell stabilizer cromolyn 
abolished formalin-induced pain responses in the late phase 
(204). Interestingly, mast cells are also known to express receptor 
for IL-1β and to produce IL-1β following inflammation (205).

inflammation-induced Pain  
Sensitivity in Humans
The human physiology is much more sensitive to LPS provocation 
than that of rodents. To avoid the risk of sepsis, very low doses 
of LPS are used in humans (usually 0.2–4.0 ng/kg), the highest 
doses often requiring additional antipyretic pharmacological 
treatment. The most common dose for psychological research 
is around 0.4–1  ng/kg LPS from E. coli, which induces a clear 
rise of pro-inflammatory cytokines TNFα, IL-1β, IL-6, and IL-8 
in the blood (206–208). Human studies can also benefit from 
vaccinations of healthy individuals as an inflammatory model, 
and patients undergoing immunotherapy can be studied. The 
behavioral outcomes of experimental immune activation are 
very similar to sickness behavior exhibited by experimental ani-
mals; individuals report increased anxiety, worsened mood, and 
increased pain sensitivity (205, 209, 210). Appetite is reduced, 
and fatigue and anhedonia increase parallel to decreased social 
interest (126). The immune activation also disrupts memory and 
cognition and changes motivation (6, 211, 212). In human studies 
with the lowest LPS doses, the effects can in fact be so subtle that 
blinding can be maintained.

Pain Sensitivity during Immune Provocation
So far, only LPS stimulations have been used to study the pain 
system specifically in humans, and several studies have shown 
that experimental immune activation increases pain sensitivity 
in humans, too. Deep (muscular and visceral) pain is more 
readily affected than superficial (cutaneous and mechanical) 
pain (207, 213, 214). Also, the change in pain sensitivity usually 
correlates with peripheral cytokine levels. As in all experimental 
pain research, the mode of pain stimulation as well as the pain 
intensity applied may affect the outcome. Threshold pain is not 
processed exactly the same way as suprathreshold (intense) 
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pain, and pain from within the body is relayed to the brain in 
pathways partly distinct from those used to relay cutaneous pain 
(215). Also, the nociceptive effect may depend on the immuno-
logical pressure, i.e., the LPS dose in experimental models. Two 
studies show that threshold pressure pain sensitivity is affected 
the same way in men and women, despite the generally higher 
cytokine levels found in women during LPS stimulation (207, 
216). Interestingly, no sex differences in psychological outcomes, 
such as anxiety or perceived health, are seen either despite the 
sex differences in cytokine release (207, 208). One study has, 
however, shown that women are indeed more affected by inflam-
mation with regard to pain perception (207). In this study, the 
descending pain inhibition of women was weakened during LPS 
stimulation, while men remained unaffected. In parallel, women 
were more pain sensitive to intense cutaneous pain, too, while 
men only changed their perception of deep pain. Furthermore, 
one study using a high LPS dose (2.0 ng/kg) has in fact shown 
increased pain sensitivity to intense cutaneous pain in men. Sex 
differences in inflammation-induced pain sensitivity need fur-
ther exploration. An intriguing mechanism for a potential sex 
difference was recently suggested in a murine study (217), where 
female mice did not require microglia activation to develop pain 
hypersensitivity, but appeared to have alternative routes via the 
adaptive immune system. This alternative route did not seem 
accessible to males. Future research will have to establish if these 
mechanisms are relevant for humans as well and their role in 
immune-driven pain sensitivity. Furthermore, sex-dependent 
alterations in neuroendocrine function in human subjects fol-
lowing LPS provocation have been shown (218). Healthy humans 
exhibited enhanced circulating levels of cortisol (peak response 
at 5  h post-LPS injection) after LPS injection (208, 219). The 
effect appears to be more pronounced in women (208), but the 
data are inconclusive (219). On a final note, experimental pain 
is sensitive to stress, which could potentially be a confounder 
in LPS studies on pain. Perhaps, surprisingly, however, stress 
levels generally remain low among the participants throughout 
the studies (207). Our experience is that because LPS stimula-
tions, due to ethical considerations using bacterial endotoxin 
injections in healthy subjects, require very clear participant 
information and a hospital environment with experienced per-
sonnel and constant supervision, participants describe a feeling 
of safety and control even at higher, quite uncomfortable doses 
(such as 2.0 ng/kg).

