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Allogeneic hematopoietic stem cell transplant (HSCT) is used to treat increasing numbers 
of malignant and non-malignant disorders. Despite significant advances in improved 
human leukocyte antigens-typing techniques, less toxic conditioning regimens and 
better supportive care, resulting in improved clinical outcomes, acute graft-versus-host 
disease (aGvHD) continues to be a major obstacle and, although it principally involves 
the skin, gastrointestinal tract, and liver, the thymus is also a primary target. An important 
aim following HSCT is to achieve complete and durable immunoreconstitution with a 
diverse T-cell receptor (TCR) repertoire to recognize a broad range of pathogens pro-
viding adequate long-term adaptive T-lymphocyte immunity, essential to reduce the risk 
of infection, disease relapse, and secondary malignancies. Reconstitution of adaptive 
T-lymphocyte immunity is a lengthy and complex process which requires a functioning 
and structurally intact thymus responsible for the production of new naïve T-lymphocytes 
with a broad TCR repertoire. Damage to the thymic microenvironment, secondary to 
aGvHD and the effect of corticosteroid treatment, disturbs normal signaling required 
for thymocyte development, resulting in impaired T-lymphopoiesis and reduced thymic 
export. Primary immunodeficiencies, in which failure of central or peripheral tolerance 
is a major feature, because of intrinsic defects in hematopoietic stem cells leading to 
abnormal T-lymphocyte development, or defects in thymic stroma, can give insights into 
critical processes important for recovery from aGvHD. Extracorporeal photopheresis is 
a potential alternative therapy for aGvHD, which acts in an immunomodulatory fashion, 
through the generation of regulatory T-lymphocytes (Tregs), alteration of cytokine pat-
terns and modulation of dendritic cells. Promoting normal central and peripheral immune 
tolerance, with selective downregulation of immune stimulation, could reduce aGvHD, 
and enable a reduction in other immunosuppression, facilitating thymic recovery, res-
toration of normal T-lymphocyte ontogeny, and complete immunoreconstitution with 
improved clinical outcome as the ability to fight infections improves and risk of secondary 
malignancy or relapse diminishes.
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iNTRODUCTiON

Allogeneic hematopoietic stem cell transplant (HSCT) is used to 
treat a wide variety of malignant and non-malignant disorders. 
Significant improvements in human leukocyte antigens (HLA)-
typing techniques, less toxic conditioning regimens and better 
supportive care, have resulted in improved clinical outcomes, 
with over 90% survival and cure for some diseases. An important 
aim following HSCT is to achieve durable immune reconstitu-
tion (IR) with a diverse T-cell receptor (TCR) repertoire capable 
of recognizing a broad range of pathogens providing adequate 
adaptive T-lymphocyte immunity long term. This is essential 
to reduce the risk of infection, disease relapse, and secondary 
malignancies (1). Although rebuilding of the innate immune 
system occurs relatively quickly, reconstitution of adaptive 
immunity is more complex (2). Complete and long-lasting 
IR depends on a functioning and structurally intact thymus 
responsible for the production of naïve T-lymphocytes with 
a broad TCR repertoire (3). Acute graft-versus-host disease 
(aGvHD) remains a major obstacle to allogeneic HSCT and, 
although it principally involves the skin, gastrointestinal tract, 
and liver, the thymus is also a primary target. The consequent 
damage to the thymic microenvironment disturbs normal 
signaling required for thymocyte development and results in 
impaired thymopoiesis and reduced thymic export. First-line 
treatment for aGvHD is corticosteroids which have a range of 
direct effects on many aspects of immunity including thymic 
function, often followed by a plethora of other agents that 
non-selectively target T-lymphocytes, further interfering with 
normal T-lymphocyte neogenesis and subjecting patients to 
an increased risk of infection and relapse. Targeted therapy for 
aGvHD without systemic immunosuppression, and that allows 
thymic recovery, is needed.

If the stem cell innoculum is replete, then hematopoietic 
stem cells are infused with other cells including erythro-
cytes, donor-tolerized mature lymphocytes, as well as hemat-
opoietic stem cell-derived precursors. The donor-derived 
T-lymphocytes maybe antigen naïve or experienced and are 
able to interact with tumor or viral antigen. However, antigen-
naïve T-lymphocytes, activated in the post-HSCT millieu, 
may proliferate and directly attack recipient tissue to cause 
aGvHD. This initial wave of donor-tolerized T-lymphocyte  
expansion occurs within the first 120 days. Beyond 120 days, 
a second wave of T-lymphocyte expansion occurs (or, in the 
case of a T-lymphocyte depleted donor inoculum, the first 
wave), as donor stem cell-derived T-lymphocytes that have 
been tolerized in the recipient thymus are exported into the 
periphery (4).