Brain Activity during Experimental Immune Activation
Although the cytokines released during immune activation may 
affect and sensitize peripheral nerve endings, the main effect by 
which the immune system changes the function of the nervous 
system during sickness is believed to occur centrally via induced 
sickness behavior. It is reasonable to assume that changes in 
the emotional circuitries underlying the increased anxiety and 
depressed mood seen during immune activation may also lead 
to increased pain sensitivity due to overlapping function with the 
medial (affective) pain network (215), such as the amygdala, the 
cingulate, and prefrontal cortices. Also, as sickness is per defini-
tion an interoceptive signal, i.e., a signal of the internal state of 
the body (220), areas involved in interoception and homeostasis 

such as the insular cortex, which is also part of the pain network, 
could potentially be affected. Several studies have attempted to 
elucidate the neural correlates of sickness behavior in the human 
brain. Most studies have used functional magnetic resonance 
imaging (fMRI) with cognitive and emotional paradigms. The 
main methodological limitation for this type of research is the 
fact that only the lower LPS doses used in humans are compat-
ible with a brain scanning protocol, i.e., those that do not induce 
nausea or shivering.

Only two studies have explored pain perception directly dur-
ing brain imaging so far, one using visceral pain stimuli (deep 
pain measurement) and mechanical pinprick pain (cutaneous 
pain measurement) (221) and the other using pressure pain (deep 
pain) (222). Benson et al. (221) showed increased activation within 
the posterior insula, dorsolateral PFC, anterior midcingulate, 
and somatosensory cortices for visceral pain stimulation, but not 
mechanical pain provocation. These areas are involved in pain 
and affective processing, interoception, and homeostatic regula-
tion. Karshikoff et al. (222) described decreased activity after LPS 
injection in the lateral PFC and rostral anterior cingulate cortex 
(ACC), areas involved in descending pain inhibition, which may 
point to an increase in inflammation-induced pain sensitivity via 
diminished endogenous pain regulation. Additionally, the LPS 
group showed increased pain-dependent activity in the anterior 
insular cortex compared to placebo.

Emotional and cognitive fMRI paradigms corroborate the 
involvement of the cingulate, insula, and prefrontal cortices when 
the brain adapts to immune activation (221, 223–227), which are 
core areas in affective pain processing and pain regulation. Using 
a vaccination protocol as experimental immune provocation, 
Harrison et  al. have shown increased activity in the subgenual 
ACC during emotional stimuli and in areas involved in intero-
ceptive function during a Stoop task, such as the brain stem, the 
cingulate, and anterior insula (225, 226). To maintain the same 
level of performance during peripheral inflammatory activity, 
regions of the PFC appear to be required (224, 225)—areas impli-
cated in pain regulation and processing of affective components 
of pain. In several studies, the increased BOLD activity in these 
areas correlates with peripheral cytokine levels (210, 222, 226, 
228, 229).

Immune challenge affects the levels of neurotransmitters in the 
brain (6, 230). The expression of sickness behavior can potentially 
be manipulated by drugs affecting neurotransmitter levels such 
as serotonin reuptake inhibitors, which are compounds often 
used to ameliorate chronic pain. Hannestad et  al. (231) have, 
for example, shown that the effects on fatigue are ameliorated 
by pretreatment of serotonin reuptake inhibitors, but not by 
dopamine and noradrenaline reuptake inhibitor. Peripherally 
induced inflammation has also been shown to activate microglia 
directly (232, 233). This is of special importance for chronic pain, 
as microglia have been implicated in the establishment of chronic 
pain (121).

In the past decade, it has thus been shown that acute inflam-
mation induces pain sensitivity in humans as well. Most impor-
tantly, acute inflammation has a global effect on brain function, 
modulating the neural function in several brain areas involved in 
pain perception. Although the experimental models used are of 
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an acute character, similar mechanisms are likely to be involved 
when the organism is subdued to long-term inflammatory activity.

THe HPA SYSTeM AND PAiN  
iN ADULT ORGANiSMS

Pain is not only modulated by immunological stressors but also 
by activation of the HPA axis. Pain is a sensory as well as an 
emotional experience. It is by nature a stressful event and, there-
fore, capable of activating the HPA axis. As we have mentioned, 
there is a large individual variability in developing chronic pain. 
One possible mechanism that may account for this individual 
variability in pain responses is how each individual responds to 
stressful events. Exaggeration or maladaptive response following 
stress may lead to altered pain responses. The HPA axis involves 
a defined neural circuit that comprises many brain regions 
including the amygdala, the mPFC, and the hippocampus. 
These areas are also important in pain modulation (234–237). 
In other words, a non-painful stressful stimulus is able to recruit 
parts of the same neural network involved in the pain response. 
Therefore, under conditions of stress, pain sensitivity may be 
exaggerated. Indeed, activation of CRH receptors in the amyg-
dala facilitated pain responses through increased excitatory 
postsynaptic current in the parabrachio-amygdaloid synapse 
in rodents (238). Furthermore, administration of CRH into the 
CeA increased visceral nociception, as indicated by exagger-
ated number of abdominal muscle contractions in response to 
colorectal distension (239). On the other hand, the contribution 
of acute stress in analgesia commonly known as “stress-induced 
analgesia” has been traditionally well documented (240, 241), 
and at this point in time the exact contribution of cortisol in 
modulating pain is still a matter of debate within the scientific 
community.

In human clinical samples, some researchers have found that 
low back pain and enhanced musculoskeletal pain are often associ-
ated with hypocortisolemia (242, 243), while others demonstrated 
that patients suffering from chronic back pain displayed higher 
levels of cortisol compared to control group (244). This hypercor-
tisolemia was associated with smaller hippocampal volume and 
higher pain-evoked response in the anterior parahippocampal 
gyrus (244). This variability in cortisolemia in pain condition not 
only may be due to the intensity of the stress response (245) but 
may also well depend on the neural circuit recruited following 
the stress stimulus, as the neural circuits within PVN are quite 
complex, and the final outcome depends on the nature of the 
stressor [for review, please see Ref. (237)]. In inflammatory pain 
model, such as the formalin test in rodents, LPS-induced hyper-
algesia in infant and preadolescent rats coincided with increased 
circulating corticosterone 1 h following intraplantar injection of 
formalin (68). However, a recent study demonstrated that elevated 
levels of plasma corticosterone produced analgesia via attenuated  
C fiber-mediated spinal responses (246).

Overall, the abovementioned animal and human studies 
suggest that changes in HPA axis activity can contribute to pain. 
Although more studies are needed to confirm the exact contribu-
tion of cortisol (in humans) or corticosterone (in rodents) in 
modulating pain responses, the involvement of neuroendocrine 

response in pain is evident. Therefore, new therapeutic approaches, 
which not only target neural activity but also the neuroendocrine 
axis, are needed to treat chronic pain patients.