Many monogenic disorders of immunity have now been 
described in patients with primary immunodeficiency (PID). 
Some of these, including the failure to develop central or periph-
eral tolerance, as well as the codependence of developing thy-
mocytes and developing thymic stromal cells may give insights 
into the perpetuation of aGvHD in patients who fail first-line 
treatment with corticosteroids. This article will review the role of 
alloreactive T-lymphocytes and treatment of aGvHD in causing 
thymic damage and apply lessons learnt from the study of patients 

with PID to patients with resistant aGvHD following allogeneic 
hematopoietic stem cell transplantation.

THYMiC STRUCTURe AND NORMAL 
THYMOPOieSiS

The thymus is the primary lymphoid organ responsible for 
the continuous and life-long production of a functional pool 
of T-lymphocytes exhibiting a widely diverse TCR repertoire, 
capable of reacting with harmful foreign antigens, but that also 
recognizes and tolerates self-antigens. The thymus is divided 
into the subscapular region, the cortex, the cortico-medullary 
junction, and the medulla. The major cellular components of 
the thymic stroma include epithelial cells, dendritic cells (DCs), 
reticular fibroblasts, and macrophages together forming a spe-
cialized three-dimensional microenvironment critical for the 
recruitment of T-lymphocyte precursors followed by an orderly 
sequential process of T-lymphocyte development and maturation 
(5). Thymic epithelial cells (TECs) are the major component of 
the thymic stromal scaffold, divided into two main compart-
ments—the cortical (c) and medullary (m) TECs that exhibit 
distinct functional properties. A complete, undisrupted thymic 
microenvironment is essential for normal T-lymphocyte develop-
ment (6). Conversely, normal thymic architectural development 
is dependent on input from the developing thymocytes, so called 
“thymic crosstalk” (7).

Because the thymus does not contain hematopoietic stem cells, 
progenitor cells are recruited from the bone marrow and enter 
the thymus at the cortico-medullary junction, with P-selectin 
and platelet P-selectin glycoprotein ligand on the progenitor 
cells appearing to play an important role in this homing process 
(8). Commitment to the T-lymphocyte lineage occurs following 
interaction between Notch-1 receptor and delta-like 4 ligand 
expressed by the cTECs (9). At this stage, thymocytes express a 
“triple negative” (TN) phenotype, devoid of CD3, CD4, and CD8 
surface markers. Following expansion of the TN cells, controlled 
by signals such as IL-7 and Fms-like tyrosine kinase 3 ligand, 
they gain both CD4 and CD8 to acquire a “double positive” (DP) 
phenotype with a heterodimeric TCRαβ complex (10, 11). TCR 
diversity is generated by random genetic rearrangements of the 
TCR loci and is estimated to be in the region of 1020 α–β chain 
combinations (5). Because these genetic combinations have the 
potential to generate self-reactive TCRs, which carry the risk of 
autoimmunity, thymocytes are subjected to a rigorous two-stage 
selection process to identify and remove these potentially dam-
aging self-reactive T-lymphocytes (12). The first stage (positive 
selection) takes place in the cortex where DP thymocytes are 
exposed to a self-peptide/major histocompatibility complex 
(MHC) complex presented by cTECs. Thymocytes that recognize 
this complex with intermediate affinity proceed to the next stage 
of development, ensuring recognition of antigen in association 
with self-MHC molecules. If the TCR does not recognize the 
complex or recognizes with high affinity, the T-lymphocyte will 
undergo apoptosis or “death by neglect.”

Following positive selection, the surviving thymocytes 
migrate to the medulla, predominantly regulated by chemokine 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Normal thymopoiesis.

3

Flinn and Gennery Treatment of Pediatric aGvHD—Lessons from PID?

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 328

receptor 7 and the corresponding ligands CCL19 and CCL21 
expressed by mTECs, and subsequently lose either CD4 or CD8, 
dependent on which MHC class they associated with during posi-
tive selection, to become “single positive” (SP) cells. The second 
stage of TCR selection, designated negative selection, occurs in 
the medulla where SP thymocytes are exposed to a self-peptide/
MHC complex presented by mTECs and DCs. Medullary TECs 
possess the unique ability of ectopic expression of a wide range 
of peripheral tissue-restricted self-antigens (TRAs). This so 
called “promiscuous gene expression” is partly controlled by the 
autoimmune regulator (AIRE) transcription factor, as well as 
the more recently described Fezf2 transcription factor (13), to 
form a “molecular mirror of peripheral self ” (14, 15). TCRs that 
react with high affinity to the TRA/MHC complexes are deleted 
as these have the potential to elicit autoimmunity. Re-encounter 
of peptides present on both cTECs and mTECs, so called “shared 
peptides,” also leads to thymocyte deletion, a mechanism thought 
to increase peptide/MHC diversity (16). Negative selection is an 
indispensable part of central tolerance, a key process that renders 
T-lymphocytes tolerant of self.

PeRiPHeRAL TOLeRANCe

The mature surviving thymocytes, termed recent thymic emi-
grants (RTEs), are exported into the circulation and expand in 
response to exposure to antigen or homeostatic signals indicat-
ing lymphocytopenia (homeostatic peripheral expansion, HPE) 
(Figure 1). To maintain flexibility in diversity, thymic negative 

selection is qualified, and some self-reactive T-lymphocytes 
enter the periphery. Other additional mechanisms are therefore 
in place to counteract this “escape.” One of these is the produc-
tion of regulatory T-lymphocytes (Tregs) of which there are  
two types: natural and inducible. Natural Tregs (nTregs)  
are produced in the thymus, whereas inducible Tregs (iTregs) are  
transformed from naïve T-lymphocytes in the periphery upon 
stimulation. Tregs have an essential role in downregulating 
peripheral immune responses and limiting inflammation 
that may be harmful to the host but also in the maintenance 
of self-tolerance (17). Discrimination between inducible and 
nTregs is essential to understand fully their specific functions in 
regulating immune homeostasis as well as their role in different 
disease states. Expression of Helios has been used as a marker 
of thymic-derived Tregs, although this has been challenged 
following the demonstration of induction of Helios expression 
both in vitro and in vivo (18). Forkhead box transcription fac-
tor P3 (Foxp3) plays a critical role in Treg differentiation. It 
is not clear exactly how nTregs are generated in the thymus, 
although autoreactive T-lymphocytes may convert to Tregs 
rather than undergo apoptosis. The exact mechanisms by which 
they exert their regulatory effects are also not certain. Proposed 
mechanisms of Tregs include suppression of T-lymphocyte pro-
liferation, alteration of cytokine production and of CD8+, DC, 
B-lymphocyte, and NK activity. IL-10 and TGFβ are considered 
to be the central inhibitory cytokines involved in the mechanism 
of Treg-mediated immunosuppression, but also play a role in the 
generation of iTregs (19).
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MARKeRS OF THYMiC OUTPUT

The peripheral naïve T-lymphocyte pool is maintained by a 
combination of proliferation of the circulating naïve CD4+ 
T-lymphocytes and export of naïve T-lymphocytes from the 
thymus, balanced with apoptosis or differentiation into effector 
or memory T-lymphocytes. The size of the T-lymphocyte pool is 
predominantly determined by HPE, but the production of new 
T-lymphocytes is essential to maintain a broad TCR repertoire. 
Measuring thymic output provides an indicator of functional 
T-lymphocyte immunity, and post-HSCT, it indicates reconstitu-
tion of the T-lymphocyte compartment.

T-cell receptor excision circles (TRECs) are circular pieces 
of DNA produced as a consequence of TCRα and TCRβ chain 
formation. TCRβ chain formation occurs at the TN stage prior 
to proliferation and generates Dβ-JβTRECs. The TCRα chain is 
formed at the DP stage of development and generates sjTRECs. 
Because sjTRECs do not replicate, sjTREC levels become pro-
gressively more dilute with naïve T-lymphocyte proliferation. 
In the setting of post-HSCT lymphocytopenia, this may poten-
tially result in underestimation of the true sjTREC value and 
thymic activity. However, using PCR, quantification of sjTREC 
content in T-lymphocytes provides a practical and accepted 
measurement of thymic output by calculation of the frequency 
of sjTRECs in a defined population of mononuclear cells or 
sorted CD4+ or CD8+ T-lymphocytes (20). A more accurate 
quantification of thymic output is the sjTREC to Dβ-JβTREC 
ratio (thymic ratio). This represents intrathymic proliferation 
that occurs between the TN and DP stages, the main deter-
minant of thymic cellularity, which in turn provides a more 
accurate estimation of thymic output (21). The thymic ratio has 
the advantage of not being affected by peripheral T-lymphocyte 
expansion but use is limited by the fact that it is labor intensive 
and expensive.

No specific surface markers for RTEs have been identi-
fied in humans to date. Naïve T-lymphocyte markers such 
as CD45RA and CD62L are not always reliable as expansion 
can occur without loss of these markers (22, 23). In addition, 
CD45RO+ cells can revert back to a CD45RA phenotype. With 
advances in immunophenotyping techniques, the expres-
sion of CD31 (platelet endothelial cell adhesion molecule-1) 
on naïve CD45RA+CD4+ T-lymphocytes has been used as a 
marker for RTEs. CD31+CD4+ T-lymphocytes were found to 
have a high sjTREC content and numbers declined with age 
(21, 24). However, despite RTEs containing a high content of 
CD31+CD4+ T-lymphocytes, CD31+CD4+ T-lymphocytes are 
not exclusive RTE markers as CD31 is not always lost when 
naïve T-lymphocyte proliferate and CD31 can also be expressed 
by other cells including endothelial cells, mast cells, and 
NK cells (25).