A LiFeTiMe PeRSPeCTive

Although the acute effects of immune provocation on pain 
sensitivity are fairly well documented by now, as described in 
the previous sections, long-term inflammatory effects are not 
well understood. At this point in time, the most research on 
long-term effects of inflammatory activity on behavior has 
focused on depression. In humans, one incentive to study the 
mechanisms of sickness behavior came from clinical observa-
tions of immunotherapy eliciting side effects that resemble 
sickness behavior, such as depressive symptoms, fatigue, and 
aches. In, for example, hepatitis C patients undergoing IFN-α 
therapy, up to 45% of the patients develop depression (247). The 
typical signs of sickness behavior appear at the commencement 
of immunotherapy, whereas the establishment of depression 
requires time, and potentially, persistent inflammatory input 
during this time. It is now argued that depression is in part an 
inflammatory disease (248), and that a subgroup of clinically 
depressed patients suffers from a chronic low-grade systemic 
inflammation. Childhood trauma has also been shown to 
predispose persons to depression, but potentially not only via 
learning and HPA dysregulation as traditionally suggested 
but also via inflammation. Depressed patients with a history 
of traumatic events have higher low-grade inflammatory 
activity (249). Most interestingly, these patients benefit from 
pharmacological treatments that combine anti-inflammatory 
compounds and traditional antidepressants (249). Suggested 
mechanisms between inflammatory activity and depression 
include cytokines, serotonin, HPA dysregulation, GABA, 
and glutamate, all of which are neuroimmune pathways also 
implicated in pain [for extensive reviews see, e.g., Ref. (6, 
250)]. Recent research is now shifting the focus toward similar 
mechanisms for chronic pain and fatigue (6, 230).

inflammatory Disease and Pain
Chronic pain is a common comorbid symptom to many inflam-
matory diseases (251). Moreover, coronary heart disease (252), 
metabolic disorders (253), and life stress (254) increase the 
risk of developing chronic pain. It has been suggested that one 
of the underlying mechanisms for this association is indeed 
inflammation (252–254). Furthermore, chronic pain has been 
associated with low-grade inflammation (255). Mechanistically, 
peripheral chronic inflammation may become chronic within the 
CNS via changes in the central immune responses, by means of 
mechanism previously discussed. In animals, transient peripheral 
infections and inflammations or chronic exposure to low level 
(subclinical) inflammations can either activate microglia directly 
(256, 257) or “prime” the cells so that a recurrent inflammatory 
provocation becomes more severe (258). A systemic inflamma-
tory challenge leads to an exaggerated fever response and sickness 
behavior in the presence of “primed” microglia in rodents (259, 
260). “Priming” of immune components, or the requirement of a 
“second immunological hit” to reveal susceptibility as discussed 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


11

Zouikr and Karshikoff Early Life Programming of Pain

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 276

previously, is exemplified in a recent clinical study. Obesity has 
been associated with chronic pain and is considered a chronic 
low-grade inflammatory state (253). Obesity did not predict 
postsurgical pain intensity or inflammatory levels (255). BMI 
did, however, correlate with the increased immune response of 
leukocytes after LPS stimulation, suggesting sensitivity to inflam-
matory development in the obese patients that could results in 
complications associated with inflammation further down the 
road, such as chronic pain. Another study points to differences 
in pharmacological treatment strategies on pain after surgery, 
depending on prior inflammatory disease. Non-steroidal anti-
inflammatory drugs had a better protective effect against the 
development of long-term pain after surgery in patients with a 
background of inflammatory disease, than opioids (261).