The quality of the T-lymphocyte compartment is best assessed 
by measuring TCR diversity and T-lymphocyte function. As 
TCR repertoire diversity is almost completely reflective of the 
naïve T-lymphocyte compartment, measurement can provide 
information regarding thymic output (26). A more diverse TCR 
repertoire is also associated with increased TREC concentrations 
(3). T-lymphocyte functional tests involve measuring levels of 

cytokines following T-lymphocyte stimulation or detecting the 
presence of antigen-specific T-lymphocytes.

PRiMARY iMMUNODeFiCieNCieS THAT 
iMPAiR CeNTRAL OR PeRiPHeRAL 
TOLeRANCe

The significance of the mechanisms described above in develop-
ing and maintaining efficient, self-limited host defense while 
preserving self-tolerance is confirmed by studying patients with 
primary immunodeficiencies. The importance of thymocyte–
TEC cross talk is demonstrated in patients with so called “leaky” 
severe combined immunodeficiency (SCID) with hypomorphic 
genetic defects affecting hematopoietic stem cells which almost 
completely block development of early T-lymphocyte precursors. 
While null mutations completely abrogate T-lymphocyte devel-
opment, hypomorphic mutations permit a few T-lymphocyte 
clones to develop. However, patients experience severe 
T-lymphocytopenia, infection susceptibility, and autoimmunity. 
Histological examination of the thymus of patients with null and 
hypomorphic SCID mutations demonstrates severe thymic atro-
phy, with loss of cortico-medullary demarcation. Additionally, 
there is severe impairment of TEC progenitors to differentiate 
into cTEC and mTEC, leading to absence, or reduction of AIRE 
expression and of FOXP3-expressing Tregs (27). Thymic DCs are 
absent. These features lead to failure of thymic TRA expression 
and presentation, failure of positive and negative T-lymphocyte 
selection, and failure of thymic nTreg development, leading to 
a dysregulated TCR repertoire, thymic egress of autoreactive 
T-lymphocytes, and autoimmunity.

Patients with complete DiGeorge syndrome have genetically 
normal hematopoietic stem cells, but failure of the embryonic 
third pharyngeal pouch to form the thymus anlage leads to 
athymia (or in partial DiGeorge syndrome, atopic microthy-
mus). Neural crest-derived mesenchymal cells of the embryonic 
pharyngeal arches generate the thymic connective tissue. Thymic 
mesenchyme promotes thymic epithelium development and 
signaling between mesenchyme and epithelium controls initial 
thymic morphogenesis. Mesenchymal cells regulate proliferation 
and differentiation of immature TEC. However, as thymic devel-
opment becomes able to support immature thymocytes, further 
thymic epithelial differentiation is essentially independent of 
mesenchymal cells. Patients with complete DiGeorge syndrome 
have no T-lymphocytes, because of athymia rather than an 
intrinsic hematopoietic stem cell defect. Serial transplantation of 
allogeneic thymus tissue demonstrates subsequent development 
of normal thymic architecture from thymic epithelial progenitors, 
as thymocyte progenitors populate the substrate (28). Thymic 
development is incomplete however, and autoimmunity may be a 
feature in transplanted patients (29, 30).

Mutations in AIRE impair thymic medullary TRA expression, 
leading to impaired negative selection and subsequent multi-
organ autoimmunity. In humans, this manifests as the rare con-
dition autoimmune polyendocrinopathy candidiasis ectodermal 
dystrophy (15, 31). Similarly, loss of Fezf2 in mouse models leads 
to autoantibody production and autoimmune disease (13).
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Mutations in FOXP3 are the cause of immune dysregulation, 
polyendocrinopathy, enteropathy, X-linked syndrome (32). 
Patients present, usually in early infancy, with autoimmune cyto-
penias, severe autoimmune enteritis, and type 1 diabetes mellitus. 
Affected tissues show a T-lymphocyte infiltrate and patients lack 
functional regulatory FOXP3+ T-lymphocytes, causing failure of 
peripheral tolerance (33). A number of other PIDs in which auto-
immunity is a significant feature are associated with a reduction 
in Tregs, including Omenn syndrome (34), DiGeorge syndrome 
(35), and CTLA-4 deficiency (36, 37).

HSCT AND T-LYMPHOCYTe 
ReCONSTiTUTiON

Chemotherapy and/or radiotherapy conditioning is usually given 
pre-HSCT to remove malignant cells, prevent graft rejection, 
and make space in the bone marrow for the incoming graft. 
Subsequently, there is an “aplastic phase,” with obliteration of 
innate and adaptive immune responses, subjecting the patient to a 
period of increased risk of infection until donor stem cells engraft 
and reconstitution of the immune system ensues (38). Recovery 
of innate immunity occurs relatively quickly, but reconstitution 
of the adaptive T- and B-lymphocyte compartment is a more 
lengthy and complex process (2, 39). Incomplete or delayed IR, 
particularly of the T-lymphocyte compartment, is associated with 
increased post-transplant morbidity and mortality (40). Thymic 
function, and consequently thymic output, is negatively affected 
by advancing age, cytotoxic conditioning pre-HSCT, and GvHD 
(41). Potential strategies to boost thymic function and promote 
faster and complete IR, particularly in older patients who exhibit 
reduced thymic function inherently due to aging, have garnered 
much interest to improve patient outcome (42).

Restoration of the T-lymphocyte compartment post-HSCT 
occurs by two parallel pathways (43). Initially after HSCT, the rise 
in T-lymphocyte numbers is thymic-independent, with expansion 
of pre-existing surviving host T-lymphocytes or mature donor 
T-lymphocytes transferred with the graft. However, TCR diver-
sity is dependent upon the repertoire of the initial T-lymphocyte 
population and expansion results in skewing of the TCR reper-
toire with time, as well as gradual depletion of T-lymphocytes. 
This expansion provides an initial degree of immune protection 
in the post-transplant period, particularly from the host and 
donor memory T-lymphocytes against re-infection with specific 
pathogens such as CMV and EBV (26, 44), but is limited in its 
diversity and permanency, with prevailing susceptibility to infec-
tions (41, 45).

Complete and long-lasting IR following lympho-depletion 
requires durable de novo regeneration of naïve T-lymphocytes 
from donor progenitor cells within the thymus, which exhibit 
a broad TCR repertoire capable of recognizing a wide range of 
pathogens (the thymic-dependent pathway) (46, 47). This process 
is dependent on a functioning and structurally intact thymus to 
export a regular stream of recipient-tolerized donor stem cell-
derived naïve T-lymphocytes. Swift rebuilding of a competent 
normo-cellular T-lymphocyte compartment is an essential 
prerequisite for a normal life enabling regular development and 
function.

GRAFT-veRSUS-HOST DiSeASe

Despite advances made in the management of HSCT, GvHD 
remains a leading cause of morbidity and mortality (48), and lim-
its the success and more widespread application of this therapy. 
The incidence of grade II–IV aGvHD in children ranges from 
28 to 56% (49), depending on the degree of histocompatibility, 
recipient age, underlying condition, and conditioning regimen 
used (50). Higher aGvHD grades have consistently been associ-
ated with worse transplant-related mortality (TRM) and lower 
overall survival rates (51).

Acute graft-versus-host disease is mediated by donor-tolerized 
mature T-lymphocytes that recognize and attack disparate host 
antigens resulting in a harmful inflammatory response. The most 
important targets are the HLA, encoded by the MHC located on 
the short arm of chromosome 6, which play a key role in tissue 
histocompatability and T-lymphocyte recognition (52). The  
degree of MHC mismatch between donor and recipient is  
the most important determinant of GvHD, most importantly at 
the HLA-A, -B, -C, and DRB1 loci (48). However, even in the 
setting of a HLA-identical sibling HSCT, an alloreactive response 
can still occur due to mismatch between minor histocompat-
ibility antigens (53).

PATHOPHYSiOLOGY OF aGvHD

The Billingham criteria identified three requirements necessary 
for the development of aGvHD (54):

•	 The graft must contain immunocompetent cells.
•	 There must be a disparity between host antigens and those in 

the graft.
•	 The host must be unable to launch an immune response 

against this process.

Elucidation of aGvHD pathophysiology is based on 
experimental models (55): damage to host tissue by conditioning 
regimens, underlying disease, and/or infections leads to release 
of pro-inflammatory cytokines such as IFNγ, TNFα, and IL-1 
resulting in an inflammatory environment leading to the activa-
tion and maturation of host APCs, and upregulation of adhesion 
and costimulatory molecules. This cultivates an environment that 
promotes the recruitment of donor alloreactive T-lymphocytes. 
Donor T-lymphocytes recognize disparate allo-antigens on acti-
vated host APCs and become activated, proliferate, differentiate, 
produce further inflammatory cytokines, and migrate to target 
organs directed by chemokines, selectins, and integrins. Effector 
cells, primarily cytotoxic T-lymphocytes and NK cells, and solu-
ble effectors cause apoptosis of target cells mediated by perforin/
granzyme and Fas/Fas ligand pathways (56).

CLiNiCAL FeATUReS OF aGvHD

Historically, aGvHD was defined as occurring within the 
first 100  days following HSCT, and chronic (c) GvHD as after 
100 days. However, with the development of new strategies such 
as reduced intensive conditioning, this definition is less clear and 
a more recent reclassification now includes both late aGvHD 
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TAbLe 3 | Overall acute graft-versus-host disease (aGvHD) grading: 
modified Glucksberg grade (59).

Overall aGvHD 
grade

Skin stage Liver 
stage

GiT stage Upper Gi 
stage

Grade I 1–2 0 0 0
Grade II 3 1 1 1
Grade III – 2–3 2–4 –
Grade IV 4 4 – –

TAbLe 2 | Acute graft-versus-host disease staging of individual organ 
involvement (59).