The immune System Develops  
throughout Life
As discussed previously, the immune system carries the 
imprint of early-life inflammatory events. However, the func-
tion of immune system in fighting previously unencountered 
pathogens and protect the organism on reinfection relies on the 
ability to adapt and learn throughout life. Immune function-
ing is determined partly by genetics (262) and varies greatly 
between individuals. Individuals differ in their susceptibility 
to different types of infections, such as bacterial, viral, and 
fungal (262), and several single nucleotide polymorphisms 
related to immune pathways have been described (262). For 
example, the IL-6 and IL-8 pathways appear to have large 
genetic variations between individuals, while the IL-1 pathway 
has remained more conserved throughout evolution (262). 
Recent research emphasizes the importance of experience in 
shaping the adult immune response, similar to what has been 
described for infants in the previous sections. In fact, most of 
the individual differences seen in immune function in adult 
humans stem from non-heritable changes (263, 264). The 
immune system activates distinct cytokine patterns depending 
on the type of infection, and continuously learns from experi-
ence to adapt its inflammatory response (265). In theory, each 
person thus possesses an immune system that is a product 
of the types, strengths, and number of infections, diseases, 
and injuries encountered throughout life. Prior experience 
should thus impact future immunological reaction patterns. 
Epidemiological studies on comorbidity and risk factors for 
common disease give support to the idea that lifetime immune 
challenges affect disease susceptibility. A recent study shows 
that in patients with multimorbidity (in this specific study more 
than 10 disease diagnoses), the incidence of lifetime infections, 
inflammation, injuries, and tumors was 7–10 times as common 
as in a primary health care population (266). Lifetime accumu-
lation of strong immune activation may thus potentially lead to 
increased general disease susceptibility and comorbidity (266). 
Furthermore, lifetime inflammatory disease is a risk factor for 
developing neurodegenerative disease (267–269). A plausible 
mechanism is that the accumulation of inflammatory activity 
in the body induces neuroinflammation in the brain, which in 
turn affects the function of the CNS (267).

when Adaptation Becomes a Liability
The process of perinatal programming posits that exposure to 
environmental factors during a sensitive window of development 
is able to program or have long-term consequences on physi-
ological systems later in life. A fundamental aspect of perinatal 
programming is that developing organisms “sense” the early-life 
environment and use this information to establish homeostatic 
set points (270, 271). This process of perinatal programming has 
evolved as an adaptive mechanism enabling the fetus to constantly 
interact with the maternal environment (via the placenta) and use 
this information as a forecast of the environmental conditions it 
will eventually face postnatally. As such, preparing it to adjust its 
physiological and behavioral need to match the requirements of 
the ex utero world (272). In this perspective, fetal programming is 
an example of predictive adaptive responses where the fetus uses 
present cues to shape an adaptive phenotype to future environ-
mental stimuli (31, 273). However, this adjustment can become 
maladaptive in the case where a “mismatch” exists between the 
expected ex utero environment and the actual circumstances. 
More importantly, when adverse events occur during a critical 
window of vulnerability of physiological systems that are still 
undergoing fine-tuning and plasticity, an individual may become 
predisposed to high susceptibility and exaggerated sensitivity to 
environmental stimuli later in life.

Correspondingly, the immune system and the HPA system 
adapt and change according to the stressors that the individual 
encounters throughout life, in order to maintain health and 
homeostasis. Pain is one of the most important survival signals 
available to us, and a life without pain perception is often a short 
one, as can be seen in individuals with congenital insensitivity to 
pain (274). However, when the imprint of the different stressors 
throughout life accumulate, interact, and/or become prolonged, 
the consequence may be detrimental for the pain system. For 
diseases like chronic pain, with such wide individual variability 
in symptomatology and treatment efficacy (8, 9), not only should 
comorbid disease and stressful life events (i.e., concurrent with 
the pain) be considered when exploring the pathophysiology but 
also past stressors. In this study, we want to increase the awareness 
of the profound effect of the immune system on the pain system 
from birth to old age, via neuroimmune and neuroendocrine 
interactions. In other words, the faith of the pain system starts 
in utero.

CONCLUSiON

In this review, we argue that the individual differences in the 
susceptibility to chronic pain and success of treatment thereof 
may be the result of the person’s prenatal history, combined with 
childhood as well as lifetime experience. We have highlighted the 
biological underpinnings and potential consequences on the pain 
system induced by the stress and infectious/inflammatory load 
an individual is subjected to. The neuroimmune and neuroendo-
crine interactions that affect the pain system start in the womb 
and modulate the pain system throughout life. The modulations 
may be of both structural and functional nature and may be both 
adaptive and maladaptive. In order to understand individual 
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differences in pain, human studies of long-term effects of inflam-
matory stressors are needed.
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