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Skin No rash Rash <25% 
of BSA

25–50% 
BSA

>50% 
generalized 
erythroderma

Plus 
desquamation 
and bullae

Gut Diarrhea 
< 10 ml/
kg/day

10–19.9 ml/
kg/day

20–30 ml/
kg/day

>30 ml/kg/
day

Severe abdominal 
pain ± ileus, frank 
blood, or melena

UGi – Severe 
nausea/
vomiting

– – –

Liver Bilirubin 
≤2 mg/dL

2.1–3 mg/dL 3.1–6 mg/
dL

6.1–15 mg/
dL

>15 mg/dL

TAbLe 1 | Classification of GvHD (57).

Type Definition

Acute Classic acute graft-versus-
host disease (aGvHD)

Onset ≤100 days post-hematopoietic 
stem cell transplant (HSCT)/DLI, features 
of aGvHD

Persistent/recurrent/ 
late-onset aGvHD

Onset >100 days post-HSCT/DLI, 
features of aGvHD

Chronic Classic chronic GvHD Onset at any time post-HSCT/DLI, 
features of chronic GvHD

Overlap syndrome Onset at any time post-HSCT/DLI, 
features of both acute and chronic GvHD
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occurring after 100 days and overlap syndrome with features of 
both (Table 1) (57).

Acute graft-versus-host disease principally involves the skin, 
GIT, and liver, with skin manifestations occurring most com-
monly and usually the earliest following engraftment (48, 55, 58). 
Patients typically develop a pruritic maculo-papular rash, initially 
around the neck and shoulders, often involving the palms and 
soles but sparing the scalp. In severe cases, blistering and ulcera-
tion can occur. Gastrointestinal aGvHD usually involves diarrhea 
but may also manifest as vomiting, nausea, anorexia, abdominal 
pain, and bleeding. Liver involvement typically manifests as chol-
estasis due to damage to the bile canaliculi, with elevated alkaline 
phosphatase and serum bilirubin (Table 2) (59). aGvHD is staged 
according to the extent of involvement of the skin, GIT, and liver 
(Table 3) (59). Severe GvHD is associated with a poor prognosis 
with a 5% long-term survival for grade 4 and 25% for grade 3.

eFFeCT OF aGvHD ON THYMiC 
STRUCTURe, FUNCTiON, AND THe 
T-LYMPHOCYTe COMPARTMeNT

Although aGvHD principally involves the skin, GIT, and liver, 
the thymus is also a primary target, resulting in disruption of the 
thymic architecture. Thymic aGvHD has been shown to cause 
loss of demarcation between the cortico-medullary zones, loss 
of Hassall’s corpuscles, alteration of TEC subpopulations, and 
depletion of thymocytes (60–62). The structural damage to the 
thymic microenvironment consequently impairs lymphocyte for-
mation and export, reflected by lower TREC levels and a distorted 
TCR repertoire observed in patients, and occurs independent 
of age (20, 61, 63–65). aGvHD also has detrimental effects on 
the thymic-independent pathway with reduced expansion of 
transferred mature donor-tolerized T-lymphocytes possibly 
due to loss of peripheral T-lymphocyte niches (65). The thymus 
appears to be particularly sensitive to the effects of GvHD with 
thymic output being significantly affected even in grade 1 disease 
(26). Subclinical thymic GvHD may even occur in the absence 
of overt aGvHD (66) with an underappreciated adverse effect on 
reconstitution of adaptive immunity, causing ongoing infections 
and incomplete IR post-HSCT.

Although the precise mechanisms behind how aGvHD causes 
thymic damage in humans remain incompletely understood, 
experimental aGvHD models have helped to delineate the cel-
lular and molecular mechanisms underlying thymic injury and 
effects on T-lymphocyte development (60). TECs act as initia-
tors and targets of thymic aGvHD, capable of directly activating 
alloreactive donor T-lymphocytes independently of APCs (63). 
Activation of alloreactive donor T-lymphocytes causes IFNγ 
secretion and stimulation of a STAT1-induced apoptosis pathway 
resulting in death of TECs (63). The resulting disruption of normal 
thymic architecture and organization of the microenvironment 
interrupts the normal signals required for immature thymocytes, 
leading to thymic atrophy and reduced thymic export. Murine 
models show that thymocyte damage occurs at two stages of 
development primarily resulting in loss of DP thymocytes. The 
first stage involves failure of normal TN thymocyte proliferation, 
thus failing to produce sufficient numbers of DP thymocytes  
(60, 61). The second stage is increased apoptosis of DP thymocytes 
(61, 67). Both events contribute to the reduction in thymic lym-
phoid cellularity, consequent thymic atrophy, and reduced thymic 
export. Patients with aGvHD show a decrease in βTREC and  
sjTREC levels, suggestive of an interference at an early develop-
mental stage (pre-TN thymocyte proliferation) either involving 
early thymocyte precursors or bone marrow-derived progenitors 
(20, 21).

A distorted TCR repertoire is observed in patients with 
aGvHD (20). Normally, all thymic stromal cells exhibit the same 
MHC haplotype. Following HSCT with HLA mismatch, the 
radio/chemoresistant cTECs continue to express recipient MHC 
while recipient medullary DCs will be replaced by donor medul-
lary DCs expressing donor MHC molecules. This MHC disparity 
disturbs thymic positive and negative selection impacting on TCR 
selection, resulting in thymocytes escaping negative selection, 
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increasing the survival of reactive T-lymphocytes (68–71). It 
is interesting to speculate whether donor stem cell-derived 
T-lymphocytes, inadequately tolerized in the recipient thymus 
are “allo-reactive” or “auto-reactive.” Murine models demonstrate 
that damage to mTECs by donor CD8+ T-lymphocytes disrupts 
normal thymic negative selection with escape of autoreactive 
CD4+ T-lymphocytes into the circulation (72). Thus, aGvHD is 
detrimental to quantity and quality of T-lymphocyte recovery. 
Thymic injury from aGvHD resulting in disruption of the normal 
negative selection process, and thymic Treg development alters 
the TCR repertoire and promotes escape of autoreactive cells into 
the circulation, setting the scene for autoimmunity as seen in 
cGvHD (72) (Figure 2). It is well established that aGvHD predis-
poses to cGvHD but the mechanistic link between them has been 
uncertain. Recently, Dertschnig et al. demonstrated that impaired 
thymic ectopic TRA expression secondary to damaged AIRE-
expressing mTECs results in disruption to negative selection 
permitting de novo production of TRA-specific T-lymphocytes 
which escape into the periphery. TRAs most affected were those 
that are expressed in tissues known to be targets in cGvHD thus 
providing a potential link between allo-immunity to the develop-
ment of autoimmunity (73, 74).

CORTiCOSTeROiDS AND THYMiC 
FUNCTiON

First-line treatment of aGvHD is corticosteroids, which exhibit 
potent immunosuppressive and anti-inflammatory effects. 

Although they are effective anti-inflammatory agents, they have 
significant unwanted effects, including increased risk of car-
diovascular disease, osteoporosis, and insulin resistance (75–77). 
Despite their successful application in some patients, a complete 
response is only witnessed in 25–50% of patients with aGvHD. 
Short intensive corticosteroid courses in avian models induce 
thymic involution and cause a profound reduction in naïve 
T-lymphocyte production, although with complete recovery 
following cessation of corticosteroid treatment (78). However, 
the effects of long-term corticosteroid use in human thymus are 
unknown. Both aGvHD and immunosuppressive treatment of 
aGvHD concurrently impair thymopoiesis subjecting the patient 
to increased risk of infection and other complications.

Patients who are refractory to corticosteroid treatment have an 
unfavorable prognosis with increased TRM (79). While corticos-
teroid are well established as first-line therapy for aGvHD, there 
is no established consensus to standard second-line therapy for 
patients with steroid-refractory disease or steroid-dependency 
and usually involves intensification of systemic immunosup-
pression with a broad plethora of different therapeutic agents 
such as mycophenolate mofetil, anti-TNFα antibodies, or mam-
malian target of rapamycin inhibitors (80). These agents mainly 
non-selectively target T-lymphocytes resulting in a general 
immunosuppressive effect, and also likely negatively affect the 
graft-versus-tumor effect (49).

The insights gained from studying the effects of abnormal 
T-lymphocyte and thymic development in patients with primary 
immunodeficiencies are instructive in considering effective treatment 
of aGvHD. To restore normal immunity, early neutralization of the 
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donor-tolerized T-lymphocytes is required to interrupt target-organ 
damage, particularly to the thymus, while restoring normal thymic 
architecture which will facilitate appropriate tolerization of donor 
stem cell-derived thymocytes to the recipient, with adequate elimi-
nation of cells likely to cause autoimmunity. In view of the effect of 
corticosteroids on thymic architecture and function, the rapid cessa-
tion of corticosteroid therapy while maintaining control of alloreactive 
T-lymphocytes would be desirable.

eXTRACORPOReAL PHOTOPHeReSiS 
(eCP)

Extracorporeal photopheresis involves the collection of peripheral 
blood mononuclear cells by apheresis, exposure to the photoactive 
drug 8-methoxypsoralen (8-MOP), and UVA radiation, followed 
by re-infusion of the photo-activated cells back into the patient (81). 
The clinical efficacy, safety, and tolerability of ECP in the treatment 
of aGvHD in patients have been demonstrated in several studies, 
which also show the steroid-sparing effect (82–85). A systematic 
analysis of prospective studies examining ECP treatment outcomes in 
corticosteroids refractory/dependent/intolerant aGvHD in adults and 
children found an overall response rate of almost 70% in all organs, 
an encouraging result compared to other second-line treatments used 
(86). Based on the evidence available, the UK Expert Photopheresis 
Group guidelines state that ECP should be considered as second-line 
therapy for patients with aGvHD grades II–IV who are steroid refrac-
tory/dependant/intolerant. ECP is given as one cycle weekly (two 
consecutive days) and is recommended for a minimum of 8 weeks 
(87). Adverse effects of ECP treatment are minimal and predomi-
nantly related to central venous access. The mechanistic actions of ECP  
have not been fully elucidated but likely immune-modulate adaptive 
and innate immunity, predominantly acting through DCs and Tregs 
(88, 89).

Exposure to 8-MOP/UVA results in the formation of covalent 
bonds with pyrimidine bases and subsequent cross-linking of DNA, 
inducing apoptosis of the exposed cells, with activated T-lymphocytes 
preferentially affected (81, 90, 91). Apoptosis occurs several hours after 
ECP and peaks on day 3 (92), possibly due to increased Fas-mediated 
pro-apoptotic signaling (93). However, as only 5–10% of lymphocytes 
are exposed during the procedure, an insufficient number to entirely 
account for the effects of ECP, and considering also that the majority 
of activated T-lymphocytes reside in the tissues rather than the blood, 
it is speculated that the ECP-exposed cells have indirect immune-
modulatory actions on other non-exposed immune-competent cells.

Following ECP, phagocytosis of the apoptotic cell fragments 
leads to an immune response directed against alloreactive donor 
T-lymphocytes.

Monocytes undergo apoptosis more slowly than lymphocytes 
following ECP (94). ECP promotes differentiation of exposed 
monocytes to DCs (95), stimulated by the physiological inter-
action of monocytes with adherent platelets during passage 
through the ECP chamber (95, 96). Although by day 6 post-ECP 
80% of monocytes are apoptotic, functional abilities such as 
T-lymphocyte stimulation, differentiation into DCs, and endo-
cytosis are preserved, despite impairment of migratory capacities 
(97). As the majority of DCs typically reside in the tissues, this 
differentiation of monocytes introduces a much larger number of 

DCs into the circulation than is normally seen, thus increasing the 
antigen-presenting capacity. Following ECP, apoptotic cells are 
localized primarily in the liver and spleen, regions rich with DCs, 
which ingest the apoptotic alloreactive peptide fragments (98). 
In aGvHD, phagocytosis of ECP-exposed apoptotic cells results 
in DCs acquiring an immature tolerogenic state, characterized 
by downregulation of maturation markers and costimulatory 
molecules such CD40, CD80, CD83, and CD86 and increased 
secretion of anti-inflammatory cytokines such as TGFβ and 
IL-10, resulting in enhanced phagocytic activity but a reduced 
ability to stimulate an effector T-lymphocyte immune response 
(91, 99–102). IL-10 is a key player in immune downregulation 
and induction of tolerance, specifically by preventing DC matura-
tion and generating Tregs (91). Monocyte-derived immature DCs 
also show upregulated expression of the glucocorticoid-induced 
leucine zipper gene, a marker of tolerogenic DCs, following 
ECP exposure (103). Upon interaction with T-lymphocytes, 
tolerogenic DCs can induce anergy or apoptosis, or stimulate the 
production of Tregs. However, these DCs are not confined to this 
immature state and can respond to inflammatory signals such as 
lipopolysaccharide resulting in full maturation (91).

TReGS AND eCP

The generation of Tregs is an important immunomodulatory action of 
ECP. In aGvHD murine models, ECP-treated splenocytes improved 
aGvHD and IR by reducing the number of non-exposed CD8+ effector 
lymphocytes, suppressing allogeneic T-lymphocyte proliferation and 
increasing the number of Tregs (104).

Ten patients with acute and chronic GvHD showed a significant 
increase in Tregs following ECP, which was accompanied by increased 
glucocorticoid-induced tumor necrosis factor receptor-related protein 
expression (105). A larger study involving 27 patients with acute and 
chronic GvHD showed a significant increase in Treg numbers in those 
who responded to ECP treatment (106).

CONCLUSiON

In approaching treatment of aGvHD, tipping the balance toward 
immune tolerance rather than immune suppression and reducing 
thymic aGvHD, as well as decreasing the burden of immunosup-
pressive medications, could conceivably allow regeneration of thymic 
function, as suggested in preliminary evidence by Beattie et al. (107). 
In this case report of a single patient with aGvHD, there was a temporal 
association of the commencement of ECP and reduction in corticos-
teroid dose with a rise in thymic export and Tregs. Further studies 
are required to substantiate this observation, but if confirmed, ECP 
would seem an attractive treatment option for aGvHD, given the lack 
of global immunosuppression with preservation of adaptive immune 
responses to novel and recall antigens.
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